]> git.donarmstrong.com Git - samtools.git/blob - samtools.1
added the phase command
[samtools.git] / samtools.1
1 .TH samtools 1 "2 December 2010" "samtools-0.1.12" "Bioinformatics tools"
2 .SH NAME
3 .PP
4 samtools - Utilities for the Sequence Alignment/Map (SAM) format
5 .SH SYNOPSIS
6 .PP
7 samtools view -bt ref_list.txt -o aln.bam aln.sam.gz
8 .PP
9 samtools sort aln.bam aln.sorted
10 .PP
11 samtools index aln.sorted.bam
12 .PP
13 samtools idxstats aln.sorted.bam
14 .PP
15 samtools view aln.sorted.bam chr2:20,100,000-20,200,000
16 .PP
17 samtools merge out.bam in1.bam in2.bam in3.bam
18 .PP
19 samtools faidx ref.fasta
20 .PP
21 samtools pileup -vcf ref.fasta aln.sorted.bam
22 .PP
23 samtools mpileup -C50 -gf ref.fasta -r chr3:1,000-2,000 in1.bam in2.bam
24 .PP
25 samtools tview aln.sorted.bam ref.fasta
26
27 .SH DESCRIPTION
28 .PP
29 Samtools is a set of utilities that manipulate alignments in the BAM
30 format. It imports from and exports to the SAM (Sequence Alignment/Map)
31 format, does sorting, merging and indexing, and allows to retrieve reads
32 in any regions swiftly.
33
34 Samtools is designed to work on a stream. It regards an input file `-'
35 as the standard input (stdin) and an output file `-' as the standard
36 output (stdout). Several commands can thus be combined with Unix
37 pipes. Samtools always output warning and error messages to the standard
38 error output (stderr).
39
40 Samtools is also able to open a BAM (not SAM) file on a remote FTP or
41 HTTP server if the BAM file name starts with `ftp://' or `http://'.
42 Samtools checks the current working directory for the index file and
43 will download the index upon absence. Samtools does not retrieve the
44 entire alignment file unless it is asked to do so.
45
46 .SH COMMANDS AND OPTIONS
47
48 .TP 10
49 .B view
50 samtools view [-bchuHS] [-t in.refList] [-o output] [-f reqFlag] [-F
51 skipFlag] [-q minMapQ] [-l library] [-r readGroup] [-R rgFile] <in.bam>|<in.sam> [region1 [...]]
52
53 Extract/print all or sub alignments in SAM or BAM format. If no region
54 is specified, all the alignments will be printed; otherwise only
55 alignments overlapping the specified regions will be output. An
56 alignment may be given multiple times if it is overlapping several
57 regions. A region can be presented, for example, in the following
58 format: `chr2' (the whole chr2), `chr2:1000000' (region starting from
59 1,000,000bp) or `chr2:1,000,000-2,000,000' (region between 1,000,000 and
60 2,000,000bp including the end points). The coordinate is 1-based.
61
62 .B OPTIONS:
63 .RS
64 .TP 8
65 .B -b
66 Output in the BAM format.
67 .TP
68 .BI -f \ INT
69 Only output alignments with all bits in INT present in the FLAG
70 field. INT can be in hex in the format of /^0x[0-9A-F]+/ [0]
71 .TP
72 .BI -F \ INT
73 Skip alignments with bits present in INT [0]
74 .TP
75 .B -h
76 Include the header in the output.
77 .TP
78 .B -H
79 Output the header only.
80 .TP
81 .BI -l \ STR
82 Only output reads in library STR [null]
83 .TP
84 .BI -o \ FILE
85 Output file [stdout]
86 .TP
87 .BI -q \ INT
88 Skip alignments with MAPQ smaller than INT [0]
89 .TP
90 .BI -r \ STR
91 Only output reads in read group STR [null]
92 .TP
93 .BI -R \ FILE
94 Output reads in read groups listed in
95 .I FILE
96 [null]
97 .TP
98 .B -S
99 Input is in SAM. If @SQ header lines are absent, the
100 .B `-t'
101 option is required.
102 .TP
103 .B -c
104 Instead of printing the alignments, only count them and print the
105 total number. All filter options, such as
106 .B `-f',
107 .B `-F'
108 and
109 .B `-q'
110 , are taken into account.
111 .TP
112 .BI -t \ FILE
113 This file is TAB-delimited. Each line must contain the reference name
114 and the length of the reference, one line for each distinct reference;
115 additional fields are ignored. This file also defines the order of the
116 reference sequences in sorting. If you run `samtools faidx <ref.fa>',
117 the resultant index file
118 .I <ref.fa>.fai
119 can be used as this
120 .I <in.ref_list>
121 file.
122 .TP
123 .B -u
124 Output uncompressed BAM. This option saves time spent on
125 compression/decomprssion and is thus preferred when the output is piped
126 to another samtools command.
127 .RE
128
129 .TP
130 .B tview
131 samtools tview <in.sorted.bam> [ref.fasta]
132
133 Text alignment viewer (based on the ncurses library). In the viewer,
134 press `?' for help and press `g' to check the alignment start from a
135 region in the format like `chr10:10,000,000' or `=10,000,000' when
136 viewing the same reference sequence.
137
138 .TP
139 .B mpileup
140 samtools mpileup [-EBug] [-C capQcoef] [-r reg] [-f in.fa] [-l list] [-M capMapQ] [-Q minBaseQ] [-q minMapQ] in.bam [in2.bam [...]]
141
142 Generate BCF or pileup for one or multiple BAM files. Alignment records
143 are grouped by sample identifiers in @RG header lines. If sample
144 identifiers are absent, each input file is regarded as one sample.
145
146 .B OPTIONS:
147 .RS
148 .TP 8
149 .B -B
150 Disable probabilistic realignment for the computation of base alignment
151 quality (BAQ). BAQ is the Phred-scaled probability of a read base being
152 misaligned. Applying this option greatly helps to reduce false SNPs
153 caused by misalignments.
154 .TP
155 .BI -C \ INT
156 Coefficient for downgrading mapping quality for reads containing
157 excessive mismatches. Given a read with a phred-scaled probability q of
158 being generated from the mapped position, the new mapping quality is
159 about sqrt((INT-q)/INT)*INT. A zero value disables this
160 functionality; if enabled, the recommended value for BWA is 50. [0]
161 .TP
162 .BI -e \ INT
163 Phred-scaled gap extension sequencing error probability. Reducing
164 .I INT
165 leads to longer indels. [20]
166 .TP
167 .B -E
168 Extended BAQ computation. This option helps sensitivity especially for MNPs, but may hurt
169 specificity a little bit.
170 .TP
171 .BI -f \ FILE
172 The reference file [null]
173 .TP
174 .B -g
175 Compute genotype likelihoods and output them in the binary call format (BCF).
176 .TP
177 .BI -h \ INT
178 Coefficient for modeling homopolymer errors. Given an
179 .IR l -long
180 homopolymer
181 run, the sequencing error of an indel of size
182 .I s
183 is modeled as
184 .IR INT * s / l .
185 [100]
186 .TP
187 .BI -l \ FILE
188 File containing a list of sites where pileup or BCF is outputted [null]
189 .TP
190 .BI -o \ INT
191 Phred-scaled gap open sequencing error probability. Reducing
192 .I INT
193 leads to more indel calls. [40]
194 .TP
195 .BI -P \ STR
196 Comma dilimited list of platforms (determined by
197 .BR @RG-PL )
198 from which indel candidates are obtained. It is recommended to collect
199 indel candidates from sequencing technologies that have low indel error
200 rate such as ILLUMINA. [all]
201 .TP
202 .BI -q \ INT
203 Minimum mapping quality for an alignment to be used [0]
204 .TP
205 .BI -Q \ INT
206 Minimum base quality for a base to be considered [13]
207 .TP
208 .BI -r \ STR
209 Only generate pileup in region
210 .I STR
211 [all sites]
212 .TP
213 .B -u
214 Similar to
215 .B -g
216 except that the output is uncompressed BCF, which is preferred for piping.
217 .RE
218
219 .TP
220 .B reheader
221 samtools reheader <in.header.sam> <in.bam>
222
223 Replace the header in
224 .I in.bam
225 with the header in
226 .I in.header.sam.
227 This command is much faster than replacing the header with a
228 BAM->SAM->BAM conversion.
229
230 .TP
231 .B sort
232 samtools sort [-no] [-m maxMem] <in.bam> <out.prefix>
233
234 Sort alignments by leftmost coordinates. File
235 .I <out.prefix>.bam
236 will be created. This command may also create temporary files
237 .I <out.prefix>.%d.bam
238 when the whole alignment cannot be fitted into memory (controlled by
239 option -m).
240
241 .B OPTIONS:
242 .RS
243 .TP 8
244 .B -o
245 Output the final alignment to the standard output.
246 .TP
247 .B -n
248 Sort by read names rather than by chromosomal coordinates
249 .TP
250 .BI -m \ INT
251 Approximately the maximum required memory. [500000000]
252 .RE
253
254 .TP
255 .B merge
256 samtools merge [-nur] [-h inh.sam] [-R reg] <out.bam> <in1.bam> <in2.bam> [...]
257
258 Merge multiple sorted alignments.
259 The header reference lists of all the input BAM files, and the @SQ headers of
260 .IR inh.sam ,
261 if any, must all refer to the same set of reference sequences.
262 The header reference list and (unless overridden by
263 .BR -h )
264 `@' headers of
265 .I in1.bam
266 will be copied to
267 .IR out.bam ,
268 and the headers of other files will be ignored.
269
270 .B OPTIONS:
271 .RS
272 .TP 8
273 .BI -h \ FILE
274 Use the lines of
275 .I FILE
276 as `@' headers to be copied to
277 .IR out.bam ,
278 replacing any header lines that would otherwise be copied from
279 .IR in1.bam .
280 .RI ( FILE
281 is actually in SAM format, though any alignment records it may contain
282 are ignored.)
283 .TP
284 .BI -R \ STR
285 Merge files in the specified region indicated by
286 .I STR
287 .TP
288 .B -r
289 Attach an RG tag to each alignment. The tag value is inferred from file names.
290 .TP
291 .B -n
292 The input alignments are sorted by read names rather than by chromosomal
293 coordinates
294 .TP
295 .B -u
296 Uncompressed BAM output
297 .RE
298
299 .TP
300 .B index
301 samtools index <aln.bam>
302
303 Index sorted alignment for fast random access. Index file
304 .I <aln.bam>.bai
305 will be created.
306
307 .TP
308 .B idxstats
309 samtools idxstats <aln.bam>
310
311 Retrieve and print stats in the index file. The output is TAB delimited
312 with each line consisting of reference sequence name, sequence length, #
313 mapped reads and # unmapped reads.
314
315 .TP
316 .B faidx
317 samtools faidx <ref.fasta> [region1 [...]]
318
319 Index reference sequence in the FASTA format or extract subsequence from
320 indexed reference sequence. If no region is specified,
321 .B faidx
322 will index the file and create
323 .I <ref.fasta>.fai
324 on the disk. If regions are speficified, the subsequences will be
325 retrieved and printed to stdout in the FASTA format. The input file can
326 be compressed in the
327 .B RAZF
328 format.
329
330 .TP
331 .B fixmate
332 samtools fixmate <in.nameSrt.bam> <out.bam>
333
334 Fill in mate coordinates, ISIZE and mate related flags from a
335 name-sorted alignment.
336
337 .TP
338 .B rmdup
339 samtools rmdup [-sS] <input.srt.bam> <out.bam>
340
341 Remove potential PCR duplicates: if multiple read pairs have identical
342 external coordinates, only retain the pair with highest mapping quality.
343 In the paired-end mode, this command
344 .B ONLY
345 works with FR orientation and requires ISIZE is correctly set. It does
346 not work for unpaired reads (e.g. two ends mapped to different
347 chromosomes or orphan reads).
348
349 .B OPTIONS:
350 .RS
351 .TP 8
352 .B -s
353 Remove duplicate for single-end reads. By default, the command works for
354 paired-end reads only.
355 .TP 8
356 .B -S
357 Treat paired-end reads and single-end reads.
358 .RE
359
360 .TP
361 .B calmd
362 samtools calmd [-EeubSr] [-C capQcoef] <aln.bam> <ref.fasta>
363
364 Generate the MD tag. If the MD tag is already present, this command will
365 give a warning if the MD tag generated is different from the existing
366 tag. Output SAM by default.
367
368 .B OPTIONS:
369 .RS
370 .TP 8
371 .B -A
372 When used jointly with
373 .B -r
374 this option overwrites the original base quality.
375 .TP 8
376 .B -e
377 Convert a the read base to = if it is identical to the aligned reference
378 base. Indel caller does not support the = bases at the moment.
379 .TP
380 .B -u
381 Output uncompressed BAM
382 .TP
383 .B -b
384 Output compressed BAM
385 .TP
386 .B -S
387 The input is SAM with header lines
388 .TP
389 .BI -C \ INT
390 Coefficient to cap mapping quality of poorly mapped reads. See the
391 .B pileup
392 command for details. [0]
393 .TP
394 .B -r
395 Compute the BQ tag (without -A) or cap base quality by BAQ (with -A).
396 .TP
397 .B -E
398 Extended BAQ calculation. This option trades specificity for sensitivity, though the
399 effect is minor.
400 .RE
401
402 .TP
403 .B targetcut
404 samtools targetcut [-Q minBaseQ] [-i inPenalty] [-0 em0] [-1 em1] [-2 em2] [-f ref] <in.bam>
405
406 This command identifies target regions by examining the continuity of read depth, computes
407 haploid consensus sequences of targets and outputs a SAM with each sequence corresponding
408 to a target. When option
409 .B -f
410 is in use, BAQ will be applied. This command is
411 .B only
412 designed for cutting fosmid clones from fosmid pool sequencing [Ref. Kitzman et al. (2010)].
413 .RE
414
415 .TP
416 .B phase
417 samtools phase [-F] [-k len] [-b prefix] [-q minLOD] [-Q minBaseQ] <in.bam>
418
419 Call and phase heterozygous SNPs.
420 .B OPTIONS:
421 .RS
422 .TP 8
423 .BI -b \ STR
424 Prefix of BAM output. When this option is in use, phase-0 reads will be saved in file
425 .BR STR .0.bam
426 and phase-1 reads in
427 .BR STR .1.bam.
428 Phase unknown reads will be randomly allocated to one of the two files. Chimeric reads
429 with switch errors will be saved in
430 .BR STR .chimeric.bam.
431 [null]
432 .TP
433 .B -F
434 Do not attempt to fix chimeric reads.
435 .TP
436 .BI -k \ INT
437 Maximum length for local phasing. [13]
438 .TP
439 .BI -q \ INT
440 Minimum Phred-scaled LOD to call a heterozygote. [40]
441 .TP
442 .BI -Q \ INT
443 Minimum base quality to be used in het calling. [13]
444 .RE
445
446 .TP
447 .B pileup
448 samtools pileup [-2sSBicv] [-f in.ref.fasta] [-t in.ref_list] [-l
449 in.site_list] [-C capMapQ] [-M maxMapQ] [-T theta] [-N nHap] [-r
450 pairDiffRate] [-m mask] [-d maxIndelDepth] [-G indelPrior]
451 <in.bam>|<in.sam>
452
453 Print the alignment in the pileup format. In the pileup format, each
454 line represents a genomic position, consisting of chromosome name,
455 coordinate, reference base, read bases, read qualities and alignment
456 mapping qualities. Information on match, mismatch, indel, strand,
457 mapping quality and start and end of a read are all encoded at the read
458 base column. At this column, a dot stands for a match to the reference
459 base on the forward strand, a comma for a match on the reverse strand,
460 a '>' or '<' for a reference skip, `ACGTN' for a mismatch on the forward
461 strand and `acgtn' for a mismatch on the reverse strand. A pattern
462 `\\+[0-9]+[ACGTNacgtn]+' indicates there is an insertion between this
463 reference position and the next reference position. The length of the
464 insertion is given by the integer in the pattern, followed by the
465 inserted sequence. Similarly, a pattern `-[0-9]+[ACGTNacgtn]+'
466 represents a deletion from the reference. The deleted bases will be
467 presented as `*' in the following lines. Also at the read base column, a
468 symbol `^' marks the start of a read. The ASCII of the character
469 following `^' minus 33 gives the mapping quality. A symbol `$' marks the
470 end of a read segment.
471
472 If option
473 .B -c
474 is applied, the consensus base, Phred-scaled consensus quality, SNP
475 quality (i.e. the Phred-scaled probability of the consensus being
476 identical to the reference) and root mean square (RMS) mapping quality
477 of the reads covering the site will be inserted between the `reference
478 base' and the `read bases' columns. An indel occupies an additional
479 line. Each indel line consists of chromosome name, coordinate, a star,
480 the genotype, consensus quality, SNP quality, RMS mapping quality, #
481 covering reads, the first alllele, the second allele, # reads supporting
482 the first allele, # reads supporting the second allele and # reads
483 containing indels different from the top two alleles.
484
485 .B NOTE:
486 Since 0.1.10, the `pileup' command is deprecated by `mpileup'.
487
488 .B OPTIONS:
489 .RS
490 .TP 10
491 .B -B
492 Disable the BAQ computation. See the
493 .B mpileup
494 command for details.
495 .TP
496 .B -c
497 Call the consensus sequence. Options
498 .BR -T ", " -N ", " -I " and " -r
499 are only effective when
500 .BR -c " or " -g
501 is in use.
502 .TP
503 .BI -C \ INT
504 Coefficient for downgrading the mapping quality of poorly mapped
505 reads. See the
506 .B mpileup
507 command for details. [0]
508 .TP
509 .BI -d \ INT
510 Use the first
511 .I NUM
512 reads in the pileup for indel calling for speed up. Zero for unlimited. [1024]
513 .TP
514 .BI -f \ FILE
515 The reference sequence in the FASTA format. Index file
516 .I FILE.fai
517 will be created if
518 absent.
519 .TP
520 .B -g
521 Generate genotype likelihood in the binary GLFv3 format. This option
522 suppresses -c, -i and -s. This option is deprecated by the
523 .B mpileup
524 command.
525 .TP
526 .B -i
527 Only output pileup lines containing indels.
528 .TP
529 .BI -I \ INT
530 Phred probability of an indel in sequencing/prep. [40]
531 .TP
532 .BI -l \ FILE
533 List of sites at which pileup is output. This file is space
534 delimited. The first two columns are required to be chromosome and
535 1-based coordinate. Additional columns are ignored. It is
536 recommended to use option
537 .TP
538 .BI -m \ INT
539 Filter reads with flag containing bits in
540 .I INT
541 [1796]
542 .TP
543 .BI -M \ INT
544 Cap mapping quality at INT [60]
545 .TP
546 .BI -N \ INT
547 Number of haplotypes in the sample (>=2) [2]
548 .TP
549 .BI -r \ FLOAT
550 Expected fraction of differences between a pair of haplotypes [0.001]
551 .TP
552 .B -s
553 Print the mapping quality as the last column. This option makes the
554 output easier to parse, although this format is not space efficient.
555 .TP
556 .B -S
557 The input file is in SAM.
558 .TP
559 .BI -t \ FILE
560 List of reference names ane sequence lengths, in the format described
561 for the
562 .B import
563 command. If this option is present, samtools assumes the input
564 .I <in.alignment>
565 is in SAM format; otherwise it assumes in BAM format.
566 .B -s
567 together with
568 .B -l
569 as in the default format we may not know the mapping quality.
570 .TP
571 .BI -T \ FLOAT
572 The theta parameter (error dependency coefficient) in the maq consensus
573 calling model [0.85]
574 .RE
575
576 .SH SAM FORMAT
577
578 SAM is TAB-delimited. Apart from the header lines, which are started
579 with the `@' symbol, each alignment line consists of:
580
581 .TS
582 center box;
583 cb | cb | cb
584 n | l | l .
585 Col     Field   Description
586 _
587 1       QNAME   Query (pair) NAME
588 2       FLAG    bitwise FLAG
589 3       RNAME   Reference sequence NAME
590 4       POS     1-based leftmost POSition/coordinate of clipped sequence
591 5       MAPQ    MAPping Quality (Phred-scaled)
592 6       CIAGR   extended CIGAR string
593 7       MRNM    Mate Reference sequence NaMe (`=' if same as RNAME)
594 8       MPOS    1-based Mate POSistion
595 9       ISIZE   Inferred insert SIZE
596 10      SEQ     query SEQuence on the same strand as the reference
597 11      QUAL    query QUALity (ASCII-33 gives the Phred base quality)
598 12      OPT     variable OPTional fields in the format TAG:VTYPE:VALUE
599 .TE
600
601 .PP
602 Each bit in the FLAG field is defined as:
603
604 .TS
605 center box;
606 cb | cb | cb
607 l | c | l .
608 Flag    Chr     Description
609 _
610 0x0001  p       the read is paired in sequencing
611 0x0002  P       the read is mapped in a proper pair
612 0x0004  u       the query sequence itself is unmapped
613 0x0008  U       the mate is unmapped
614 0x0010  r       strand of the query (1 for reverse)
615 0x0020  R       strand of the mate
616 0x0040  1       the read is the first read in a pair
617 0x0080  2       the read is the second read in a pair
618 0x0100  s       the alignment is not primary
619 0x0200  f       the read fails platform/vendor quality checks
620 0x0400  d       the read is either a PCR or an optical duplicate
621 .TE
622
623 .SH EXAMPLES
624 .IP o 2
625 Import SAM to BAM when
626 .B @SQ
627 lines are present in the header:
628
629   samtools view -bS aln.sam > aln.bam
630
631 If
632 .B @SQ
633 lines are absent:
634
635   samtools faidx ref.fa
636   samtools view -bt ref.fa.fai aln.sam > aln.bam
637
638 where
639 .I ref.fa.fai
640 is generated automatically by the
641 .B faidx
642 command.
643
644 .IP o 2
645 Attach the
646 .B RG
647 tag while merging sorted alignments:
648
649   perl -e 'print "@RG\\tID:ga\\tSM:hs\\tLB:ga\\tPL:Illumina\\n@RG\\tID:454\\tSM:hs\\tLB:454\\tPL:454\\n"' > rg.txt
650   samtools merge -rh rg.txt merged.bam ga.bam 454.bam
651
652 The value in a
653 .B RG
654 tag is determined by the file name the read is coming from. In this
655 example, in the
656 .IR merged.bam ,
657 reads from
658 .I ga.bam
659 will be attached 
660 .IR RG:Z:ga ,
661 while reads from
662 .I 454.bam
663 will be attached
664 .IR RG:Z:454 .
665
666 .IP o 2
667 Call SNPs and short indels for one diploid individual:
668
669   samtools mpileup -ugf ref.fa aln.bam | bcftools view -bvcg - > var.raw.bcf
670   bcftools view var.raw.bcf | vcfutils.pl varFilter -D 100 > var.flt.vcf
671
672 The
673 .B -D
674 option of varFilter controls the maximum read depth, which should be
675 adjusted to about twice the average read depth.  One may consider to add
676 .B -C50
677 to
678 .B mpileup
679 if mapping quality is overestimated for reads containing excessive
680 mismatches. Applying this option usually helps
681 .B BWA-short
682 but may not other mappers.
683
684 .IP o 2
685 Generate the consensus sequence for one diploid individual:
686
687   samtools mpileup -uf ref.fa aln.bam | bcftools view -cg - | vcfutils.pl vcf2fq > cns.fq
688
689 .IP o 2
690 Phase one individual:
691
692   samtools calmd -AEur aln.bam ref.fa | samtools phase -b prefix - > phase.out
693
694 The
695 .B calmd
696 command is used to reduce false heterozygotes around INDELs.
697
698 .IP o 2
699 Call SNPs and short indels for multiple diploid individuals:
700
701   samtools mpileup -P ILLUMINA -ugf ref.fa *.bam | bcftools view -bcvg - > var.raw.bcf
702   bcftools view var.raw.bcf | vcfutils.pl varFilter -D 2000 > var.flt.vcf
703
704 Individuals are identified from the
705 .B SM
706 tags in the
707 .B @RG
708 header lines. Individuals can be pooled in one alignment file; one
709 individual can also be separated into multiple files. The
710 .B -P
711 option specifies that indel candidates should be collected only from
712 read groups with the
713 .B @RG-PL
714 tag set to
715 .IR ILLUMINA .
716 Collecting indel candidates from reads sequenced by an indel-prone
717 technology may affect the performance of indel calling.
718
719 .IP o 2
720 Derive the allele frequency spectrum (AFS) on a list of sites from multiple individuals:
721
722   samtools mpileup -Igf ref.fa *.bam > all.bcf
723   bcftools view -bl sites.list all.bcf > sites.bcf
724   bcftools view -cGP cond2 sites.bcf > /dev/null 2> sites.1.afs
725   bcftools view -cGP sites.1.afs sites.bcf > /dev/null 2> sites.2.afs
726   bcftools view -cGP sites.2.afs sites.bcf > /dev/null 2> sites.3.afs
727   ......
728
729 where
730 .I sites.list
731 contains the list of sites with each line consisting of the reference
732 sequence name and position. The following
733 .B bcftools
734 commands estimate AFS by EM.
735
736 .IP o 2
737 Dump BAQ applied alignment for other SNP callers:
738
739   samtools calmd -bAr aln.bam > aln.baq.bam
740
741 It adds and corrects the
742 .B NM
743 and
744 .B MD
745 tags at the same time. The
746 .B calmd
747 command also comes with the
748 .B -C
749 option, the same as the one in
750 .B pileup
751 and
752 .BR mpileup .
753 Apply if it helps.
754
755 .SH LIMITATIONS
756 .PP
757 .IP o 2
758 Unaligned words used in bam_import.c, bam_endian.h, bam.c and bam_aux.c.
759 .IP o 2
760 In merging, the input files are required to have the same number of
761 reference sequences. The requirement can be relaxed. In addition,
762 merging does not reconstruct the header dictionaries
763 automatically. Endusers have to provide the correct header. Picard is
764 better at merging.
765 .IP o 2
766 Samtools paired-end rmdup does not work for unpaired reads (e.g. orphan
767 reads or ends mapped to different chromosomes). If this is a concern,
768 please use Picard's MarkDuplicate which correctly handles these cases,
769 although a little slower.
770
771 .SH AUTHOR
772 .PP
773 Heng Li from the Sanger Institute wrote the C version of samtools. Bob
774 Handsaker from the Broad Institute implemented the BGZF library and Jue
775 Ruan from Beijing Genomics Institute wrote the RAZF library. John
776 Marshall and Petr Danecek contribute to the source code and various
777 people from the 1000 Genomes Project have contributed to the SAM format
778 specification.
779
780 .SH SEE ALSO
781 .PP
782 Samtools website: <http://samtools.sourceforge.net>