]> git.donarmstrong.com Git - ool/lipid_simulation_formalism.git/blob - kinetic_formalism.Rnw
fix kinetic formalism
[ool/lipid_simulation_formalism.git] / kinetic_formalism.Rnw
1 \documentclass[english,12pt]{article}
2 \usepackage{fancyhdr}
3 %\usepackage[pdftex]{graphicx}
4 \usepackage{graphicx}
5 \usepackage[bf]{caption2}
6 \usepackage{rotating}
7 \usepackage{multirow}
8 \usepackage{textcomp}
9 \usepackage{mathrsfs}
10 \usepackage{amssymb}
11 \usepackage{setspace}
12 \usepackage{txfonts}
13 \usepackage[light,all]{draftcopy}
14 \usepackage{fancyref}
15 \usepackage[hyperfigures,backref,bookmarks,colorlinks]{hyperref}
16 \usepackage[sectionbib,sort&compress,square,numbers]{natbib}
17 \usepackage[margin,inline,draft]{fixme}
18 \usepackage[x11names,svgnames]{xcolor}
19 \usepackage{texshade}
20 \newenvironment{narrow}[2]{%
21   \begin{list}{}{%
22       \setlength{\topsep}{0pt}%
23       \setlength{\leftmargin}{#1}%
24       \setlength{\rightmargin}{#2}%
25       \setlength{\listparindent}{\parindent}%
26       \setlength{\itemindent}{\parindent}%
27       \setlength{\parsep}{\parskip}}%
28   \item[]}{\end{list}}
29 \newenvironment{paperquote}{%
30   \begin{quote}%
31      \it
32   }%
33   {\end{quote}}
34 \renewcommand{\textfraction}{0.15}
35 \renewcommand{\topfraction}{0.85}
36 \renewcommand{\bottomfraction}{0.65}
37 \renewcommand{\floatpagefraction}{0.60}
38 %\renewcommand{\baselinestretch}{1.8}
39 \newenvironment{enumerate*}%
40   {\begin{enumerate}%
41     \setlength{\itemsep}{0pt}%
42     \setlength{\parskip}{0pt}}%
43   {\end{enumerate}}
44 \newenvironment{itemize*}%
45   {\begin{itemize}%
46     \setlength{\itemsep}{0pt}%
47     \setlength{\parskip}{0pt}}%
48   {\end{itemize}}
49 \oddsidemargin 0.0in 
50 \textwidth 6.5in
51 \raggedbottom
52 \clubpenalty = 10000
53 \widowpenalty = 10000
54 \pagestyle{fancy}
55 \author{Don Armstrong}
56 \title{OOL Kinetic Formalisms}
57 %\date{}
58 \onehalfspacing
59 \begin{document}
60 %\maketitle
61
62 <<results=hide,echo=FALSE>>=
63 require(lattice)
64 require(grid)
65 # R in cal / mol K
66 to.kcal <- function(k,temp=300) {
67   gasconst <- 1.985
68   return(-gasconst*temp*log(k)/1000)
69 }
70
71
72 \section{State Equation}
73 % double check this with the bits in the paper
74 \begin{equation}
75   \frac{d C_{i_\mathrm{ves}}}{dt} = k_{fi}k_{fi\mathrm{adj}}\left[C_{i_\mathrm{monomer}}\right]S_\mathrm{ves} -
76   k_{bi}k_{bi\mathrm{adj}}C_{i_\mathrm{ves}}
77   \label{eq:state}
78 \end{equation}
79
80 For $k_{fi}k_{fi\mathrm{adj}}\left[C_{i_\mathrm{monomer}}\right]$,
81 $k_{fi}$ has units of $\frac{\mathrm{m}}{\mathrm{s}}$,
82 $k_{fi\mathrm{adj}}$ and $k_{bi\mathrm{adj}}$ are unitless,
83 concentration is in units of $\frac{\mathrm{n}}{\mathrm{L}}$, surface
84 area is in units of $\mathrm{m}^2$, $k_{bi}$ has units of
85 $\frac{1}{\mathrm{s}}$ and $C_{i_\mathrm{ves}}$ has units of
86 $\mathrm{n}$, Thus, we have
87
88 \begin{equation}
89   \frac{\mathrm{n}}{\mathrm{s}} = \frac{\mathrm{m}}{\mathrm{s}} \frac{\mathrm{n}}{\mathrm{L}} \mathrm{m}^2 \frac{1000\mathrm{L}}{\mathrm{m}^3} - 
90   \frac{1}{\mathrm{s}} \mathrm{n}
91   =
92   \frac{\mathrm{m^3}}{\mathrm{s}} \frac{\mathrm{n}}{\mathrm{L}} \frac{1000\mathrm{L}}{\mathrm{m}^3} - \frac{\mathrm{n}}{\mathrm{s}}=
93   \frac{\mathrm{n}}{\mathrm{s}} = 1000 \frac{\mathrm{n}}{\mathrm{s}} - \frac{\mathrm{n}}{\mathrm{s}}
94   \label{eq:state_units}
95 \end{equation}
96
97 The 1000 isn't in \fref{eq:state} above, because it is unit-dependent.
98
99 \subsection{Forward adjustments ($k_{fi\mathrm{adj}}$)}
100
101 \begin{equation}
102   k_{fi\mathrm{adj}} = un_f \cdot ch_f \cdot cu_f \cdot l_f \cdot CF1_f
103   \label{eq:kf_adj}
104 \end{equation}
105
106 \newpage
107 \subsubsection{Unsaturation Forward}
108 \begin{equation}
109   un_f = 2^{\mathrm{stdev}\left(un_\mathrm{ves}\right)}
110   \label{eq:unsaturation_forward}
111 \end{equation}
112
113 <<fig=TRUE,echo=FALSE,results=hide,width=5,height=5>>=
114 curve(2^x,from=0,to=sd(c(0,4)),
115       main="Unsaturation forward",
116       xlab="Standard Deviation of Unsaturation of Vesicle",
117       ylab="Unsaturation Forward Adjustment")
118
119
120 <<fig=TRUE,echo=FALSE,results=hide,width=5,height=5>>=
121 curve(to.kcal(2^x),from=0,to=sd(c(0,4)),
122       main="Unsaturation forward",
123       xlab="Standard Deviation of Unsaturation of Vesicle",
124       ylab="Unsaturation Forward (kcal/mol)")
125
126
127
128 \newpage
129 \subsubsection{Charge Forward}
130 \begin{equation}
131   ch_f = 60^{-\left<{ch}_v\right> {ch}_m}
132   \label{eq:charge_forward}
133 \end{equation}
134
135 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
136 x <- seq(-1,0,length.out=20)
137 y <- seq(-1,0,length.out=20)
138 grid <- expand.grid(x=x,y=y)
139 grid$z <- as.vector(60^(-outer(x,y)))
140 print(wireframe(z~x*y,grid,cuts=50,
141           drape=TRUE,
142           scales=list(arrows=FALSE),
143           xlab=list("Average Vesicle Charge",rot=30),
144           ylab=list("Component Charge",rot=-35),
145           zlab=list("Charge Forward",rot=93)))
146 rm(x,y,grid)
147
148
149 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
150 x <- seq(-1,0,length.out=20)
151 y <- seq(-1,0,length.out=20)
152 grid <- expand.grid(x=x,y=y)
153 grid$z <- as.vector(to.kcal(60^(-outer(x,y))))
154 print(wireframe(z~x*y,grid,cuts=50,
155           drape=TRUE,
156           scales=list(arrows=FALSE),
157           xlab=list("Average Vesicle Charge",rot=30),
158           ylab=list("Component Charge",rot=-35),
159           zlab=list("Charge Forward (kcal/mol)",rot=93)))
160 rm(x,y,grid)
161
162
163
164 \newpage
165 \subsubsection{Curvature Forward}
166 \begin{equation}
167   cu_f = 10^{\mathrm{stdev}\left|\log cu_\mathrm{vesicle}\right|}
168   \label{eq:curvature_forward}
169 \end{equation}
170
171 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=5>>=
172 curve(10^x,from=0,to=max(c(sd(abs(log(c(0.8,1.33)))),
173                     sd(abs(log(c(1,1.33)))),
174                     sd(abs(log(c(0.8,1)))))),
175       main="Curvature forward",
176       xlab="Standard Deviation of Absolute value of the Log of the Curvature of Vesicle",
177       ylab="Curvature Forward Adjustment")
178
179
180 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=5>>=
181 curve(to.kcal(10^x),from=0,to=max(c(sd(abs(log(c(0.8,1.33)))),
182                     sd(abs(log(c(1,1.33)))),
183                     sd(abs(log(c(0.8,1)))))),
184       main="Curvature forward",
185       xlab="Standard Deviation of Absolute value of the Log of the Curvature of Vesicle",
186       ylab="Curvature Forward Adjustment (kcal/mol)")
187
188
189
190 \newpage
191 \subsubsection{Length Forward}
192 \begin{equation}
193   l_f = 3^{\mathrm{stdev} l_\mathrm{ves}}
194   \label{eq:length_forward}
195 \end{equation}
196
197 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=5>>=
198 curve(3^x,from=0,to=sd(c(12,24)),
199       main="Length forward",
200       xlab="Standard Deviation of Length of Vesicle",
201       ylab="Length Forward Adjustment")
202
203
204 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=5>>=
205 curve(to.kcal(3^x),from=0,to=sd(c(12,24)),
206       main="Length forward",
207       xlab="Standard Deviation of Length of Vesicle",
208       ylab="Length Forward Adjustment (kcal/mol)")
209
210
211
212 \subsubsection{Complex Formation}
213 \begin{equation}
214   CF1_f=1
215   \label{eq:complex_formation_forward}
216 \end{equation}
217
218 \subsection{Backward adjustments ($k_{bi\mathrm{adj}}$)}
219
220 \begin{equation}
221   k_{bi\mathrm{adj}} = un_b \cdot ch_b \cdot cu_b \cdot l_b \cdot CF1_b
222   \label{eq:kf_adj}
223 \end{equation}
224
225 \newpage
226 \subsubsection{Unsaturation Backward}
227 \begin{equation}
228   un_b = 10^{\left|3.5^{-\left<un_\mathrm{ves}\right>}-3.5^{-un_\mathrm{monomer}}\right|}
229   \label{eq:unsaturation_backward}
230 \end{equation}
231
232 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
233 grid <- expand.grid(x=seq(0,4,length.out=20),
234                     y=seq(0,4,length.out=20))
235 grid$z <- 10^(abs(3.5^-grid$x-3.5^-grid$y))
236 print(wireframe(z~x*y,grid,cuts=50,
237           drape=TRUE,
238           scales=list(arrows=FALSE),
239           xlab=list("Average Vesicle Unsaturation",rot=30),
240           ylab=list("Monomer Unsaturation",rot=-35),
241           zlab=list("Unsaturation Backward",rot=93)))
242 rm(grid)
243
244
245 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
246 grid <- expand.grid(x=seq(0,4,length.out=20),
247                     y=seq(0,4,length.out=20))
248 grid$z <- to.kcal(10^(abs(3.5^-grid$x-3.5^-grid$y)))
249 print(wireframe(z~x*y,grid,cuts=50,
250           drape=TRUE,
251           scales=list(arrows=FALSE),
252           xlab=list("Average Vesicle Unsaturation",rot=30),
253           ylab=list("Monomer Unsaturation",rot=-35),
254           zlab=list("Unsaturation Backward (kcal/mol)",rot=93)))
255 rm(grid)
256
257
258
259 \newpage
260 \subsubsection{Charge Backwards}
261 \begin{equation}
262   ch_b = 20^{\left<{ch}_v\right> {ch}_m}
263   \label{eq:charge_backwards}
264 \end{equation}
265
266 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
267 x <- seq(-1,0,length.out=20)
268 y <- seq(-1,0,length.out=20)
269 grid <- expand.grid(x=x,y=y)
270 grid$z <- as.vector(20^(outer(x,y)))
271 print(wireframe(z~x*y,grid,cuts=50,
272           drape=TRUE,
273           scales=list(arrows=FALSE),
274           xlab=list("Average Vesicle Charge",rot=30),
275           ylab=list("Component Charge",rot=-35),
276           zlab=list("Charge Backwards",rot=93)))
277 rm(x,y,grid)
278
279
280 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
281 x <- seq(-1,0,length.out=20)
282 y <- seq(-1,0,length.out=20)
283 grid <- expand.grid(x=x,y=y)
284 grid$z <- to.kcal(as.vector(20^(outer(x,y))))
285 print(wireframe(z~x*y,grid,cuts=50,
286           drape=TRUE,
287           scales=list(arrows=FALSE),
288           xlab=list("Average Vesicle Charge",rot=30),
289           ylab=list("Component Charge",rot=-35),
290           zlab=list("Charge Backwards (kcal/mol)",rot=93)))
291 rm(x,y,grid)
292
293
294 \newpage
295 \subsubsection{Curvature Backwards}
296 \begin{equation}
297   cu_f = 7^{1-\left(20\left(\log_{e} cu_\mathrm{vesicle}-\log_{e} cu_\mathrm{monomer}\right)^2+1\right)^{-1}}
298   \label{eq:curvature_backwards}
299 \end{equation}
300
301 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
302 grid <- expand.grid(x=seq(0.8,1.33,length.out=20),
303                     y=seq(0.8,1.33,length.out=20))
304 grid$z <- 7^(1-1/(20*(log(grid$x)-log(grid$y))^2+1))
305 print(wireframe(z~x*y,grid,cuts=50,
306           drape=TRUE,
307           scales=list(arrows=FALSE),
308           xlab=list("Vesicle Curvature",rot=30),
309           ylab=list("Monomer Curvature",rot=-35),
310           zlab=list("Curvature Backward",rot=93)))
311 rm(grid)
312
313
314 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
315 grid <- expand.grid(x=seq(0.8,1.33,length.out=20),
316                     y=seq(0.8,1.33,length.out=20))
317 grid$z <- to.kcal(7^(1-1/(20*(log(grid$x)-log(grid$y))^2+1)))
318 print(wireframe(z~x*y,grid,cuts=50,
319           drape=TRUE,
320           scales=list(arrows=FALSE),
321           xlab=list("Vesicle Curvature",rot=30),
322           ylab=list("Monomer Curvature",rot=-35),
323           zlab=list("Curvature Backward (kcal/mol)",rot=93)))
324 rm(grid)
325
326
327
328 \newpage
329 \subsubsection{Length Backwards}
330 \begin{equation}
331   l_b = 3.2^{\left|l_\mathrm{ves}-l_\mathrm{monomer}\right|}
332   \label{eq:length_backward}
333 \end{equation}
334
335 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
336 grid <- expand.grid(x=seq(12,24,length.out=20),
337                     y=seq(12,24,length.out=20))
338 grid$z <- 3.2^(abs(grid$x-grid$y))
339 print(wireframe(z~x*y,grid,cuts=50,
340           drape=TRUE,
341           scales=list(arrows=FALSE),
342           xlab=list("Average Vesicle Length",rot=30),
343           ylab=list("Monomer Length",rot=-35),
344           zlab=list("Length Backward",rot=93)))
345 rm(grid)
346
347
348 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
349 grid <- expand.grid(x=seq(12,24,length.out=20),
350                     y=seq(12,24,length.out=20))
351 grid$z <- to.kcal(3.2^(abs(grid$x-grid$y)))
352 print(wireframe(z~x*y,grid,cuts=50,
353           drape=TRUE,
354           scales=list(arrows=FALSE),
355           xlab=list("Average Vesicle Length",rot=30),
356           ylab=list("Monomer Length",rot=-35),
357           zlab=list("Length Backward (kcal/mol)",rot=93)))
358 rm(grid)
359
360
361
362 \newpage
363 \subsubsection{Complex Formation Backward}
364 \begin{equation}
365   CF1_b=1.5^{CF1_\mathrm{ves} CF1_\mathrm{monomer}-\left|CF1_\mathrm{ves} CF1_\mathrm{monomer}\right|}
366   \label{eq:complex_formation_backward}
367 \end{equation}
368
369 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
370 grid <- expand.grid(x=seq(-1,3,length.out=20),
371                     y=seq(-1,3,length.out=20))
372 grid$z <- 3.2^(grid$x*grid$y-abs(grid$x*grid$y))
373 print(wireframe(z~x*y,grid,cuts=50,
374           drape=TRUE,
375           scales=list(arrows=FALSE),
376           xlab=list("Vesicle Complex Formation",rot=30),
377           ylab=list("Monomer Complex Formation",rot=-35),
378           zlab=list("Complex Formation Backward",rot=93)))
379 rm(grid)
380
381
382 <<fig=TRUE,echo=FALSE,results=hide,width=7,height=7>>=
383 grid <- expand.grid(x=seq(-1,3,length.out=20),
384                     y=seq(-1,3,length.out=20))
385 grid$z <- to.kcal(3.2^(grid$x*grid$y-abs(grid$x*grid$y)))
386 print(wireframe(z~x*y,grid,cuts=50,
387           drape=TRUE,
388           scales=list(arrows=FALSE),
389           xlab=list("Vesicle Complex Formation",rot=30),
390           ylab=list("Monomer Complex Formation",rot=-35),
391           zlab=list("Complex Formation Backward (kcal/mol)",rot=93)))
392 rm(grid)
393
394
395
396
397
398
399 % \bibliographystyle{plainnat}
400 % \bibliography{references.bib}
401
402
403 \end{document}