]> git.donarmstrong.com Git - lilypond.git/blobdiff - Documentation/extending/scheme-tutorial.itely
Issue 4296: Let \displayLilyMusic print even repeated durations
[lilypond.git] / Documentation / extending / scheme-tutorial.itely
index e34ea9afdbc265d53abbd8cb0b16ebcd31f41081..a399570dec32412e13b77457a294999e9af1ee94 100644 (file)
@@ -8,7 +8,7 @@
     Guide, node Updating translation committishes..
 @end ignore
 
-@c \version "2.15.20"
+@c \version "2.17.11"
 
 @node Scheme tutorial
 @chapter Scheme tutorial
@@ -209,7 +209,15 @@ For a complete listing see the Guile reference guide,
 There are also compound data types in Scheme.  The  types commonly used in
 LilyPond programming include pairs, lists, alists, and hash tables.
 
-@subheading Pairs
+@menu
+* Pairs::
+* Lists::
+* Association lists (alists)::
+* Hash tables::
+@end menu
+
+@node Pairs
+@unnumberedsubsubsec Pairs
 
 The foundational compound data type of Scheme is the @code{pair}.  As
 might be expected from its name, a pair is two values glued together.
@@ -250,7 +258,7 @@ Scheme procedures @code{car} and @code{cdr}, respectively.
 
 @lisp
 guile> (define mypair (cons 123 "hello there")
-... )
+@dots{} )
 guile> (car mypair)
 123
 guile> (cdr mypair)
@@ -264,11 +272,13 @@ Note:  @code{cdr} is pronounced "could-er", according Sussman and
 Abelson, see
 @uref{http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#footnote_Temp_133}
 
-@subheading Lists
+@node Lists
+@unnumberedsubsubsec Lists
 
-A very common Scheme data structure is the @emph{list}.  Formally, a
-list is defined as either the empty list (represented as @code{'()},
-or a pair whose @code{cdr} is a list.
+A very common Scheme data structure is the @emph{list}.  Formally,
+a @q{proper} list is defined to be either the empty list with its
+input form @code{'()} and length@tie{}0, or a pair whose
+@code{cdr} in turn is a shorter list.
 
 There are many ways of creating lists.  Perhaps the most common is
 with the @code{list} procedure:
@@ -294,7 +304,8 @@ Lists are a central part of Scheme.  In, fact, Scheme is considered
 a dialect of lisp, where @q{lisp} is an abbreviation for
 @q{List Processing}.  Scheme expressions are all lists.
 
-@subheading Association lists (alists)
+@node Association lists (alists)
+@unnumberedsubsubsec Association lists (alists)
 
 A special type of list is an @emph{association list} or @emph{alist}.
 An alist is used to store data for easy retrieval.
@@ -318,7 +329,8 @@ guile>
 
 Alists are widely used in LilyPond to store properties and other data.
 
-@subheading Hash tables
+@node Hash tables
+@unnumberedsubsubsec Hash tables
 
 A data structure that is used occasionally in LilyPond.  A hash table
 is similar to an array, but the indexes to the array can be any type
@@ -488,7 +500,14 @@ Scheme procedures are executable scheme expressions that return a
 value resulting from their execution.  They can also manipulate
 variables defined outside of the procedure.
 
-@subheading Defining procedures
+@menu
+* Defining procedures::
+* Predicates::
+* Return values::
+@end menu
+
+@node Defining procedures
+@unnumberedsubsubsec Defining procedures
 
 Procedures are defined in Scheme with define
 
@@ -514,7 +533,8 @@ guile> (average 3 12)
 15/2
 @end lisp
 
-@subheading Predicates
+@node Predicates
+@unnumberedsubsubsec Predicates
 
 Scheme procedures that return boolean values are often called
 @emph{predicates}.  By convention (but not necessity), predicate names
@@ -528,7 +548,8 @@ guile> (less-than-ten? 15)
 #f
 @end lisp
 
-@subheading Return values
+@node Return values
+@unnumberedsubsubsec Return values
 
 Scheme procedures always return a return value, which is the value
 of the last expression executed in the procedure.  The return
@@ -554,14 +575,20 @@ statement in the let block:
 
 @lisp
 guile> (let ((x 2) (y 3) (z 4)) (display (+ x y)) (display (- z 4))
-... (+ (* x y) (/ z x)))
+@dots{} (+ (* x y) (/ z x)))
 508
 @end lisp
 
 @node Scheme conditionals
 @subsection Scheme conditionals
 
-@subheading if
+@menu
+* if::
+* cond::
+@end menu
+
+@node if
+@unnumberedsubsubsec if
 
 Scheme has an @code{if} procedure:
 
@@ -581,14 +608,15 @@ guile> (if (> a b) "a is greater than b" "a is not greater than b")
 "a is not greater than b"
 @end lisp
 
-@subheading cond
+@node cond
+@unnumberedsubsubsec cond
 
 Another conditional procedure in scheme is @code{cond}:
 
 @example
 (cond (test-expression-1 result-expression-sequence-1)
       (test-expression-2 result-expression-sequence-2)
-      ...
+      @dots{}
       (test-expression-n result-expression-sequence-n))
 @end example
 
@@ -611,6 +639,7 @@ guile> (cond ((< a b) "a is less than b")
 * LilyPond Scheme syntax::
 * LilyPond variables::
 * Input variables and Scheme::
+* Importing Scheme in LilyPond::
 * Object properties::
 * LilyPond compound variables::
 * Internal music representation::
@@ -632,7 +661,7 @@ Now LilyPond's input is structured into tokens and expressions, much
 like human language is structured into words and sentences.  LilyPond
 has a lexer that recognizes tokens (literal numbers, strings, Scheme
 elements, pitches and so on), and a parser that understands the syntax,
-@ruser{LilyPond grammar}.  Once it knows that a particular syntax rule
+@rcontrib{LilyPond grammar}.  Once it knows that a particular syntax rule
 applies, it executes actions associated with it.
 
 The hash mark@tie{}@code{#} method of embedding Scheme is a natural fit
@@ -661,13 +690,22 @@ at all is passed to the parser.
 
 This is, in fact, exactly the same mechanism that Lilypond employs when
 you call any variable or music function by name, as @code{\name}, with
-the only difference that its end is determined by the Lilypond lexer
+the only difference that the name is determined by the Lilypond lexer
 without consulting the Scheme reader, and thus only variable names
 consistent with the current Lilypond mode are accepted.
 
 The immediate action of @code{$} can lead to surprises, @ref{Input
-variables and Scheme}.  Using @code{#} where the parser supports it is
-usually preferable.
+variables and Scheme}.  Using @code{#} where the parser supports it
+is usually preferable.  Inside of music expressions, expressions
+created using @code{#} @emph{are} interpreted as music.  However,
+they are @emph{not} copied before use.  If they are part of some
+structure that might still get used, you may need to use
+@code{ly:music-deep-copy} explicitly.
+
+@funindex $@@
+@funindex #@@
+There are also @q{list splicing} operators @code{$@@} and @code{#@@}
+that insert all elements of a list in the surrounding context.
 
 Now let's take a look at some actual Scheme code.  Scheme procedures can
 be defined in LilyPond input files:
@@ -783,7 +821,7 @@ traLaLa = @{ c'4 d'4 @}
 is internally converted to a Scheme definition:
 
 @example
-(define traLaLa @var{Scheme value of `@code{... }'})
+(define traLaLa @var{Scheme value of `@code{@dots{}}'})
 @end example
 
 This means that LilyPond variables and Scheme variables may be freely
@@ -800,7 +838,7 @@ traLaLa = { c'4 d'4 }
 #(define twice
   (make-sequential-music newLa))
 
-{ \twice }
+\twice
 @end lilypond
 
 @c Due to parser lookahead
@@ -812,6 +850,11 @@ reads @code{#} and the following Scheme expression @emph{without}
 evaluating it, so it can go ahead with the assignment, and
 @emph{afterwards} execute the Scheme code without problem.
 
+@node Importing Scheme in LilyPond
+@subsection Importing Scheme in LilyPond
+@funindex $
+@funindex #
+
 The above example shows how to @q{export} music expressions from the
 input to the Scheme interpreter.  The opposite is also possible.  By
 placing it after @code{$}, a Scheme
@@ -820,8 +863,8 @@ Instead of defining @code{\twice}, the example above could also have
 been written as
 
 @example
-...
-@{ $(make-sequential-music (list newLa)) @}
+@dots{}
+$(make-sequential-music newLa)
 @end example
 
 You can use @code{$} with a Scheme expression anywhere you could use
@@ -835,15 +878,35 @@ following Scheme definition would have failed because @code{traLaLa}
 would not yet have been defined.  For an explanation of this timing
 problem, @ref{LilyPond Scheme syntax}.
 
-In any case, evaluation of Scheme code happens in the parser at latest.
-If you need it to be executed at a later point of time, @ref{Void scheme
-functions}, or store it in a macro:
+@funindex $@@
+@funindex #@@
+A further convenience can be the @q{list splicing} operators @code{$@@}
+and @code{#@@} for inserting the elements of a list in the surrounding
+context.  Using those, the last part of the example could have been
+written as
+
+@example
+@dots{}
+@{ #@@newLa @}
+@end example
+
+Here, every element of the list stored in @code{newLa} is taken in
+sequence and inserted into the list, as if we had written
+
+@example
+@{ #(first newLa) #(second newLa) @}
+@end example
+
+Now in all of these forms, the Scheme code is evaluated while the
+input is still being consumed, either in the lexer or in the parser.
+If you need it to be executed at a later point of time, check out
+@ref{Void scheme functions}, or store it in a procedure:
 
 @example
 #(define (nopc)
   (ly:set-option 'point-and-click #f))
 
-...
+@dots{}
 #(nopc)
 @{ c'4 @}
 @end example
@@ -867,7 +930,7 @@ the alist with both a key and a value.  The LilyPond syntax for doing
 this is:
 
 @example
-\override Stem #'thickness = #2.6
+\override Stem.thickness = #2.6
 @end example
 
 This instruction adjusts the appearance of stems.  An alist entry
@@ -892,14 +955,23 @@ while @code{twentyFour} is a variable.
 @node LilyPond compound variables
 @subsection LilyPond compound variables
 
-@subheading Offsets
+@menu
+* Offsets::
+* Fractions::
+* Extents::
+* Property alists::
+* Alist chains::
+@end menu
+
+@node Offsets
+@unnumberedsubsubsec Offsets
 
 Two-dimensional offsets (X and Y coordinates) are stored as @emph{pairs}.
 The @code{car} of the offset is the X coordinate, and the @code{cdr} is
 the Y coordinate.
 
 @example
-\override TextScript #'extra-offset = #'(1 . 2)
+\override TextScript.extra-offset = #'(1 . 2)
 @end example
 
 This assigns the pair @code{(1 . 2)} to the @code{extra-offset}
@@ -909,7 +981,8 @@ this command moves the object 1 staff space to the right, and 2 spaces up.
 
 Procedures for working with offsets are found in @file{scm/lily-library.scm}.
 
-@subheading Fractions
+@node Fractions
+@unnumberedsubsubsec Fractions
 
 Fractions as used by LilyPond are again stored as @emph{pairs}, this
 time of unsigned integers.  While Scheme can represent rational numbers
@@ -919,7 +992,8 @@ no negative @q{fractions} in LilyPond's mind.  So @code{2/4} in LilyPond
 means @code{(2 . 4)} in Scheme, and @code{#2/4} in LilyPond means
 @code{1/2} in Scheme.
 
-@subheading Extents
+@node Extents
+@unnumberedsubsubsec Extents
 
 Pairs are also used to store intervals, which represent a range of numbers
 from the minimum (the @code{car}) to the maximum (the @code{cdr}).
@@ -932,7 +1006,8 @@ Procedures for working with intervals are found in
 @file{scm/lily-library.scm}.  These procedures should be used when possible
 to ensure consistency of code.
 
-@subheading Property alists
+@node Property alists
+@unnumberedsubsubsec Property alists
 
 A property alist is a LilyPond data structure that is an alist whose
 keys are properties and whose values are Scheme expressions that give
@@ -940,7 +1015,8 @@ the desired value for the property.
 
 LilyPond properties are Scheme symbols, such as @code{'thickness}.
 
-@subheading Alist chains
+@node Alist chains
+@unnumberedsubsubsec Alist chains
 
 An alist chain is a list containing property alists.
 
@@ -1052,30 +1128,37 @@ will display
                   'text
                   "f"))
           'duration
-          (ly:make-duration 2 0 1 1)
+          (ly:make-duration 2 0 1/1)
           'pitch
           (ly:make-pitch 0 0 0))))
 @end example
 
 By default, LilyPond will print these messages to the console along
 with all the other messages.  To split up these messages and save
-the results of @code{\display@{STUFF@}}, redirect the output to
-a file.
+the results of @code{\display@{STUFF@}}, you can specify an optional
+output port to use:
 
 @example
-lilypond file.ly >display.txt
+@{
+  \displayMusic #(open-output-file "display.txt") @{ c'4\f @}
+@}
 @end example
 
-With a combined bit of Lilypond and Scheme magic, you can actually
-let Lilypond direct just this output to a file of its own:
-
+This will overwrite a previous output file whenever it is called; if you
+need to write more than one expression, you would use a variable for
+your port and reuse it:
 @example
 @{
-  $(with-output-to-file "display.txt"
-      (lambda () #@{ \displayMusic @{ c'4\f @} #@}))
+  port = #(open-output-file "display.txt")
+  \displayMusic \port @{ c'4\f @}
+  \displayMusic \port @{ d'4 @}
+  #(close-output-port port)
 @}
 @end example
 
+Guile's manual describes ports in detail.  Closing the port is actually
+only necessary if you need to read the file before Lilypond finishes; in
+the first example, we did not bother to do so.
 
 A bit of reformatting makes the above information easier to read:
 
@@ -1087,16 +1170,16 @@ A bit of reformatting makes the above information easier to read:
                               (make-music 'AbsoluteDynamicEvent
                                 'text
                                 "f"))
-              'duration (ly:make-duration 2 0 1 1)
+              'duration (ly:make-duration 2 0 1/1)
               'pitch    (ly:make-pitch 0 0 0))))
 @end example
 
-A @code{@{ ... @}} music sequence has the name @code{SequentialMusic},
-and its inner expressions are stored as a list in its @code{'elements}
-property.  A note is represented as a @code{NoteEvent} object (storing
-the duration and pitch properties) with attached information (in this
-case, an @code{AbsoluteDynamicEvent} with a @code{"f"} text property)
-stored in its @code{articulations} property.
+A @code{@{ @dots{} @}} music sequence has the name
+@code{SequentialMusic}, and its inner expressions are stored as a list
+in its @code{'elements} property.  A note is represented as a
+@code{NoteEvent} object (storing the duration and pitch properties) with
+attached information (in this case, an @code{AbsoluteDynamicEvent} with
+a @code{"f"} text property) stored in its @code{articulations} property.
 
 @funindex{\void}
 @code{\displayMusic} returns the music it displays, so it will get
@@ -1119,7 +1202,7 @@ someNote = c'
 (make-music
   'NoteEvent
   'duration
-  (ly:make-duration 2 0 1 1)
+  (ly:make-duration 2 0 1/1)
   'pitch
   (ly:make-pitch 0 0 0))
 @end example
@@ -1137,7 +1220,7 @@ someNote = <c'>
   (list (make-music
           'NoteEvent
           'duration
-          (ly:make-duration 2 0 1 1)
+          (ly:make-duration 2 0 1/1)
           'pitch
           (ly:make-pitch 0 0 0))))
 @end example
@@ -1155,7 +1238,7 @@ expression.
 (make-music
   'NoteEvent
   'duration
-  (ly:make-duration 2 0 1 1)
+  (ly:make-duration 2 0 1/1)
   'pitch
   (ly:make-pitch 0 0 0))
 @end example
@@ -1181,7 +1264,7 @@ The note pitch can be changed by setting this @code{'pitch} property,
        (ly:make-pitch 0 1 0)) ;; set the pitch to d'.
 \displayLilyMusic \someNote
 ===>
-d'
+d'4
 @end example
 
 
@@ -1206,7 +1289,7 @@ representation of the desired result.
                   'span-direction
                   -1))
           'duration
-          (ly:make-duration 2 0 1 1)
+          (ly:make-duration 2 0 1/1)
           'pitch
           (ly:make-pitch 0 5 0))
         (make-music
@@ -1217,7 +1300,7 @@ representation of the desired result.
                   'span-direction
                   1))
           'duration
-          (ly:make-duration 2 0 1 1)
+          (ly:make-duration 2 0 1/1)
           'pitch
           (ly:make-pitch 0 5 0))))
 @end example
@@ -1234,7 +1317,7 @@ Now we examine the input,
 (make-music
   'NoteEvent
   'duration
-  (ly:make-duration 2 0 1 1)
+  (ly:make-duration 2 0 1/1)
   'pitch
   (ly:make-pitch 0 5 0))))
 @end example
@@ -1242,7 +1325,7 @@ Now we examine the input,
 So in our function, we need to clone this expression (so that we have
 two notes to build the sequence), add a @code{SlurEvent} to the
 @code{'articulations} property of each one, and finally make a
-@code{SequentialMusic} with the two @code{EventChords}.  For adding to a
+@code{SequentialMusic} with the two @code{NoteEvent} elements.  For adding to a
 property, it is useful to know that an unset property is read out as
 @code{'()}, the empty list, so no special checks are required before we
 put another element at the front of the @code{articulations} property.
@@ -1266,14 +1349,14 @@ doubleSlur = #(define-music-function (parser location note) (ly:music?)
 @subsection Adding articulation to notes (example)
 
 The easy way to add articulation to notes is to merge two music
-expressions into one context, as explained in @ruser{Creating contexts}.
+expressions into one context.
 However, suppose that we want to write a music function that does this.
 This will have the additional advantage that we can use that music
 function to add an articulation (like a fingering instruction) to a
 single note inside of a chord which is not possible if we just merge
 independent music.
 
-A @code{$variable} inside the @code{#@{...#@}} notation is like
+A @code{$variable} inside the @code{#@{@dots{}#@}} notation is like
 a regular @code{\variable} in classical LilyPond notation.  We
 know that
 
@@ -1283,10 +1366,10 @@ know that
 
 @noindent
 will not work in LilyPond.  We could avoid this problem by attaching
-the articulation to a fake note,
+the articulation to an empty chord,
 
 @example
-@{ << \music s1*0-.-> @}
+@{ << \music <> -. -> >> @}
 @end example
 
 @noindent
@@ -1300,7 +1383,7 @@ Scheme.  We begin by examining our input and desired output,
 (make-music
   'NoteEvent
   'duration
-  (ly:make-duration 2 0 1 1)
+  (ly:make-duration 2 0 1/1)
   'pitch
   (ly:make-pitch -1 0 0))))
 =====
@@ -1315,7 +1398,7 @@ Scheme.  We begin by examining our input and desired output,
           'articulation-type
           "accent"))
   'duration
-  (ly:make-duration 2 0 1 1)
+  (ly:make-duration 2 0 1/1)
   'pitch
   (ly:make-pitch -1 0 0))
 @end example
@@ -1345,7 +1428,7 @@ from its name.  (this is good practice in other programming languages,
 too!)
 
 @example
-"Add an accent..."
+"Add an accent@dots{}"
 @end example
 
 @noindent
@@ -1455,7 +1538,7 @@ We may verify that this music function works correctly,
 
 We have seen how LilyPond output can be heavily modified using
 commands like
-@code{\override TextScript #'extra-offset = ( 1 . -1)}.  But
+@code{\override TextScript.extra-offset = ( 1 . -1)}.  But
 we have even more power if we use Scheme.  For a full explanation
 of this, see the @ref{Scheme tutorial}, and
 @ref{Interfaces for programmers}.
@@ -1471,7 +1554,7 @@ TODO Find a simple example
 @lilypond[quote,verbatim,ragged-right]
 padText = #(define-music-function (parser location padding) (number?)
 #{
-  \once \override TextScript #'padding = #padding
+  \once \override TextScript.padding = #padding
 #})
 
 \relative c''' {
@@ -1493,16 +1576,16 @@ We can use it to create new commands:
 
 @lilypond[quote,verbatim,ragged-right]
 tempoPadded = #(define-music-function (parser location padding tempotext)
-  (number? string?)
+  (number? markup?)
 #{
-  \once \override Score.MetronomeMark #'padding = $padding
+  \once \override Score.MetronomeMark.padding = #padding
   \tempo \markup { \bold #tempotext }
 #})
 
 \relative c'' {
   \tempo \markup { "Low tempo" }
   c4 d e f g1
-  \tempoPadded #4.0 #"High tempo"
+  \tempoPadded #4.0 "High tempo"
   g4 f e d c1
 }
 @end lilypond
@@ -1513,7 +1596,7 @@ Even music expressions can be passed in:
 @lilypond[quote,verbatim,ragged-right]
 pattern = #(define-music-function (parser location x y) (ly:music? ly:music?)
 #{
-  $x e8 a b $y b a e
+  #x e8 a b #y b a e
 #})
 
 \relative c''{