]> git.donarmstrong.com Git - mothur.git/blobdiff - mothurmetastats.cpp
Revert to previous commit
[mothur.git] / mothurmetastats.cpp
diff --git a/mothurmetastats.cpp b/mothurmetastats.cpp
new file mode 100644 (file)
index 0000000..5678973
--- /dev/null
@@ -0,0 +1,604 @@
+/*
+ *  mothurmetastats.cpp
+ *  Mothur
+ *
+ *  Created by westcott on 7/6/11.
+ *  Copyright 2011 Schloss Lab. All rights reserved.
+ *
+ */
+
+#include "mothurmetastats.h"
+#include "mothurfisher.h"
+#include "spline.h"
+
+/***********************************************************/
+MothurMetastats::MothurMetastats(double t, int n) {
+       try {
+               m = MothurOut::getInstance(); 
+               threshold = t;
+               numPermutations = n;
+               
+       }catch(exception& e) {
+               m->errorOut(e, "MothurMetastats", "MothurMetastats");
+               exit(1);
+       }       
+}
+/***********************************************************/
+MothurMetastats::~MothurMetastats() {}
+/***********************************************************/
+ //main metastats function
+int MothurMetastats::runMetastats(string outputFileName, vector< vector<double> >& data, int secGroupingStart) {
+    try {
+        row = data.size();              //numBins
+               column = data[0].size(); //numGroups in subset
+        secondGroupingStart = secGroupingStart; //g
+         
+        vector< vector<double> > Pmatrix; Pmatrix.resize(row);
+        for (int i = 0; i < row; i++) { Pmatrix[i].resize(column, 0.0);  } // the relative proportion matrix
+        vector< vector<double> > C1; C1.resize(row);
+        for (int i = 0; i < row; i++) { C1[i].resize(3, 0.0);  } // statistic profiles for class1 and class 2
+        vector< vector<double> > C2; C2.resize(row);            // mean[1], variance[2], standard error[3] 
+        for (int i = 0; i < row; i++) { C2[i].resize(3, 0.0);  } 
+        vector<double> T_statistics; T_statistics.resize(row, 1); // a place to store the true t-statistics 
+        vector<double> pvalues; pvalues.resize(row, 1); // place to store pvalues
+        vector<double> qvalues; qvalues.resize(row, 1); // stores qvalues
+       
+        //*************************************
+        //      convert to proportions
+        //      generate Pmatrix
+        //*************************************
+        vector<double> totals; totals.resize(column, 0); // sum of columns
+        //total[i] = total abundance for group[i]
+               for (int i = 0; i < column; i++) {
+                       for (int j = 0; j < row; j++) {
+                               totals[i] += data[j][i];
+                       }
+        }
+        
+        for (int i = 0; i < column; i++) {
+                       for (int j = 0; j < row; j++) {
+                               Pmatrix[j][i] = data[j][i]/totals[i];
+               
+                       }
+        }
+        
+        //#********************************************************************************
+        //# ************************** STATISTICAL TESTING ********************************
+        //#********************************************************************************
+        
+        if (column == 2){  //# then we have a two sample comparison
+            //#************************************************************
+            //#  generate p values fisher's exact test
+            //#************************************************************
+            double total1, total2;
+                       //total for first grouping
+            for (int i = 0; i < secondGroupingStart; i++) { total1 += totals[i]; }
+            
+            //total for second grouping
+            for (int i = secondGroupingStart; i < column; i++) { total2 += totals[i]; }
+            
+            vector<double> fish;       fish.resize(row, 0.0);
+                       vector<double> fish2;   fish2.resize(row, 0.0);
+            
+                       for(int i = 0; i < row; i++){
+                               
+                               for(int j = 0; j < secondGroupingStart; j++)            { fish[i] += data[i][j];        }
+                               for(int j = secondGroupingStart; j < column; j++)       { fish2[i] += data[i][j];       }
+                               
+                               double f11, f12, f21, f22;
+                               f11 = fish[i];
+                               f12 = fish2[i];
+                               f21 = total1 - fish[i];
+                               f22 = total2 - fish2[i];
+                               
+                               MothurFisher fisher;
+                               double pre = fisher.fexact(f11, f12, f21, f22);
+                               if (pre > 0.999999999)  { pre = 1.0; }
+                
+                               if (m->control_pressed) { return 1; }
+                               
+                               pvalues[i] = pre;
+                       }
+            
+            //#*************************************
+            //#  calculate q values from p values
+            //#*************************************
+            qvalues = calc_qvalues(pvalues);
+            
+        }else { //we have multiple subjects per population
+            
+            //#*************************************
+            //#  generate statistics mean, var, stderr    
+            //#*************************************
+            for(int i = 0; i < row; i++){ // for each taxa
+                //# find the mean of each group
+                double g1Total = 0.0; double g2Total = 0.0;
+                for (int j = 0; j < secondGroupingStart; j++)       {     g1Total += Pmatrix[i][j]; }
+                C1[i][0] = g1Total/(double)(secondGroupingStart);
+                for (int j = secondGroupingStart; j < column; j++)  {     g2Total += Pmatrix[i][j]; }
+                C2[i][0] = g2Total/(double)(column-secondGroupingStart);
+                
+                 //# find the variance of each group
+                double g1Var = 0.0; double g2Var = 0.0;
+                for (int j = 0; j < secondGroupingStart; j++)       {     g1Var += pow((Pmatrix[i][j]-C1[i][0]), 2);  }
+                C1[i][1] = g1Var/(double)(secondGroupingStart-1);
+                for (int j = secondGroupingStart; j < column; j++)  {     g2Var += pow((Pmatrix[i][j]-C2[i][0]), 2);  }
+                C2[i][1] = g2Var/(double)(column-secondGroupingStart-1);
+                
+                //# find the std error of each group -std err^2 (will change to std err at end)
+                C1[i][2] = C1[i][1]/(double)(secondGroupingStart);    
+                C2[i][2] = C2[i][1]/(double)(column-secondGroupingStart);
+            }
+            
+            //#*************************************
+            //#  two sample t-statistics
+            //#*************************************
+            for(int i = 0; i < row; i++){                  // # for each taxa
+                double xbar_diff = C1[i][0] - C2[i][0]; 
+                double denom = sqrt(C1[i][2] + C2[i][2]);
+                T_statistics[i] = xbar_diff/denom;  // calculate two sample t-statistic
+            }
+            
+            /*for (int i = 0; i < row; i++) {  
+                for (int j = 0; j < 3; j++) {
+                    cout << "C1[" << i+1 << "," << j+1 << "]=" << C1[i][j] << ";" << endl;
+                    cout << "C2[" << i+1 << "," << j+1 << "]=" << C2[i][j] << ";" << endl;
+                }
+                cout << "T_statistics[" << i+1 << "]=" << T_statistics[i] << ";" << endl;
+            }*/
+            //#*************************************
+            //# generate initial permuted p-values
+            //#*************************************
+            pvalues = permuted_pvalues(Pmatrix, T_statistics, data);
+            
+            //#*************************************
+            //#  generate p values for sparse data 
+            //#  using fisher's exact test
+            //#*************************************
+            double total1, total2;
+                       //total for first grouping
+            for (int i = 0; i < secondGroupingStart; i++) { total1 += totals[i]; }
+            
+            //total for second grouping
+            for (int i = secondGroupingStart; i < column; i++) { total2 += totals[i]; }
+            
+            vector<double> fish;       fish.resize(row, 0.0);
+                       vector<double> fish2;   fish2.resize(row, 0.0);
+            
+                       for(int i = 0; i < row; i++){
+                               
+                               for(int j = 0; j < secondGroupingStart; j++)            { fish[i] += data[i][j];        }
+                               for(int j = secondGroupingStart; j < column; j++)       { fish2[i] += data[i][j];       }
+                               
+                if ((fish[1] < secondGroupingStart) && (fish2[i] < (column-secondGroupingStart))) {
+                    double f11, f12, f21, f22;
+                    f11 = fish[i];
+                    f12 = fish2[i];
+                    f21 = total1 - fish[i];
+                    f22 = total2 - fish2[i];
+                               
+                    MothurFisher fisher;
+                    double pre = fisher.fexact(f11, f12, f21, f22);
+                    if (pre > 0.999999999)     { pre = 1.0; }
+                
+                    if (m->control_pressed) { return 1; }
+                               
+                    pvalues[i] = pre;
+                }
+                       }
+
+            //#*************************************
+            //#  calculate q values from p values
+            //#*************************************
+            qvalues = calc_qvalues(pvalues);
+            
+            //#*************************************
+            //#  convert stderr^2 to std error
+            //#*************************************
+            for(int i = 0; i < row; i++){
+                C1[i][2] = sqrt(C1[i][2]);
+                C2[i][2] = sqrt(C2[i][2]);
+            }
+        }
+        
+        // And now we write the files to a text file.
+               struct tm *local;
+               time_t t; t = time(NULL);
+               local = localtime(&t);
+               
+               ofstream out;
+               m->openOutputFile(outputFileName, out);
+               out.setf(ios::fixed, ios::floatfield); out.setf(ios::showpoint);
+        
+               out << "Local time and date of test: " << asctime(local) << endl;
+               out << "# rows = " << row << ", # col = " << column << ", g = " << secondGroupingStart << endl << endl;
+               out << numPermutations << " permutations" << endl << endl;      
+               
+               //output column headings - not really sure... documentation labels 9 columns, there are 10 in the output file
+               //storage 0 = meanGroup1 - line 529, 1 = varGroup1 - line 532, 2 = err rate1 - line 534, 3 = mean of counts group1?? - line 291, 4 = meanGroup2 - line 536, 5 = varGroup2 - line 539, 6 = err rate2 - line 541, 7 = mean of counts group2?? - line 292, 8 = pvalues - line 293
+               out << "OTU\tmean(group1)\tvariance(group1)\tstderr(group1)\tmean(group2)\tvariance(group2)\tstderr(group2)\tp-value\tq-value\n";
+               
+               for(int i = 0; i < row; i++){
+                       if (m->control_pressed) { out.close(); return 0; }
+                       
+            //if there are binlabels use them otherwise count.
+                       if (m->binLabelsInFile.size() == row) { out << m->binLabelsInFile[i] << '\t'; }
+            else { out << (i+1) << '\t'; }
+            
+            out << C1[i][0] << '\t' << C1[i][1] << '\t' << C1[i][2] << '\t' << C2[i][0] << '\t' << C2[i][1] << '\t' << C2[i][2] << '\t' << pvalues[i] << '\t' << qvalues[i] << endl;
+               }  
+               
+               out << endl << endl;
+               out.close();
+               
+
+
+        return 0;
+        
+    }catch(exception& e) {
+        m->errorOut(e, "MothurMetastats", "runMetastats");
+        exit(1);
+    }  
+}
+/***********************************************************/
+vector<double> MothurMetastats::permuted_pvalues(vector< vector<double> >& Imatrix, vector<double>& tstats, vector< vector<double> >& Fmatrix) {
+       try {
+        //# matrix stores tstats for each taxa(row) for each permuted trial(column)
+        vector<double> ps;  ps.resize(row, 0.0); //# to store the pvalues
+        vector< vector<double> > permuted_ttests; permuted_ttests.resize(numPermutations);            
+        for (int i = 0; i < numPermutations; i++) { permuted_ttests[i].resize(row, 0.0);  } 
+        //# calculate null version of tstats using B permutations.
+        for (int i = 0; i < numPermutations; i++) {   
+            permuted_ttests[i] = permute_and_calc_ts(Imatrix);
+        }
+        
+        //# calculate each pvalue using the null ts
+        if ((secondGroupingStart) < 8 || (column-secondGroupingStart) < 8){
+            vector< vector<double> > cleanedpermuted_ttests; cleanedpermuted_ttests.resize(numPermutations);  //# the array pooling just the frequently observed ts
+            //# then pool the t's together!
+            //# count how many high freq taxa there are
+            int hfc = 1;
+            for (int i = 0; i < row; i++) {                 // # for each taxa
+                double group1Total = 0.0; double group2Total = 0.0;
+                for(int j = 0; j < secondGroupingStart; j++)           { group1Total += Fmatrix[i][j]; }
+                               for(int j = secondGroupingStart; j < column; j++)       { group2Total += Fmatrix[i][j]; }
+                
+                if (group1Total >= secondGroupingStart || group2Total >= (column-secondGroupingStart)){ 
+                    hfc++;
+                    for (int j = 0; j < numPermutations; j++) {   cleanedpermuted_ttests[j].push_back(permuted_ttests[j][i]); }
+                }
+            }
+              
+            //#now for each taxa
+            for (int i = 0; i < row; i++) { 
+                //number of cleanedpermuted_ttests greater than tstat[i]
+                int numGreater = 0;
+                for (int j = 0; j < numPermutations; j++) {
+                    for (int k = 0; k < hfc; k++) {
+                        if (cleanedpermuted_ttests[j][k] > abs(tstats[i])) { numGreater++; }
+                    }
+                }
+                
+                ps[i] = (1/(double)(numPermutations*hfc))*numGreater;
+            }
+        }else{
+            for (int i = 0; i < row; i++) { 
+                //number of permuted_ttests[i] greater than tstat[i] //(sum(permuted_ttests[i,] > abs(tstats[i]))+1)
+                int numGreater = 1;
+                for (int j = 0; j < numPermutations; j++) { if (permuted_ttests[j][i] > abs(tstats[i])) { numGreater++; }   }
+                ps[i] = (1/(double)(numPermutations+1))*numGreater;
+            }
+        }
+        
+        return ps;
+        
+    }catch(exception& e) {
+        m->errorOut(e, "MothurMetastats", "permuted_pvalues");
+        exit(1);
+    }  
+}
+/***********************************************************/
+vector<double> MothurMetastats::permute_and_calc_ts(vector< vector<double> >& Imatrix) {
+       try {
+        vector< vector<double> > permutedMatrix = Imatrix;
+        
+        //randomize columns, ie group abundances.
+        for (int i = 0; i < permutedMatrix.size(); i++) {   random_shuffle(permutedMatrix[i].begin(), permutedMatrix[i].end());     }
+        
+        //calc ts
+        vector< vector<double> > C1; C1.resize(row);
+        for (int i = 0; i < row; i++) { C1[i].resize(3, 0.0);  } // statistic profiles for class1 and class 2
+        vector< vector<double> > C2; C2.resize(row);            // mean[1], variance[2], standard error[3] 
+        for (int i = 0; i < row; i++) { C2[i].resize(3, 0.0);  } 
+        vector<double> Ts; Ts.resize(row, 0.0); // a place to store the true t-statistics 
+
+        //#*************************************
+        //#  generate statistics mean, var, stderr    
+        //#*************************************
+        for(int i = 0; i < row; i++){ // for each taxa
+            //# find the mean of each group
+            double g1Total = 0.0; double g2Total = 0.0;
+            for (int j = 0; j < secondGroupingStart; j++)       {     g1Total += permutedMatrix[i][j]; }
+            C1[i][0] = g1Total/(double)(secondGroupingStart);
+            for (int j = secondGroupingStart; j < column; j++)  {     g2Total += permutedMatrix[i][j]; }
+            C2[i][0] = g2Total/(double)(column-secondGroupingStart);
+            
+            //# find the variance of each group
+            double g1Var = 0.0; double g2Var = 0.0;
+            for (int j = 0; j < secondGroupingStart; j++)       {     g1Var += pow((permutedMatrix[i][j]-C1[i][0]), 2);  }
+            C1[i][1] = g1Var/(double)(secondGroupingStart-1);
+            for (int j = secondGroupingStart; j < column; j++)  {     g2Var += pow((permutedMatrix[i][j]-C2[i][0]), 2);  }
+            C2[i][1] = g2Var/(double)(column-secondGroupingStart-1);
+            
+            //# find the std error of each group -std err^2 (will change to std err at end)
+            C1[i][2] = C1[i][1]/(double)(secondGroupingStart);    
+            C2[i][2] = C2[i][1]/(double)(column-secondGroupingStart);
+        }
+        
+        //#*************************************
+        //#  two sample t-statistics
+        //#*************************************
+        for(int i = 0; i < row; i++){                  // # for each taxa
+            double xbar_diff = C1[i][0] - C2[i][0]; 
+            double denom = sqrt(C1[i][2] + C2[i][2]);
+            Ts[i] = abs(xbar_diff/denom);  // calculate two sample t-statistic
+        }
+
+        return Ts;
+
+        
+    }catch(exception& e) {
+        m->errorOut(e, "MothurMetastats", "permuted_ttests");
+        exit(1);
+    }  
+}
+/***********************************************************/
+vector<double> MothurMetastats::calc_qvalues(vector<double>& pValues) {
+       try {
+               
+       /* cout << "x <- c(" << pValues[0];
+        for (int l = 1; l < pValues.size(); l++){
+            cout << ", " << pValues[l];
+        }
+        cout << ")\n";*/
+        
+               int numRows = pValues.size();
+               vector<double> qvalues(numRows, 0.0);
+
+               //fill lambdas with 0.00, 0.01, 0.02... 0.95
+               vector<double> lambdas(96, 0);
+               for (int i = 1; i < lambdas.size(); i++) { lambdas[i] = lambdas[i-1] + 0.01; }
+               
+               vector<double> pi0_hat(lambdas.size(), 0);
+               
+               //calculate pi0_hat
+               for (int l = 0; l < lambdas.size(); l++){ // for each lambda value
+                       int count = 0;
+                       for (int i = 0; i < numRows; i++){ // for each p-value in order
+                               if (pValues[i] > lambdas[l]){ count++; }
+                       }
+                       pi0_hat[l] = count/(double)(numRows*(1-lambdas[l]));
+               }
+               
+               double pi0 = smoothSpline(lambdas, pi0_hat, 3);
+               
+               //order p-values
+               vector<double> ordered_qs = qvalues;
+               vector<int> ordered_ps(pValues.size(), 0);
+               for (int i = 1; i < ordered_ps.size(); i++) {  ordered_ps[i] = ordered_ps[i-1] + 1; }
+               vector<double> tempPvalues = pValues;
+               OrderPValues(0, numRows-1, tempPvalues, ordered_ps);
+               
+               ordered_qs[numRows-1] = min((pValues[ordered_ps[numRows-1]]*pi0), 1.0);
+               for (int i = (numRows-2); i >= 0; i--){
+                       double p = pValues[ordered_ps[i]];
+                       double temp = p*numRows*pi0/(double)(i+1);
+
+                       ordered_qs[i] = min(temp, ordered_qs[i+1]);
+               }
+               
+               //re-distribute calculated qvalues to appropriate rows
+               for (int i = 0; i < numRows; i++){
+                       qvalues[ordered_ps[i]] = ordered_qs[i];
+               }
+               
+               return qvalues;
+               
+       }catch(exception& e) {
+               m->errorOut(e, "MothurMetastats", "calc_qvalues");
+               exit(1);
+       }
+}
+/***********************************************************/
+int MothurMetastats::OrderPValues(int low, int high, vector<double>& p, vector<int>& order) {
+       try {
+               
+               if (low < high) {
+                       int i = low+1;
+                       int j = high;
+                       int pivot = (low+high) / 2;
+                       
+                       swapElements(low, pivot, p, order);  //puts pivot in final spot
+                       
+                       /* compare value */
+                       double key = p[low];
+                       
+                       /* partition */
+                       while(i <= j) {
+                               /* find member above ... */
+                               while((i <= high) && (p[i] <= key))     {  i++;  }  
+                               
+                               /* find element below ... */
+                               while((j >= low) && (p[j] > key))       {  j--;  } 
+                               
+                               if(i < j) {
+                                       swapElements(i, j, p, order);
+                               }
+                       } 
+                       
+                       swapElements(low, j, p, order);
+                       
+                       /* recurse */
+                       OrderPValues(low, j-1, p, order);
+                       OrderPValues(j+1, high, p, order); 
+               }               
+               
+               return 0;
+               
+       }catch(exception& e) {
+               m->errorOut(e, "MothurMetastats", "OrderPValues");
+               exit(1);
+       }
+}
+/***********************************************************/
+int MothurMetastats::swapElements(int i, int j, vector<double>& p, vector<int>& order) {
+       try {
+               
+               double z = p[i];
+               p[i] = p[j];
+               p[j] = z;
+               
+               int temp = order[i];
+               order[i] = order[j];
+               order[j] = temp;
+               
+               return 0;
+               
+       }catch(exception& e) {
+               m->errorOut(e, "MothurMetastats", "swapElements");
+               exit(1);
+       }
+}
+/***********************************************************/
+double MothurMetastats::smoothSpline(vector<double>& x, vector<double>& y, int df) {
+       try {
+                               
+               double result = 0.0;
+               int n = x.size();
+               vector<double> w(n, 1);
+               double* xb = new double[n];
+               double* yb = new double[n];
+               double* wb = new double[n];
+               double yssw = 0.0;
+               for (int i = 0; i < n; i++) {
+                       wb[i] = w[i];
+                       yb[i] = w[i]*y[i];
+                       yssw += (w[i] * y[i] * y[i]) - wb[i] * (yb[i] * yb[i]);
+                       xb[i] = (x[i] - x[0]) / (x[n-1] - x[0]);
+               }
+               
+               vector<double> knot = sknot1(xb, n);
+               int nk = knot.size() - 4;
+
+               double low = -1.5; double high = 1.5; double tol = 1e-04; double eps = 2e-08; int maxit = 500;
+               int ispar = 0; int icrit = 3; double dofoff = 3.0;
+               double penalty = 1.0; 
+               int ld4 = 4; int isetup = 0; int ldnk = 1; int ier; double spar = 1.0; double crit;
+               
+               double* knotb = new double[knot.size()];
+               double* coef1 = new double[nk];
+               double* lev1 = new double[n];
+               double* sz1 = new double[n];
+               for (int i = 0; i < knot.size(); i++) { knotb[i] = knot[i];     }
+               
+               Spline spline;
+               spline.sbart(&penalty, &dofoff, &xb[0], &yb[0], &wb[0], &yssw, &n, &knotb[0], &nk, &coef1[0], &sz1[0], &lev1[0], &crit,
+                               &icrit, &spar, &ispar, &maxit, &low, &high, &tol, &eps, &isetup, &ld4, &ldnk, &ier);
+               
+               result = coef1[nk-1];
+               
+               //free memory
+               delete [] xb;
+               delete [] yb;
+               delete [] wb;
+               delete [] knotb;
+               delete [] coef1;
+               delete [] lev1;
+               delete [] sz1;
+                                                       
+               return result;
+               
+       }catch(exception& e) {
+               m->errorOut(e, "MothurMetastats", "smoothSpline");
+               exit(1);
+       }
+}
+/***********************************************************/
+vector<double> MothurMetastats::sknot1(double* x, int n) {
+       try {
+               vector<double> knots;
+               int nk = nkn(n);
+               
+               //R equivalent - rep(x[1L], 3L)
+               knots.push_back(x[0]); knots.push_back(x[0]); knots.push_back(x[0]);
+               
+               //generate a sequence of nk equally spaced values from 1 to n. R equivalent = seq.int(1, n, length.out = nk)
+               vector<int> indexes = getSequence(0, n-1, nk);
+               for (int i = 0; i < indexes.size(); i++) { knots.push_back(x[indexes[i]]);  } 
+               
+               //R equivalent - rep(x[n], 3L)
+               knots.push_back(x[n-1]); knots.push_back(x[n-1]); knots.push_back(x[n-1]);
+                               
+               return knots;
+               
+       }catch(exception& e) {
+               m->errorOut(e, "MothurMetastats", "sknot1");
+               exit(1);
+       }
+}
+/***********************************************************/
+vector<int> MothurMetastats::getSequence(int start, int end, int length) {
+       try {
+               vector<int> sequence;
+               double increment = (end-start) / (double) (length-1);
+               
+               sequence.push_back(start);
+               for (int i = 1; i < length-1; i++) {
+                       sequence.push_back(int(i*increment));
+               }
+               sequence.push_back(end);
+               
+               return sequence;
+               
+       }catch(exception& e) {
+               m->errorOut(e, "MothurMetastats", "getSequence");
+               exit(1);
+       }
+}      
+/***********************************************************/
+//not right, havent fully figured out the variable types yet...
+int MothurMetastats::nkn(int n) {
+       try {
+               
+               if (n < 50) { return n; }
+               else {
+                       double a1 = log2(50);
+                       double a2 = log2(100);
+                       double a3 = log2(140);
+                       double a4 = log2(200);
+                       
+                       if (n < 200) {
+                               return (int)pow(2.0, (a1 + (a2 - a1) * (n - 50)/(float)150));
+                       }else if (n < 800) {
+                               return (int)pow(2.0, (a2 + (a3 - a2) * (n - 200)/(float)600));
+                       }else if (n < 3200) {
+                               return (int)pow(2.0, (a3 + (a4 - a3) * (n - 800)/(float)2400));
+                       }else {
+                               return (int)pow((double)(200 + (n - 3200)), 0.2);
+                       }
+               }
+       
+               return 0;
+               
+       }catch(exception& e) {
+               m->errorOut(e, "MothurMetastats", "nkn");
+               exit(1);
+       }
+}
+/***********************************************************/
+
+
+
+
+