]> git.donarmstrong.com Git - rsem.git/blobdiff - boost/math/special_functions/detail/bessel_jy_zero.hpp
Updated boost to v1.55.0
[rsem.git] / boost / math / special_functions / detail / bessel_jy_zero.hpp
diff --git a/boost/math/special_functions/detail/bessel_jy_zero.hpp b/boost/math/special_functions/detail/bessel_jy_zero.hpp
new file mode 100644 (file)
index 0000000..2b1df03
--- /dev/null
@@ -0,0 +1,617 @@
+//  Copyright (c) 2013 Christopher Kormanyos
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// This work is based on an earlier work:
+// "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
+// in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
+//
+// This header contains implementation details for estimating the zeros
+// of cylindrical Bessel and Neumann functions on the positive real axis.
+// Support is included for both positive as well as negative order.
+// Various methods are used to estimate the roots. These include
+// empirical curve fitting and McMahon's asymptotic approximation
+// for small order, uniform asymptotic expansion for large order,
+// and iteration and root interlacing for negative order.
+//
+#ifndef _BESSEL_JY_ZERO_2013_01_18_HPP_
+  #define _BESSEL_JY_ZERO_2013_01_18_HPP_
+
+  #include <algorithm>
+  #include <boost/math/constants/constants.hpp>
+  #include <boost/math/special_functions/math_fwd.hpp>
+  #include <boost/math/special_functions/cbrt.hpp>
+  #include <boost/math/special_functions/detail/airy_ai_bi_zero.hpp>
+
+  namespace boost { namespace math {
+  namespace detail
+  {
+    namespace bessel_zero
+    {
+      template<class T>
+      T equation_nist_10_21_19(const T& v, const T& a)
+      {
+        // Get the initial estimate of the m'th root of Jv or Yv.
+        // This subroutine is used for the order m with m > 1.
+        // The order m has been used to create the input parameter a.
+
+        // This is Eq. 10.21.19 in the NIST Handbook.
+        const T mu                  = (v * v) * 4U;
+        const T mu_minus_one        = mu - T(1);
+        const T eight_a_inv         = T(1) / (a * 8U);
+        const T eight_a_inv_squared = eight_a_inv * eight_a_inv;
+
+        const T term3 = ((mu_minus_one *  4U) *     ((mu *    7U) -     T(31U) )) / 3U;
+        const T term5 = ((mu_minus_one * 32U) *   ((((mu *   83U) -    T(982U) ) * mu) +    T(3779U) )) / 15U;
+        const T term7 = ((mu_minus_one * 64U) * ((((((mu * 6949U) - T(153855UL)) * mu) + T(1585743UL)) * mu) - T(6277237UL))) / 105U;
+
+        return a + ((((                      - term7
+                       * eight_a_inv_squared - term5)
+                       * eight_a_inv_squared - term3)
+                       * eight_a_inv_squared - mu_minus_one)
+                       * eight_a_inv);
+      }
+
+      template<typename T>
+      class equation_as_9_3_39_and_its_derivative
+      {
+      public:
+        equation_as_9_3_39_and_its_derivative(const T& zt) : zeta(zt) { }
+
+        boost::math::tuple<T, T> operator()(const T& z) const
+        {
+          BOOST_MATH_STD_USING // ADL of std names, needed for acos, sqrt.
+
+          // Return the function of zeta that is implicitly defined
+          // in A&S Eq. 9.3.39 as a function of z. The function is
+          // returned along with its derivative with respect to z.
+
+          const T zsq_minus_one_sqrt = sqrt((z * z) - T(1));
+
+          const T the_function(
+              zsq_minus_one_sqrt
+            - (  acos(T(1) / z) + ((T(2) / 3U) * (zeta * sqrt(zeta)))));
+
+          const T its_derivative(zsq_minus_one_sqrt / z);
+
+          return boost::math::tuple<T, T>(the_function, its_derivative);
+        }
+
+      private:
+        const equation_as_9_3_39_and_its_derivative& operator=(const equation_as_9_3_39_and_its_derivative&);
+        const T zeta;
+      };
+
+      template<class T>
+      static T equation_as_9_5_26(const T& v, const T& ai_bi_root)
+      {
+        BOOST_MATH_STD_USING // ADL of std names, needed for log, sqrt.
+
+        // Obtain the estimate of the m'th zero of Jv or Yv.
+        // The order m has been used to create the input parameter ai_bi_root.
+        // Here, v is larger than about 2.2. The estimate is computed
+        // from Abramowitz and Stegun Eqs. 9.5.22 and 9.5.26, page 371.
+        //
+        // The inversion of z as a function of zeta is mentioned in the text
+        // following A&S Eq. 9.5.26. Here, we accomplish the inversion by
+        // performing a Taylor expansion of Eq. 9.3.39 for large z to order 2
+        // and solving the resulting quadratic equation, thereby taking
+        // the positive root of the quadratic.
+        // In other words: (2/3)(-zeta)^(3/2) approx = z + 1/(2z) - pi/2.
+        // This leads to: z^2 - [(2/3)(-zeta)^(3/2) + pi/2]z + 1/2 = 0.
+        //
+        // With this initial estimate, Newton-Raphson iteration is used
+        // to refine the value of the estimate of the root of z
+        // as a function of zeta.
+
+        const T v_pow_third(boost::math::cbrt(v));
+        const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third));
+
+        // Obtain zeta using the order v combined with the m'th root of
+        // an airy function, as shown in  A&S Eq. 9.5.22.
+        const T zeta = v_pow_minus_two_thirds * (-ai_bi_root);
+
+        const T zeta_sqrt = sqrt(zeta);
+
+        // Set up a quadratic equation based on the Taylor series
+        // expansion mentioned above.
+        const T b = -((((zeta * zeta_sqrt) * 2U) / 3U) + boost::math::constants::half_pi<T>());
+
+        // Solve the quadratic equation, taking the positive root.
+        const T z_estimate = (-b + sqrt((b * b) - T(2))) / 2U;
+
+        // Establish the range, the digits, and the iteration limit
+        // for the upcoming root-finding.
+        const T range_zmin = (std::max<T>)(z_estimate - T(1), T(1));
+        const T range_zmax = z_estimate + T(1);
+
+        const int digits2_of_t = int(float(std::numeric_limits<T>::digits)
+                                     * (  log(float(std::numeric_limits<T>::radix))
+                                        / log(float(2))));
+
+        const int digits2_for_root = (std::min)(digits2_of_t, std::numeric_limits<double>::digits);
+
+        boost::uintmax_t iteration_count = boost::uintmax_t(std::numeric_limits<T>::digits10 * 2);
+
+        // Calculate the root of z as a function of zeta.
+        const T z = boost::math::tools::newton_raphson_iterate(
+          boost::math::detail::bessel_zero::equation_as_9_3_39_and_its_derivative<T>(zeta),
+          z_estimate,
+          range_zmin,
+          range_zmax,
+          digits2_for_root,
+          iteration_count);
+
+        static_cast<void>(iteration_count);
+
+        // Continue with the implementation of A&S Eq. 9.3.39.
+        const T zsq_minus_one      = (z * z) - T(1);
+        const T zsq_minus_one_sqrt = sqrt(zsq_minus_one);
+
+        // This is A&S Eq. 9.3.42.
+        const T b0_term_5_24 = T(5) / ((zsq_minus_one * zsq_minus_one_sqrt) * 24U);
+        const T b0_term_1_8  = T(1) / ( zsq_minus_one_sqrt * 8U);
+        const T b0_term_5_48 = T(5) / ((zeta * zeta) * 48U);
+
+        const T b0 = -b0_term_5_48 + ((b0_term_5_24 + b0_term_1_8) / zeta_sqrt);
+
+        // This is the second line of A&S Eq. 9.5.26 for f_k with k = 1.
+        const T f1 = ((z * zeta_sqrt) * b0) / zsq_minus_one_sqrt;
+
+        // This is A&S Eq. 9.5.22 expanded to k = 1 (i.e., one term in the series).
+        return (v * z) + (f1 / v);
+      }
+
+      namespace cyl_bessel_j_zero_detail
+      {
+        template<class T>
+        T equation_nist_10_21_40_a(const T& v)
+        {
+          const T v_pow_third(boost::math::cbrt(v));
+          const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third));
+
+          return v * (((((                         + T(0.043)
+                          * v_pow_minus_two_thirds - T(0.0908))
+                          * v_pow_minus_two_thirds - T(0.00397))
+                          * v_pow_minus_two_thirds + T(1.033150))
+                          * v_pow_minus_two_thirds + T(1.8557571))
+                          * v_pow_minus_two_thirds + T(1));
+        }
+
+        template<class T, class Policy>
+        class function_object_jv
+        {
+        public:
+          function_object_jv(const T& v,
+                             const Policy& pol) : my_v(v),
+                                                  my_pol(pol) { }
+
+          T operator()(const T& x) const
+          {
+            return boost::math::cyl_bessel_j(my_v, x, my_pol);
+          }
+
+        private:
+          const T my_v;
+          const Policy& my_pol;
+          const function_object_jv& operator=(const function_object_jv&);
+        };
+
+        template<class T, class Policy>
+        class function_object_jv_and_jv_prime
+        {
+        public:
+          function_object_jv_and_jv_prime(const T& v,
+                                          const bool order_is_zero,
+                                          const Policy& pol) : my_v(v),
+                                                               my_order_is_zero(order_is_zero),
+                                                               my_pol(pol) { }
+
+          boost::math::tuple<T, T> operator()(const T& x) const
+          {
+            // Obtain Jv(x) and Jv'(x).
+            // Chris's original code called the Bessel function implementation layer direct, 
+            // but that circumvented optimizations for integer-orders.  Call the documented
+            // top level functions instead, and let them sort out which implementation to use.
+            T j_v;
+            T j_v_prime;
+
+            if(my_order_is_zero)
+            {
+              j_v       =  boost::math::cyl_bessel_j(0, x, my_pol);
+              j_v_prime = -boost::math::cyl_bessel_j(1, x, my_pol);
+            }
+            else
+            {
+                      j_v       = boost::math::cyl_bessel_j(  my_v,      x, my_pol);
+              const T j_v_m1     (boost::math::cyl_bessel_j(T(my_v - 1), x, my_pol));
+                      j_v_prime = j_v_m1 - ((my_v * j_v) / x);
+            }
+
+            // Return a tuple containing both Jv(x) and Jv'(x).
+            return boost::math::make_tuple(j_v, j_v_prime);
+          }
+
+        private:
+          const T my_v;
+          const bool my_order_is_zero;
+          const Policy& my_pol;
+          const function_object_jv_and_jv_prime& operator=(const function_object_jv_and_jv_prime&);
+        };
+
+        template<class T> bool my_bisection_unreachable_tolerance(const T&, const T&) { return false; }
+
+        template<class T, class Policy>
+        T initial_guess(const T& v, const int m, const Policy& pol)
+        {
+          BOOST_MATH_STD_USING // ADL of std names, needed for floor.
+
+          // Compute an estimate of the m'th root of cyl_bessel_j.
+
+          T guess;
+
+          // There is special handling for negative order.
+          if(v < 0)
+          {
+            if((m == 1) && (v > -0.5F))
+            {
+              // For small, negative v, use the results of empirical curve fitting.
+              // Mathematica(R) session for the coefficients:
+              //  Table[{n, BesselJZero[n, 1]}, {n, -(1/2), 0, 1/10}]
+              //  N[%, 20]
+              //  Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n]
+              guess = (((((    - T(0.2321156900729)
+                           * v - T(0.1493247777488))
+                           * v - T(0.15205419167239))
+                           * v + T(0.07814930561249))
+                           * v - T(0.17757573537688))
+                           * v + T(1.542805677045663))
+                           * v + T(2.40482555769577277);
+
+              return guess;
+            }
+
+            // Create the positive order and extract its positive floor integer part.
+            const T vv(-v);
+            const T vv_floor(floor(vv));
+
+            // The to-be-found root is bracketed by the roots of the
+            // Bessel function whose reflected, positive integer order
+            // is less than, but nearest to vv.
+
+            T root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(vv_floor, m, pol);
+            T root_lo;
+
+            if(m == 1)
+            {
+              // The estimate of the first root for negative order is found using
+              // an adaptive range-searching algorithm.
+              root_lo = T(root_hi - 0.1F);
+
+              const bool hi_end_of_bracket_is_negative = (boost::math::cyl_bessel_j(v, root_hi, pol) < 0);
+
+              while((root_lo > boost::math::tools::epsilon<T>()))
+              {
+                const bool lo_end_of_bracket_is_negative = (boost::math::cyl_bessel_j(v, root_lo, pol) < 0);
+
+                if(hi_end_of_bracket_is_negative != lo_end_of_bracket_is_negative)
+                {
+                  break;
+                }
+
+                root_hi = root_lo;
+
+                // Decrease the lower end of the bracket using an adaptive algorithm.
+                if(root_lo > 0.5F)
+                {
+                  root_lo -= 0.5F;
+                }
+                else
+                {
+                  root_lo *= 0.75F;
+                }
+              }
+            }
+            else
+            {
+              root_lo = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(vv_floor, m - 1, pol);
+            }
+
+            // Perform several steps of bisection iteration to refine the guess.
+            boost::uintmax_t number_of_iterations(12U);
+
+            // Do the bisection iteration.
+            const boost::math::tuple<T, T> guess_pair =
+               boost::math::tools::bisect(
+                  boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::function_object_jv<T, Policy>(v, pol),
+                  root_lo,
+                  root_hi,
+                  boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::my_bisection_unreachable_tolerance<T>,
+                  number_of_iterations);
+
+            return (boost::math::get<0>(guess_pair) + boost::math::get<1>(guess_pair)) / 2U;
+          }
+
+          if(m == 1U)
+          {
+            // Get the initial estimate of the first root.
+
+            if(v < 2.2F)
+            {
+              // For small v, use the results of empirical curve fitting.
+              // Mathematica(R) session for the coefficients:
+              //  Table[{n, BesselJZero[n, 1]}, {n, 0, 22/10, 1/10}]
+              //  N[%, 20]
+              //  Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n]
+              guess = (((((    - T(0.0008342379046010)
+                           * v + T(0.007590035637410))
+                           * v - T(0.030640914772013))
+                           * v + T(0.078232088020106))
+                           * v - T(0.169668712590620))
+                           * v + T(1.542187960073750))
+                           * v + T(2.4048359915254634);
+            }
+            else
+            {
+              // For larger v, use the first line of Eqs. 10.21.40 in the NIST Handbook.
+              guess = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::equation_nist_10_21_40_a(v);
+            }
+          }
+          else
+          {
+            if(v < 2.2F)
+            {
+              // Use Eq. 10.21.19 in the NIST Handbook.
+              const T a(((v + T(m * 2U)) - T(0.5)) * boost::math::constants::half_pi<T>());
+
+              guess = boost::math::detail::bessel_zero::equation_nist_10_21_19(v, a);
+            }
+            else
+            {
+              // Get an estimate of the m'th root of airy_ai.
+              const T airy_ai_root(boost::math::detail::airy_zero::airy_ai_zero_detail::initial_guess<T>(m));
+
+              // Use Eq. 9.5.26 in the A&S Handbook.
+              guess = boost::math::detail::bessel_zero::equation_as_9_5_26(v, airy_ai_root);
+            }
+          }
+
+          return guess;
+        }
+      } // namespace cyl_bessel_j_zero_detail
+
+      namespace cyl_neumann_zero_detail
+      {
+        template<class T>
+        T equation_nist_10_21_40_b(const T& v)
+        {
+          const T v_pow_third(boost::math::cbrt(v));
+          const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third));
+
+          return v * (((((                         - T(0.001)
+                          * v_pow_minus_two_thirds - T(0.0060))
+                          * v_pow_minus_two_thirds + T(0.01198))
+                          * v_pow_minus_two_thirds + T(0.260351))
+                          * v_pow_minus_two_thirds + T(0.9315768))
+                          * v_pow_minus_two_thirds + T(1));
+        }
+
+        template<class T, class Policy>
+        class function_object_yv
+        {
+        public:
+          function_object_yv(const T& v,
+                             const Policy& pol) : my_v(v),
+                                                  my_pol(pol) { }
+
+          T operator()(const T& x) const
+          {
+            return boost::math::cyl_neumann(my_v, x, my_pol);
+          }
+
+        private:
+          const T my_v;
+          const Policy& my_pol;
+          const function_object_yv& operator=(const function_object_yv&);
+        };
+
+        template<class T, class Policy>
+        class function_object_yv_and_yv_prime
+        {
+        public:
+          function_object_yv_and_yv_prime(const T& v,
+                                          const Policy& pol) : my_v(v),
+                                                               my_pol(pol) { }
+
+          boost::math::tuple<T, T> operator()(const T& x) const
+          {
+            const T half_epsilon(boost::math::tools::epsilon<T>() / 2U);
+
+            const bool order_is_zero = ((my_v > -half_epsilon) && (my_v < +half_epsilon));
+
+            // Obtain Yv(x) and Yv'(x).
+            // Chris's original code called the Bessel function implementation layer direct, 
+            // but that circumvented optimizations for integer-orders.  Call the documented
+            // top level functions instead, and let them sort out which implementation to use.
+            T y_v;
+            T y_v_prime;
+
+            if(order_is_zero)
+            {
+              y_v       =  boost::math::cyl_neumann(0, x, my_pol);
+              y_v_prime = -boost::math::cyl_neumann(1, x, my_pol);
+            }
+            else
+            {
+                      y_v       = boost::math::cyl_neumann(  my_v,      x, my_pol);
+              const T y_v_m1     (boost::math::cyl_neumann(T(my_v - 1), x, my_pol));
+                      y_v_prime = y_v_m1 - ((my_v * y_v) / x);
+            }
+
+            // Return a tuple containing both Yv(x) and Yv'(x).
+            return boost::math::make_tuple(y_v, y_v_prime);
+          }
+
+        private:
+          const T my_v;
+          const Policy& my_pol;
+          const function_object_yv_and_yv_prime& operator=(const function_object_yv_and_yv_prime&);
+        };
+
+        template<class T> bool my_bisection_unreachable_tolerance(const T&, const T&) { return false; }
+
+        template<class T, class Policy>
+        T initial_guess(const T& v, const int m, const Policy& pol)
+        {
+          BOOST_MATH_STD_USING // ADL of std names, needed for floor.
+
+          // Compute an estimate of the m'th root of cyl_neumann.
+
+          T guess;
+
+          // There is special handling for negative order.
+          if(v < 0)
+          {
+            // Create the positive order and extract its positive floor and ceiling integer parts.
+            const T vv(-v);
+            const T vv_floor(floor(vv));
+
+            // The to-be-found root is bracketed by the roots of the
+            // Bessel function whose reflected, positive integer order
+            // is less than, but nearest to vv.
+
+            // The special case of negative, half-integer order uses
+            // the relation between Yv and spherical Bessel functions
+            // in order to obtain the bracket for the root.
+            // In these special cases, cyl_neumann(-n/2, x) = sph_bessel_j(+n/2, x)
+            // for v = -n/2.
+
+            T root_hi;
+            T root_lo;
+
+            if(m == 1)
+            {
+              // The estimate of the first root for negative order is found using
+              // an adaptive range-searching algorithm.
+              // Take special precautions for the discontinuity at negative,
+              // half-integer orders and use different brackets above and below these.
+              if(T(vv - vv_floor) < 0.5F)
+              {
+                root_hi = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m, pol);
+              }
+              else
+              {
+                root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m, pol);
+              }
+
+              root_lo = T(root_hi - 0.1F);
+
+              const bool hi_end_of_bracket_is_negative = (boost::math::cyl_neumann(v, root_hi, pol) < 0);
+
+              while((root_lo > boost::math::tools::epsilon<T>()))
+              {
+                const bool lo_end_of_bracket_is_negative = (boost::math::cyl_neumann(v, root_lo, pol) < 0);
+
+                if(hi_end_of_bracket_is_negative != lo_end_of_bracket_is_negative)
+                {
+                  break;
+                }
+
+                root_hi = root_lo;
+
+                // Decrease the lower end of the bracket using an adaptive algorithm.
+                if(root_lo > 0.5F)
+                {
+                  root_lo -= 0.5F;
+                }
+                else
+                {
+                  root_lo *= 0.75F;
+                }
+              }
+            }
+            else
+            {
+              if(T(vv - vv_floor) < 0.5F)
+              {
+                root_lo  = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m - 1, pol);
+                root_hi = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m, pol);
+                root_lo += 0.01F;
+                root_hi += 0.01F;
+              }
+              else
+              {
+                root_lo = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m - 1, pol);
+                root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m, pol);
+                root_lo += 0.01F;
+                root_hi += 0.01F;
+              }
+            }
+
+            // Perform several steps of bisection iteration to refine the guess.
+            boost::uintmax_t number_of_iterations(12U);
+
+            // Do the bisection iteration.
+            const boost::math::tuple<T, T> guess_pair =
+               boost::math::tools::bisect(
+                  boost::math::detail::bessel_zero::cyl_neumann_zero_detail::function_object_yv<T, Policy>(v, pol),
+                  root_lo,
+                  root_hi,
+                  boost::math::detail::bessel_zero::cyl_neumann_zero_detail::my_bisection_unreachable_tolerance<T>,
+                  number_of_iterations);
+
+            return (boost::math::get<0>(guess_pair) + boost::math::get<1>(guess_pair)) / 2U;
+          }
+
+          if(m == 1U)
+          {
+            // Get the initial estimate of the first root.
+
+            if(v < 2.2F)
+            {
+              // For small v, use the results of empirical curve fitting.
+              // Mathematica(R) session for the coefficients:
+              //  Table[{n, BesselYZero[n, 1]}, {n, 0, 22/10, 1/10}]
+              //  N[%, 20]
+              //  Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n]
+              guess = (((((    - T(0.0025095909235652)
+                           * v + T(0.021291887049053))
+                           * v - T(0.076487785486526))
+                           * v + T(0.159110268115362))
+                           * v - T(0.241681668765196))
+                           * v + T(1.4437846310885244))
+                           * v + T(0.89362115190200490);
+            }
+            else
+            {
+              // For larger v, use the second line of Eqs. 10.21.40 in the NIST Handbook.
+              guess = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::equation_nist_10_21_40_b(v);
+            }
+          }
+          else
+          {
+            if(v < 2.2F)
+            {
+              // Use Eq. 10.21.19 in the NIST Handbook.
+              const T a(((v + T(m * 2U)) - T(1.5)) * boost::math::constants::half_pi<T>());
+
+              guess = boost::math::detail::bessel_zero::equation_nist_10_21_19(v, a);
+            }
+            else
+            {
+              // Get an estimate of the m'th root of airy_bi.
+              const T airy_bi_root(boost::math::detail::airy_zero::airy_bi_zero_detail::initial_guess<T>(m));
+
+              // Use Eq. 9.5.26 in the A&S Handbook.
+              guess = boost::math::detail::bessel_zero::equation_as_9_5_26(v, airy_bi_root);
+            }
+          }
+
+          return guess;
+        }
+      } // namespace cyl_neumann_zero_detail
+    } // namespace bessel_zero
+  } } } // namespace boost::math::detail
+
+#endif // _BESSEL_JY_ZERO_2013_01_18_HPP_