]> git.donarmstrong.com Git - ool/lipid_simulation_formalism.git/blob - kinetic_formalism.Rnw
update formalism
[ool/lipid_simulation_formalism.git] / kinetic_formalism.Rnw
1 \documentclass[english,12pt]{article}
2 \usepackage{fancyhdr}
3 %\usepackage[pdftex]{graphicx}
4 \usepackage{graphicx}
5 \usepackage[bf]{caption2}
6 \usepackage{rotating}
7 \usepackage{multirow}
8 \usepackage{textcomp}
9 \usepackage{mathrsfs}
10 \usepackage{amssymb}
11 \usepackage{setspace}
12 \usepackage{txfonts}
13 \usepackage[light,all]{draftcopy}
14 \usepackage{fancyref}
15 \usepackage[hyperfigures,backref,bookmarks,colorlinks]{hyperref}
16 \usepackage[sectionbib,sort&compress,square,numbers]{natbib}
17 \usepackage[margin,inline,draft]{fixme}
18 \usepackage[x11names,svgnames]{xcolor}
19 \usepackage{texshade}
20 \newenvironment{narrow}[2]{%
21   \begin{list}{}{%
22       \setlength{\topsep}{0pt}%
23       \setlength{\leftmargin}{#1}%
24       \setlength{\rightmargin}{#2}%
25       \setlength{\listparindent}{\parindent}%
26       \setlength{\itemindent}{\parindent}%
27       \setlength{\parsep}{\parskip}}%
28   \item[]}{\end{list}}
29 \newenvironment{paperquote}{%
30   \begin{quote}%
31      \it
32   }%
33   {\end{quote}}
34 \renewcommand{\textfraction}{0.15}
35 \renewcommand{\topfraction}{0.85}
36 \renewcommand{\bottomfraction}{0.65}
37 \renewcommand{\floatpagefraction}{0.60}
38 %\renewcommand{\baselinestretch}{1.8}
39 \newenvironment{enumerate*}%
40   {\begin{enumerate}%
41     \setlength{\itemsep}{0pt}%
42     \setlength{\parskip}{0pt}}%
43   {\end{enumerate}}
44 \newenvironment{itemize*}%
45   {\begin{itemize}%
46     \setlength{\itemsep}{0pt}%
47     \setlength{\parskip}{0pt}}%
48   {\end{itemize}}
49 \oddsidemargin 0.0in 
50 \textwidth 6.5in
51 \raggedbottom
52 \clubpenalty = 10000
53 \widowpenalty = 10000
54 \pagestyle{fancy}
55 \author{Don Armstrong}
56 \title{OOL Kinetic Formalisms}
57 %\date{}
58 \onehalfspacing
59 \begin{document}
60 %\maketitle
61
62 <<results=hide,echo=FALSE>>=
63 require(lattice)
64 require(grid)
65
66
67 \section{State Equation}
68 % double check this with the bits in the paper
69 \begin{equation}
70   \frac{d C_{i_\mathrm{ves}}}{dt} = k_{fi}k_{fi\mathrm{adj}}\left[C_{i_\mathrm{monomer}}\right]S_\mathrm{ves} -
71   k_{bi}k_{bi\mathrm{adj}}C_{i_\mathrm{ves}}
72   \label{eq:state}
73 \end{equation}
74
75 For $k_{fi}k_{fi\mathrm{adj}}\left[C_{i_\mathrm{monomer}}\right]$,
76 $k_{fi}$ has units of $\frac{\mathrm{m}}{\mathrm{s}}$,
77 $k_{fi\mathrm{adj}}$ and $k_{bi\mathrm{adj}}$ are unitless,
78 concentration is in units of $\frac{\mathrm{n}}{\mathrm{L}}$, surface
79 area is in units of $\mathrm{m}^2$, $k_{bi}$ has units of
80 $\frac{1}{\mathrm{s}}$ and $C_{i_\mathrm{ves}}$ has units of
81 $\mathrm{n}$, Thus, we have
82
83 \begin{equation}
84   \frac{\mathrm{n}}{\mathrm{s}} = \frac{\mathrm{m}}{\mathrm{s}} \frac{\mathrm{n}}{\mathrm{L}} \mathrm{m}^2 \frac{1000\mathrm{L}}{\mathrm{m}^3} - 
85   \frac{1}{\mathrm{s}} \mathrm{n}
86   =
87   \frac{\mathrm{m^3}}{\mathrm{s}} \frac{\mathrm{n}}{\mathrm{L}} \frac{1000\mathrm{L}}{\mathrm{m}^3} - \frac{\mathrm{n}}{\mathrm{s}}=
88   \frac{\mathrm{n}}{\mathrm{s}} = 1000 \frac{\mathrm{n}}{\mathrm{s}} - \frac{\mathrm{n}}{\mathrm{s}}
89   \label{eq:state_units}
90 \end{equation}
91
92 The 1000 isn't in \fref{eq:state} above, because it is unit-dependent.
93
94 \subsection{Forward adjustments ($k_{fi\mathrm{adj}}$)}
95
96 \begin{equation}
97   k_{fi\mathrm{adj}} = un_f \cdot ch_f \cdot cu_f \cdot l_f \cdot CF1_f
98   \label{eq:kf_adj}
99 \end{equation}
100
101 \newpage
102 \subsubsection{Unsaturation Forward}
103 \begin{equation}
104   un_f = 2^{\mathrm{stdev}\left(un_\mathrm{ves}\right)}
105   \label{eq:unsaturation_forward}
106 \end{equation}
107
108 <<fig=TRUE,echo=FALSE,results=hide,width=5,height=5>>=
109 curve(2^x,from=0,to=sd(c(0,4)),
110       main="Unsaturation forward",
111       xlab="Standard Deviation of Unsaturation of Vesicle",
112       ylab="Unsaturation Forward Adjustment")
113
114
115 \newpage
116 \subsubsection{Charge Forward}
117 \begin{equation}
118   ch_f = 60^{-\left<{ch}_v\right> {ch}_m}
119   \label{eq:charge_forward}
120 \end{equation}
121
122 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
123 x <- seq(-1,0,length.out=20)
124 y <- seq(-1,0,length.out=20)
125 grid <- expand.grid(x=x,y=y)
126 grid$z <- as.vector(60^(-outer(x,y)))
127 print(wireframe(z~x*y,grid,cuts=50,
128           drape=TRUE,
129           scales=list(arrows=FALSE),
130           xlab=list("Average Vesicle Charge",rot=30),
131           ylab=list("Component Charge",rot=-35),
132           zlab=list("Charge Forward",rot=93)))
133 rm(x,y,grid)
134
135
136 \newpage
137 \subsubsection{Curvature Forward}
138 \begin{equation}
139   cu_f = 10^{\mathrm{stdev}\left|\log cu_\mathrm{vesicle}\right|}
140   \label{eq:curvature_forward}
141 \end{equation}
142
143 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=5>>=
144 curve(10^x,from=0,to=max(c(sd(abs(log(c(0.8,1.33)))),
145                     sd(abs(log(c(1,1.33)))),
146                     sd(abs(log(c(0.8,1)))))),
147       main="Curvature forward",
148       xlab="Standard Deviation of Absolute value of the Log of the Curvature of Vesicle",
149       ylab="Curvature Forward Adjustment")
150
151
152 \newpage
153 \subsubsection{Length Forward}
154 \begin{equation}
155   l_f = 3^{\mathrm{stdev} l_\mathrm{ves}}
156   \label{eq:length_forward}
157 \end{equation}
158
159 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=5>>=
160 curve(3^x,from=0,to=sd(c(12,24)),
161       main="Length forward",
162       xlab="Standard Deviation of Length of Vesicle",
163       ylab="Length Forward Adjustment")
164
165
166 \subsubsection{Complex Formation}
167 \begin{equation}
168   CF1_f=1
169   \label{eq:complex_formation_forward}
170 \end{equation}
171
172 \subsection{Backward adjustments ($k_{bi\mathrm{adj}}$)}
173
174 \begin{equation}
175   k_{bi\mathrm{adj}} = un_b \cdot ch_b \cdot cu_b \cdot l_b \cdot CF1_b
176   \label{eq:kf_adj}
177 \end{equation}
178
179 \newpage
180 \subsubsection{Unsaturation Backward}
181 \begin{equation}
182   un_b = 10^{\left|3.5^{-\left<un_\mathrm{ves}\right>}-3.5^{-un_\mathrm{monomer}}\right|}
183   \label{eq:unsaturation_backward}
184 \end{equation}
185
186 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
187 grid <- expand.grid(x=seq(0,4,length.out=20),
188                     y=seq(0,4,length.out=20))
189 grid$z <- 10^(abs(3.5^-grid$x-3.5^-grid$y))
190 print(wireframe(z~x*y,grid,cuts=50,
191           drape=TRUE,
192           scales=list(arrows=FALSE),
193           xlab=list("Average Vesicle Unsaturation",rot=30),
194           ylab=list("Monomer Unsaturation",rot=-35),
195           zlab=list("Unsaturation Backward",rot=93)))
196 rm(grid)
197
198
199 \newpage
200 \subsubsection{Charge Backwards}
201 \begin{equation}
202   ch_b = 20^{\left<{ch}_v\right> {ch}_m}
203   \label{eq:charge_backwards}
204 \end{equation}
205
206 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
207 x <- seq(-1,0,length.out=20)
208 y <- seq(-1,0,length.out=20)
209 grid <- expand.grid(x=x,y=y)
210 grid$z <- as.vector(20^(outer(x,y)))
211 print(wireframe(z~x*y,grid,cuts=50,
212           drape=TRUE,
213           scales=list(arrows=FALSE),
214           xlab=list("Average Vesicle Charge",rot=30),
215           ylab=list("Component Charge",rot=-35),
216           zlab=list("Charge Backwards",rot=93)))
217 rm(x,y,grid)
218
219
220 \newpage
221 \subsubsection{Curvature Backwards}
222 \begin{equation}
223   cu_f = 7^{1-\left(20\left(\log cu_\mathrm{vesicle}-\log cu_\mathrm{monomer}\right)^2+1\right)^{-1}}
224   \label{eq:curvature_backwards}
225 \end{equation}
226
227 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
228 grid <- expand.grid(x=seq(0.8,1.33,length.out=20),
229                     y=seq(0.8,1.33,length.out=20))
230 grid$z <- 7^(1-1/(20*(log(grid$x)-log(grid$y))^2+1))
231 print(wireframe(z~x*y,grid,cuts=50,
232           drape=TRUE,
233           scales=list(arrows=FALSE),
234           xlab=list("Vesicle Curvature",rot=30),
235           ylab=list("Monomer Curvature",rot=-35),
236           zlab=list("Curvature Backward",rot=93)))
237 rm(grid)
238
239
240 \newpage
241 \subsubsection{Length Backwards}
242 \begin{equation}
243   l_b = 3.2^{\left|l_\mathrm{ves}-l_\mathrm{monomer}\right|}
244   \label{eq:length_backward}
245 \end{equation}
246
247 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
248 grid <- expand.grid(x=seq(12,24,length.out=20),
249                     y=seq(12,24,length.out=20))
250 grid$z <- 3.2^(abs(grid$x-grid$y))
251 print(wireframe(z~x*y,grid,cuts=50,
252           drape=TRUE,
253           scales=list(arrows=FALSE),
254           xlab=list("Average Vesicle Length",rot=30),
255           ylab=list("Monomer Length",rot=-35),
256           zlab=list("Length Backward",rot=93)))
257 rm(grid)
258
259
260 \newpage
261 \subsubsection{Complex Formation Backward}
262 \begin{equation}
263   CF1_b=1.5^{CF1_\mathrm{ves} CF1_\mathrm{monomer}-\left|CF1_\mathrm{ves} CF1_\mathrm{monomer}\right|}
264   \label{eq:complex_formation_backward}
265 \end{equation}
266
267 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
268 grid <- expand.grid(x=seq(-1,3,length.out=20),
269                     y=seq(-1,3,length.out=20))
270 grid$z <- 3.2^(grid$x*grid$y-abs(grid$x*grid$y))
271 print(wireframe(z~x*y,grid,cuts=50,
272           drape=TRUE,
273           scales=list(arrows=FALSE),
274           xlab=list("Vesicle Complex Formation",rot=30),
275           ylab=list("Monomer Complex Formation",rot=-35),
276           zlab=list("Complex Formation Backward",rot=93)))
277 rm(grid)
278
279
280
281
282
283 % \bibliographystyle{plainnat}
284 % \bibliography{references.bib}
285
286
287 \end{document}