]> git.donarmstrong.com Git - rsem.git/blob - rsem-run-ebseq
Modified the acknowledgement section of README.md
[rsem.git] / rsem-run-ebseq
1 #!/usr/bin/env perl
2
3 use Getopt::Long;
4 use Pod::Usage;
5 use FindBin;
6 use lib $FindBin::Bin;
7 use strict;
8
9 use rsem_perl_utils;
10
11 my $ngvF = "";
12 my $help = 0;
13
14 GetOptions("ngvector=s" => \$ngvF,
15            "h|help" => \$help) or pod2usage(-exitval => 2, -verbose => 2);
16
17 pod2usage(-verbose => 2) if ($help == 1);
18 pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (scalar(@ARGV) != 3);
19 pod2usage(-msg => "ngvector file cannot be named as #! # is reserved for other purpose!", -exitval => 2, -verbose => 2) if ($ngvF eq "#");
20
21 my $dir = "$FindBin::Bin/";
22 my $command = "";
23
24 my @conditions = split(/,/, $ARGV[1]);
25
26 pod2usage(-msg => "At least 2 conditions are required for differential expression analysis!", -exitval => 2, -verbose => 2) if (scalar(@conditions) < 2);
27
28 if ($ngvF eq "") { $ngvF = "#"; }
29
30 $" = " ";
31 $command = $dir."EBSeq/rsem-for-ebseq-find-DE ".$dir."EBSeq $ngvF $ARGV[0] $ARGV[2] @conditions";
32 &runCommand($command)
33
34 __END__
35
36 =head1 NAME
37
38 rsem-run-ebseq
39
40 =head1 SYNOPSIS
41
42 rsem-run-ebseq [options] data_matrix_file conditions output_file
43
44 =head1 ARGUMENTS
45
46 =over
47
48 =item B<data_matrix_file>
49
50 This file is a m by n matrix. m is the number of genes/transcripts and n is the number of total samples. Each element in the matrix represents the expected count for a particular gene/transcript in a particular sample. Users can use 'rsem-generate-data-matrix' to generate this file from expression result files. 
51
52 =item B<conditions>
53
54 Comma-separated list of values representing the number of replicates for each condition. For example, "3,3" means the data set contains 2 conditions and each condition has 3 replicates. "2,3,3" means the data set contains 3 conditions, with 2, 3, and 3 replicates for each condition respectively.
55
56 =item B<output_file>
57
58 Output file name.
59
60 =back
61
62 =head1 OPTIONS
63
64 =over
65
66 =item B<--ngvector> <file>
67
68 This option provides the grouping information required by EBSeq for isoform-level differential expression analysis. The file can be generated by 'rsem-generate-ngvector'. Turning this option on is highly recommended for isoform-level differential expression analysis. (Default: off)
69
70 =item B<-h/--help>
71
72 Show help information.
73
74 =back
75
76 =head1 DESCRIPTION
77
78 This program is a wrapper over EBSeq. It performs differential expression analysis and can work on two or more conditions. All genes/transcripts and their associated statistcs are reported in one output file. This program does not control false discovery rate and call differential expressed genes/transcripts. Please use 'rsem-control-fdr' to control false discovery rate after this program is finished.
79
80 =head1 OUTPUT
81
82 =over
83
84 =item B<output_file>
85
86 This file reports the calculated statistics for all genes/transcripts. It is written as a matrix with row and column names. The row names are the genes'/transcripts' names. The column names are for the reported statistics.
87
88 If there are only 2 different conditions among the samples, four statistics (columns) will be reported for each gene/transcript. They are "PPEE", "PPDE", "PostFC" and "RealFC". "PPEE" is the posterior probability (estimated by EBSeq) that a gene/transcript is equally expressed. "PPDE" is the posterior probability that a gene/transcript is differentially expressed. "PostFC" is the posterior fold change (condition 1 over condition2) for a gene/transcript. It is defined as the ratio between posterior mean expression estimates of the gene/transcript for each condition. "RealFC" is the real fold change (condition 1 over condition2) for a gene/transcript.  It is the ratio of the normalized within condition 1 mean count over normalized within condition 2 mean count for the gene/transcript. Fold changes are calculated using EBSeq's 'PostFC' function. The genes/transcripts are reported in descending order of their "PPDE" values.
89
90 If there are more than 2 different conditions among the samples, the output format is different. For differential expression analysis with more than 2 conditions, EBSeq will enumerate all possible expression patterns (on which conditions are equally expressed and which conditions are not). Suppose there are k different patterns, the first k columns of the output file give the posterior probability of each expression pattern is true. Patterns are defined in a separate file, 'output_file.pattern'. The k+1 column gives the maximum a posteriori (MAP) expression pattern for each gene/transcript. The k+2 column gives the posterior probability that not all conditions are equally expressed (column name "PPDE"). The genes/transcripts are reported in descending order of their "PPDE" column values. For details on how EBSeq works for more than 2 conditions, please refer to EBSeq's manual.
91
92 =item B<output_file.pattern>
93
94 This file is only generated when there are more than 2 conditions. It defines all possible expression patterns over the conditions using a matrix with names. Each row of the matrix refers to a different expression pattern and each column gives the expression status of a different condition. Two conditions are equally expressed if and only if their statuses are the same.
95
96 =item B<output_file.condmeans>
97
98 This file is only generated when there are more than 2 conditions. It gives the normalized mean count value for each gene/transcript at each condition. It is formatted as a matrix with names. Each row represents a gene/transcript and each column represent a condition. The order of genes/transcripts is the same as 'output_file'. This file can be used to calculate fold changes between conditions which users are interested in.  
99
100 =back
101
102 =head1 EXAMPLES
103
104 1) We're interested in isoform-level differential expression analysis and there are two conditions. Each condition has 5 replicates. We have already collected the data matrix as 'IsoMat' and generated ngvector as 'ngvector.ngvec':
105
106  rsem-run-ebseq --ngvector ngvector.ngvec IsoMat 5,5 IsoMat.results
107
108 The results will be in 'IsoMat.results'.
109
110 2) We're interested in gene-level analysis and there are 3 conditions. The first condition has 3 replicates and the other two has 4 replicates each. The data matrix is named as 'GeneMat':
111
112  rsem-run-ebseq GeneMat 3,4,4 GeneMat.results
113
114 Three files, 'GeneMat.results', 'GeneMat.results.pattern', and 'GeneMat.results.condmeans', will be generated. 
115
116 =cut
117
118
119  
120
121