2 poly.cc -- routines for manipulation of polynomials in one var
4 (c) 1993--2003 Han-Wen Nienhuys <hanwen@cs.uu.nl>
9 #include "polynomial.hh"
12 Een beter milieu begint bij uzelf. Hergebruik!
15 This was ripped from Rayce, a raytracer I once wrote.
19 Polynomial::eval (Real x)const
24 for (int i = coefs_.size (); i--; )
25 p = x * p + coefs_[i];
32 Polynomial::multiply (const Polynomial & p1, const Polynomial & p2)
36 int deg= p1.degree () + p2.degree ();
37 for (int i = 0; i <= deg; i++)
40 for (int j = 0; j <= i; j++)
41 if (i - j <= p2.degree () && j <= p1.degree ())
42 dest.coefs_.top () += p1.coefs_[j] * p2.coefs_[i - j];
49 Polynomial::differentiate ()
51 for (int i = 1; i<= degree (); i++)
53 coefs_[i-1] = coefs_[i] * i;
59 Polynomial::power (int exponent, const Polynomial & src)
62 Polynomial dest (1), base (src);
65 classic int power. invariant: src^exponent = dest * src ^ e
66 greetings go out to Lex Bijlsma & Jaap vd Woude */
71 dest = multiply (dest, base);
75 base = multiply (base, base);
82 static Real const FUDGE = 1e-8;
88 We only do relative comparisons. Absolute comparisons break down in
90 while (degree () > 0 &&
91 (fabs (coefs_.top ()) < FUDGE * fabs (coefs_.top (1))
99 Polynomial::operator += (Polynomial const &p)
101 while (degree () < p.degree())
104 for (int i = 0; i <= p.degree(); i++)
105 coefs_[i] += p.coefs_[i];
110 Polynomial::operator -= (Polynomial const &p)
112 while (degree () < p.degree())
115 for (int i = 0; i <= p.degree(); i++)
116 coefs_[i] -= p.coefs_[i];
121 Polynomial::scalarmultiply (Real fact)
123 for (int i = 0; i <= degree (); i++)
130 Polynomial::set_negate (const Polynomial & src)
132 for (int i = 0; i <= src.degree (); i++)
133 coefs_[i] = -src.coefs_[i];
138 Polynomial::set_mod (const Polynomial &u, const Polynomial &v)
143 for (int k = u.degree () - v.degree () - 1; k >= 0; k -= 2)
144 coefs_[k] = -coefs_[k];
146 for (int k = u.degree () - v.degree (); k >= 0; k--)
147 for (int j = v.degree () + k - 1; j >= k; j--)
148 coefs_[j] = -coefs_[j] - coefs_[v.degree () + k] * v.coefs_[j - k];
150 for (int k = u.degree () - v.degree (); k >= 0; k--)
151 for (int j = v.degree () + k - 1; j >= k; j--)
152 coefs_[j] -= coefs_[v.degree () + k] * v.coefs_[j - k];
155 int k = v.degree () - 1;
156 while (k >= 0 && coefs_[k] == 0.0)
159 coefs_.set_size (1+ ((k < 0) ? 0 : k));
164 Polynomial::check_sol (Real x) const
167 Polynomial p (*this);
171 if ( abs (f) > abs (d) * FUDGE)
174 warning ("x=%f is not a root of polynomial\n"
175 "f (x)=%f, f' (x)=%f \n", x, f, d); */
179 Polynomial::check_sols (Array<Real> roots) const
181 for (int i=0; i< roots.size (); i++)
182 check_sol (roots[i]);
185 Polynomial::Polynomial (Real a, Real b)
193 inline Real cubic_root (Real x)
196 return pow (x, 1.0/3.0) ;
198 return -pow (-x, 1.0/3.0);
210 Polynomial::solve_cubic ()const
214 /* normal form: x^3 + Ax^2 + Bx + C = 0 */
215 Real A = coefs_[2] / coefs_[3];
216 Real B = coefs_[1] / coefs_[3];
217 Real C = coefs_[0] / coefs_[3];
220 * substitute x = y - A/3 to eliminate quadric term: x^3 +px + q = 0
224 Real p = 1.0 / 3 * (-1.0 / 3 * sq_A + B);
225 Real q = 1.0 / 2 * (2.0 / 27 * A * sq_A - 1.0 / 3 * A * B + C);
227 /* use Cardano's formula */
233 if (iszero (q)) { /* one triple solution */
237 } else { /* one single and one double solution */
238 Real u = cubic_root (-q);
243 } else if (D < 0) { /* Casus irreducibilis: three real solutions */
244 Real phi = 1.0 / 3 * acos (-q / sqrt (-cb));
245 Real t = 2 * sqrt (-p);
247 sol.push (t * cos (phi));
248 sol.push (-t * cos (phi + M_PI / 3));
249 sol.push ( -t * cos (phi - M_PI / 3));
250 } else { /* one real solution */
251 Real sqrt_D = sqrt (D);
252 Real u = cubic_root (sqrt_D - q);
253 Real v = -cubic_root (sqrt_D + q);
259 Real sub = 1.0 / 3 * A;
261 for (int i = sol.size (); i--;)
266 assert (fabs (eval (sol[i]) ) < 1e-8);
274 Polynomial::lc () const
276 return coefs_.top ();
282 return coefs_.top ();
286 Polynomial::degree ()const
288 return coefs_.size () -1;
291 all roots of quadratic eqn.
294 Polynomial::solve_quadric ()const
297 /* normal form: x^2 + px + q = 0 */
298 Real p = coefs_[1] / (2 * coefs_[2]);
299 Real q = coefs_[0] / coefs_[2];
312 /* solve linear equation */
314 Polynomial::solve_linear ()const
318 s.push ( -coefs_[0] / coefs_[1]);
324 Polynomial::solve () const
326 Polynomial * me = (Polynomial*) this;
332 return solve_linear ();
334 return solve_quadric ();
336 return solve_cubic ();
343 Polynomial:: operator *= (Polynomial const &p2)
345 *this = multiply (*this,p2);