\documentclass[english,12pt]{article} \usepackage{fancyhdr} %\usepackage[pdftex]{graphicx} \usepackage{graphicx} \usepackage[bf]{caption2} \usepackage{rotating} \usepackage{multirow} \usepackage{textcomp} \usepackage{mathrsfs} \usepackage{amssymb} \usepackage{setspace} \usepackage{txfonts} \usepackage[light,all]{draftcopy} \usepackage{fancyref} \usepackage[hyperfigures,backref,bookmarks,colorlinks]{hyperref} \usepackage[sectionbib,sort&compress,square,numbers]{natbib} \usepackage[margin,inline,draft]{fixme} \usepackage[x11names,svgnames]{xcolor} \usepackage{texshade} \newenvironment{narrow}[2]{% \begin{list}{}{% \setlength{\topsep}{0pt}% \setlength{\leftmargin}{#1}% \setlength{\rightmargin}{#2}% \setlength{\listparindent}{\parindent}% \setlength{\itemindent}{\parindent}% \setlength{\parsep}{\parskip}}% \item[]}{\end{list}} \newenvironment{paperquote}{% \begin{quote}% \it }% {\end{quote}} \renewcommand{\textfraction}{0.15} \renewcommand{\topfraction}{0.85} \renewcommand{\bottomfraction}{0.65} \renewcommand{\floatpagefraction}{0.60} %\renewcommand{\baselinestretch}{1.8} \newenvironment{enumerate*}% {\begin{enumerate}% \setlength{\itemsep}{0pt}% \setlength{\parskip}{0pt}}% {\end{enumerate}} \newenvironment{itemize*}% {\begin{itemize}% \setlength{\itemsep}{0pt}% \setlength{\parskip}{0pt}}% {\end{itemize}} \oddsidemargin 0.0in \textwidth 6.5in \raggedbottom \clubpenalty = 10000 \widowpenalty = 10000 \pagestyle{fancy} \author{Don Armstrong} \title{OOL Kinetic Formalisms} %\date{} \onehalfspacing \begin{document} %\maketitle <>= require(lattice) require(grid) @ \section{State Equation} % double check this with the bits in the paper \begin{equation} \frac{d C_{i_\mathrm{ves}}}{dt} = k_{fi}k_{fi\mathrm{adj}}\left[C_{i_\mathrm{monomer}}\right]S_\mathrm{ves} - k_{bi}k_{bi\mathrm{adj}}C_{i_\mathrm{ves}} \label{eq:state} \end{equation} For $k_{fi}k_{fi\mathrm{adj}}\left[C_{i_\mathrm{monomer}}\right]$, $k_{fi}$ has units of $\frac{\mathrm{m}}{\mathrm{s}}$, $k_{fi\mathrm{adj}}$ and $k_{bi\mathrm{adj}}$ are unitless, concentration is in units of $\frac{\mathrm{n}}{\mathrm{L}}$, surface area is in units of $\mathrm{m}^2$, $k_{bi}$ has units of $\frac{1}{\mathrm{s}}$ and $C_{i_\mathrm{ves}}$ has units of $\mathrm{n}$, Thus, we have \begin{equation} \frac{\mathrm{n}}{\mathrm{s}} = \frac{\mathrm{m}}{\mathrm{s}} \frac{\mathrm{n}}{\mathrm{L}} \mathrm{m}^2 \frac{1000\mathrm{L}}{\mathrm{m}^3} - \frac{1}{\mathrm{s}} \mathrm{n} = \frac{\mathrm{m^3}}{\mathrm{s}} \frac{\mathrm{n}}{\mathrm{L}} \frac{1000\mathrm{L}}{\mathrm{m}^3} - \frac{\mathrm{n}}{\mathrm{s}}= \frac{\mathrm{n}}{\mathrm{s}} = 1000 \frac{\mathrm{n}}{\mathrm{s}} - \frac{\mathrm{n}}{\mathrm{s}} \label{eq:state_units} \end{equation} The 1000 isn't in \fref{eq:state} above, because it is unit-dependent. \subsection{Forward adjustments ($k_{fi\mathrm{adj}}$)} \begin{equation} k_{fi\mathrm{adj}} = un_f \cdot ch_f \cdot cu_f \cdot l_f \cdot CF1_f \label{eq:kf_adj} \end{equation} \newpage \subsubsection{Unsaturation Forward} \begin{equation} un_f = 2^{\mathrm{stdev}\left(un_\mathrm{ves}\right)} \label{eq:unsaturation_forward} \end{equation} <>= curve(2^x,from=0,to=sd(c(0,4)), main="Unsaturation forward", xlab="Standard Deviation of Unsaturation of Vesicle", ylab="Unsaturation Forward Adjustment") @ \newpage \subsubsection{Charge Forward} \begin{equation} ch_f = 60^{-\left<{ch}_v\right> {ch}_m} \label{eq:charge_forward} \end{equation} <>= x <- seq(-1,0,length.out=20) y <- seq(-1,0,length.out=20) grid <- expand.grid(x=x,y=y) grid$z <- as.vector(60^(-outer(x,y))) print(wireframe(z~x*y,grid,cuts=50, drape=TRUE, scales=list(arrows=FALSE), xlab=list("Average Vesicle Charge",rot=30), ylab=list("Component Charge",rot=-35), zlab=list("Charge Forward",rot=93))) rm(x,y,grid) @ \newpage \subsubsection{Curvature Forward} \begin{equation} cu_f = 10^{\mathrm{stdev}\left|\log cu_\mathrm{vesicle}\right|} \label{eq:curvature_forward} \end{equation} <>= curve(10^x,from=0,to=max(c(sd(abs(log(c(0.8,1.33)))), sd(abs(log(c(1,1.33)))), sd(abs(log(c(0.8,1)))))), main="Curvature forward", xlab="Standard Deviation of Absolute value of the Log of the Curvature of Vesicle", ylab="Curvature Forward Adjustment") @ \newpage \subsubsection{Length Forward} \begin{equation} l_f = 3^{\mathrm{stdev} l_\mathrm{ves}} \label{eq:length_forward} \end{equation} <>= curve(3^x,from=0,to=sd(c(12,24)), main="Length forward", xlab="Standard Deviation of Length of Vesicle", ylab="Length Forward Adjustment") @ \subsubsection{Complex Formation} \begin{equation} CF1_f=1 \label{eq:complex_formation_forward} \end{equation} \subsection{Backward adjustments ($k_{bi\mathrm{adj}}$)} \begin{equation} k_{bi\mathrm{adj}} = un_b \cdot ch_b \cdot cu_b \cdot l_b \cdot CF1_b \label{eq:kf_adj} \end{equation} \newpage \subsubsection{Unsaturation Backward} \begin{equation} un_b = 10^{\left|3.5^{-\left}-3.5^{-un_\mathrm{monomer}}\right|} \label{eq:unsaturation_backward} \end{equation} <>= grid <- expand.grid(x=seq(0,4,length.out=20), y=seq(0,4,length.out=20)) grid$z <- 10^(abs(3.5^-grid$x-3.5^-grid$y)) print(wireframe(z~x*y,grid,cuts=50, drape=TRUE, scales=list(arrows=FALSE), xlab=list("Average Vesicle Unsaturation",rot=30), ylab=list("Monomer Unsaturation",rot=-35), zlab=list("Unsaturation Backward",rot=93))) rm(grid) @ \newpage \subsubsection{Charge Backwards} \begin{equation} ch_b = 20^{\left<{ch}_v\right> {ch}_m} \label{eq:charge_backwards} \end{equation} <>= x <- seq(-1,0,length.out=20) y <- seq(-1,0,length.out=20) grid <- expand.grid(x=x,y=y) grid$z <- as.vector(20^(outer(x,y))) print(wireframe(z~x*y,grid,cuts=50, drape=TRUE, scales=list(arrows=FALSE), xlab=list("Average Vesicle Charge",rot=30), ylab=list("Component Charge",rot=-35), zlab=list("Charge Backwards",rot=93))) rm(x,y,grid) @ \newpage \subsubsection{Curvature Backwards} \begin{equation} cu_f = 7^{1-\left(20\left(\log cu_\mathrm{vesicle}-\log cu_\mathrm{monomer}\right)^2+1\right)^{-1}} \label{eq:curvature_backwards} \end{equation} <>= grid <- expand.grid(x=seq(0.8,1.33,length.out=20), y=seq(0.8,1.33,length.out=20)) grid$z <- 7^(1-1/(20*(log(grid$x)-log(grid$y))^2+1)) print(wireframe(z~x*y,grid,cuts=50, drape=TRUE, scales=list(arrows=FALSE), xlab=list("Vesicle Curvature",rot=30), ylab=list("Monomer Curvature",rot=-35), zlab=list("Curvature Backward",rot=93))) rm(grid) @ \newpage \subsubsection{Length Backwards} \begin{equation} l_b = 3.2^{\left|l_\mathrm{ves}-l_\mathrm{monomer}\right|} \label{eq:length_backward} \end{equation} <>= grid <- expand.grid(x=seq(12,24,length.out=20), y=seq(12,24,length.out=20)) grid$z <- 3.2^(abs(grid$x-grid$y)) print(wireframe(z~x*y,grid,cuts=50, drape=TRUE, scales=list(arrows=FALSE), xlab=list("Average Vesicle Length",rot=30), ylab=list("Monomer Length",rot=-35), zlab=list("Length Backward",rot=93))) rm(grid) @ \newpage \subsubsection{Complex Formation Backward} \begin{equation} CF1_b=1.5^{CF1_\mathrm{ves} CF1_\mathrm{monomer}-\left|CF1_\mathrm{ves} CF1_\mathrm{monomer}\right|} \label{eq:complex_formation_backward} \end{equation} <>= grid <- expand.grid(x=seq(-1,3,length.out=20), y=seq(-1,3,length.out=20)) grid$z <- 3.2^(grid$x*grid$y-abs(grid$x*grid$y)) print(wireframe(z~x*y,grid,cuts=50, drape=TRUE, scales=list(arrows=FALSE), xlab=list("Vesicle Complex Formation",rot=30), ylab=list("Monomer Complex Formation",rot=-35), zlab=list("Complex Formation Backward",rot=93))) rm(grid) @ % \bibliographystyle{plainnat} % \bibliography{references.bib} \end{document}