]> git.donarmstrong.com Git - mothur.git/blobdiff - linearalgebra.cpp
changing command name classify.shared to classifyrf.shared
[mothur.git] / linearalgebra.cpp
index 58f1acccfc7ed4e3aefc902ad199dd7a17a0516d..cd2ca0397bb21493761c69f729893103fc314613 100644 (file)
@@ -8,6 +8,7 @@
  */
 
 #include "linearalgebra.h"
+#include "wilcox.h"
 
 // This class references functions used from "Numerical Recipes in C++" //
 
@@ -1228,7 +1229,241 @@ double LinearAlgebra::calcKendallSig(double n, double r){
                exit(1);
        }
 }
+/*********************************************************************************************************************************/
+double LinearAlgebra::calcKruskalWallis(vector<spearmanRank>& values, double& pValue){
+       try {
+        double H;
+        set<string> treatments;
+        
+        //rank values
+        sort(values.begin(), values.end(), compareSpearman);
+        vector<spearmanRank*> ties;
+        int rankTotal = 0;
+        vector<int> TIES;
+        for (int j = 0; j < values.size(); j++) {
+            treatments.insert(values[j].name);
+            rankTotal += (j+1);
+            ties.push_back(&(values[j]));
+            
+            if (j != values.size()-1) { // you are not the last so you can look ahead
+                if (values[j].score != values[j+1].score) { // you are done with ties, rank them and continue
+                    if (ties.size() > 1) { TIES.push_back(ties.size()); }
+                    for (int k = 0; k < ties.size(); k++) {
+                        double thisrank = rankTotal / (double) ties.size();
+                        (*ties[k]).score = thisrank;
+                    }
+                    ties.clear();
+                    rankTotal = 0;
+                }
+            }else { // you are the last one
+                if (ties.size() > 1) { TIES.push_back(ties.size()); }
+                for (int k = 0; k < ties.size(); k++) {
+                    double thisrank = rankTotal / (double) ties.size();
+                    (*ties[k]).score = thisrank;
+                }
+            }
+        }
+        
+        
+        // H = 12/(N*(N+1)) * (sum Ti^2/n) - 3(N+1)
+        map<string, double> sums;
+        map<string, double> counts;
+        for (set<string>::iterator it = treatments.begin(); it != treatments.end(); it++) { sums[*it] = 0.0; counts[*it] = 0; }
+        
+        for (int j = 0; j < values.size(); j++) {
+            sums[values[j].name] += values[j].score;
+            counts[values[j].name]+= 1.0;
+        }
+        
+        double middleTerm = 0.0;
+        for (set<string>::iterator it = treatments.begin(); it != treatments.end(); it++) {
+            middleTerm += ((sums[*it]*sums[*it])/counts[*it]);
+        }
+        
+        double firstTerm = 12 / (double) (values.size()*(values.size()+1));
+        double lastTerm = 3 * (values.size()+1);
+        
+        H = firstTerm * middleTerm - lastTerm;
+        
+        //adjust for ties
+        if (TIES.size() != 0) {
+            double sum = 0.0;
+            for (int j = 0; j < TIES.size(); j++) { sum += ((TIES[j]*TIES[j]*TIES[j])-TIES[j]); }
+            double result = 1.0 - (sum / (double) ((values.size()*values.size()*values.size())-values.size()));
+            H /= result;
+        }
+        
+        //Numerical Recipes pg221
+        pValue = 1.0 - (gammp(((treatments.size()-1)/(double)2.0), H/2.0));
+        
+        return H;
+    }
+       catch(exception& e) {
+               m->errorOut(e, "LinearAlgebra", "calcKruskalWallis");
+               exit(1);
+       }
+}
+/*********************************************************************************************************************************/
+//thanks http://www.johndcook.com/cpp_phi.html
+double LinearAlgebra::pnorm(double x){
+    try {
+        // constants
+        double a1 =  0.254829592;
+        double a2 = -0.284496736;
+        double a3 =  1.421413741;
+        double a4 = -1.453152027;
+        double a5 =  1.061405429;
+        double p  =  0.3275911;
+        
+        // Save the sign of x
+        int sign = 1;
+        if (x < 0)
+            sign = -1;
+        x = fabs(x)/sqrt(2.0);
+        
+        // A&S formula 7.1.26
+        double t = 1.0/(1.0 + p*x);
+        double y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x);
+        
+        return 0.5*(1.0 + sign*y);
+    }
+       catch(exception& e) {
+               m->errorOut(e, "LinearAlgebra", "pnorm");
+               exit(1);
+       }
+}
 
+/*********************************************************************************************************************************/
+double LinearAlgebra::calcWilcoxon(vector<double>& x, vector<double>& y, double& sig){
+       try {           
+               double W = 0.0;
+        sig = 0.0;
+        
+        vector<spearmanRank> ranks;
+        for (int i = 0; i < x.size(); i++) {
+            if (m->control_pressed) { return W; }
+            spearmanRank member("x", x[i]);
+            ranks.push_back(member);
+        }
+        
+        for (int i = 0; i < y.size(); i++) {
+            if (m->control_pressed) { return W; }
+            spearmanRank member("y", y[i]);
+            ranks.push_back(member);
+        }
+        
+        //sort values
+               sort(ranks.begin(), ranks.end(), compareSpearman);
+               
+               //convert scores to ranks of x
+               vector<spearmanRank*> ties;
+               int rankTotal = 0;
+        vector<int> TIES;
+               for (int j = 0; j < ranks.size(); j++) {
+            if (m->control_pressed) { return W; }
+                       rankTotal += (j+1);
+                       ties.push_back(&(ranks[j]));
+            
+                       if (j != ranks.size()-1) { // you are not the last so you can look ahead
+                               if (ranks[j].score != ranks[j+1].score) { // you are done with ties, rank them and continue
+                    if (ties.size() > 1) { TIES.push_back(ties.size()); }
+                                       for (int k = 0; k < ties.size(); k++) {
+                                               float thisrank = rankTotal / (float) ties.size();
+                                               (*ties[k]).score = thisrank;
+                                       }
+                                       ties.clear();
+                                       rankTotal = 0;
+                               }
+                       }else { // you are the last one
+                if (ties.size() > 1) { TIES.push_back(ties.size()); }
+                               for (int k = 0; k < ties.size(); k++) {
+                                       float thisrank = rankTotal / (float) ties.size();
+                                       (*ties[k]).score = thisrank;
+                               }
+                       }
+               }
+        
+        //from R wilcox.test function
+        //STATISTIC <- sum(r[seq_along(x)]) - n.x * (n.x + 1)/2
+        double sumRanks = 0.0;
+        for (int i = 0; i < ranks.size(); i++) {
+            if (m->control_pressed) { return W; }
+            if (ranks[i].name == "x") { sumRanks += ranks[i].score; }
+        }
+        
+        W = sumRanks - x.size() * ((double)(x.size() + 1)) / 2.0;
+        
+        //exact <- (n.x < 50) && (n.y < 50)
+        bool findExact = false;
+        if ((x.size() < 50) && (y.size() < 50)) { findExact = true; }
+        
+        
+        if (findExact && (TIES.size() == 0)) { //find exact and no ties
+            //PVAL <- switch(alternative, two.sided = {
+            //p <- if (STATISTIC > (n.x * n.y/2))
+            PWilcox wilcox;
+            double pval = 0.0;
+            if (W > ((double)x.size()*y.size()/2.0)) {
+                //pwilcox(STATISTIC-1, n.x, n.y, lower.tail = FALSE)
+                pval = wilcox.pwilcox(W-1, x.size(), y.size(), false);
+            }else {
+                //pwilcox(STATISTIC,n.x, n.y)
+                pval = wilcox.pwilcox(W, x.size(), y.size(), true);
+            }
+            sig = 2.0 * pval;
+            if (1.0 < sig) { sig = 1.0; }
+        }else {
+            //z <- STATISTIC - n.x * n.y/2
+            double z = W - (double)(x.size() * y.size()/2.0);
+            //NTIES <- table(r)
+            double sum = 0.0;
+            for (int j = 0; j < TIES.size(); j++) { sum += ((TIES[j]*TIES[j]*TIES[j])-TIES[j]); }
+           
+            //SIGMA <- sqrt((n.x * n.y/12) * ((n.x + n.y + 1) -
+                                            //sum(NTIES^3 - NTIES)/((n.x + n.y) * (n.x + n.y -
+                                                                            //1))))
+            double sigma = 0.0;
+            double firstTerm = (double)(x.size() * y.size()/12.0);
+            double secondTerm = (double)(x.size() + y.size() + 1) - sum / (double)((x.size() + y.size()) * (x.size() + y.size() - 1));
+            sigma = sqrt(firstTerm * secondTerm);
+            
+            //CORRECTION <- switch(alternative, two.sided = sign(z) * 0.5, greater = 0.5, less = -0.5)
+            double CORRECTION = 0.0;
+            if (z < 0) { CORRECTION = -1.0; }
+            else if (z > 0) { CORRECTION = 1.0; }
+            CORRECTION *= 0.5;
+            
+            z = (z - CORRECTION)/sigma;
+            
+            //PVAL <- switch(alternative,  two.sided = 2 * min(pnorm(z), pnorm(z, lower.tail = FALSE)))
+            sig = pnorm(z);
+            if ((1.0-sig) < sig) { sig = 1.0 - sig; }
+            sig *= 2;
+        }
+        
+        return W;
+       }
+       catch(exception& e) {
+               m->errorOut(e, "LinearAlgebra", "calcWilcoxon");
+               exit(1);
+       }
+}
+
+/*********************************************************************************************************************************/
+double LinearAlgebra::choose(double n, double k){
+       try {
+        n = floor(n + 0.5);
+        k = floor(k + 0.5);
+        
+        double lchoose = gammln(n + 1.0) - gammln(k + 1.0) - gammln(n - k + 1.0);
+        
+        return (floor(exp(lchoose) + 0.5));
+    }
+       catch(exception& e) {
+               m->errorOut(e, "LinearAlgebra", "choose");
+               exit(1);
+       }
+}
 /*********************************************************************************************************************************/
 double LinearAlgebra::calcSpearman(vector<double>& x, vector<double>& y, double& sig){
        try {
@@ -1530,6 +1765,25 @@ vector<double> LinearAlgebra::solveEquations(vector<vector<double> > A, vector<d
                exit(1);
        }
 }
+/*********************************************************************************************************************************/
+vector<float> LinearAlgebra::solveEquations(vector<vector<float> > A, vector<float> b){
+    try {
+        int length = (int)b.size();
+        vector<double> x(length, 0);
+        vector<int> index(length);
+        for(int i=0;i<length;i++){  index[i] = i;   }
+        float d;
+        
+        ludcmp(A, index, d);  if (m->control_pressed) { return b; }
+        lubksb(A, index, b);
+        
+        return b;
+    }
+       catch(exception& e) {
+               m->errorOut(e, "LinearAlgebra", "solveEquations");
+               exit(1);
+       }
+}
 
 /*********************************************************************************************************************************/
 
@@ -1628,6 +1882,103 @@ void LinearAlgebra::lubksb(vector<vector<double> >& A, vector<int>& index, vecto
                exit(1);
        }
 }
+/*********************************************************************************************************************************/
+
+void LinearAlgebra::ludcmp(vector<vector<float> >& A, vector<int>& index, float& d){
+    try {
+        double tiny = 1e-20;
+        
+        int n = (int)A.size();
+        vector<float> vv(n, 0.0);
+        double temp;
+        int imax;
+        
+        d = 1.0;
+        
+        for(int i=0;i<n;i++){
+            float big = 0.0;
+            for(int j=0;j<n;j++){   if((temp=fabs(A[i][j])) > big ) big=temp;  }
+            if(big==0.0){   m->mothurOut("Singular matrix in routine ludcmp\n");    }
+            vv[i] = 1.0/big;
+        }
+        
+        for(int j=0;j<n;j++){
+            if (m->control_pressed) { break; }
+            for(int i=0;i<j;i++){
+                float sum = A[i][j];
+                for(int k=0;k<i;k++){   sum -= A[i][k] * A[k][j];   }
+                A[i][j] = sum;
+            }
+            
+            float big = 0.0;
+            for(int i=j;i<n;i++){
+                float sum = A[i][j];
+                for(int k=0;k<j;k++){   sum -= A[i][k] * A[k][j];   }
+                A[i][j] = sum;
+                float dum;
+                if((dum = vv[i] * fabs(sum)) >= big){
+                    big = dum;
+                    imax = i;
+                }
+            }
+            if(j != imax){
+                for(int k=0;k<n;k++){
+                    float dum = A[imax][k];
+                    A[imax][k] = A[j][k];
+                    A[j][k] = dum;
+                }
+                d = -d;
+                vv[imax] = vv[j];
+            }
+            index[j] = imax;
+            
+            if(A[j][j] == 0.0){ A[j][j] = tiny; }
+            
+            if(j != n-1){
+                float dum = 1.0/A[j][j];
+                for(int i=j+1;i<n;i++){ A[i][j] *= dum; }
+            }
+        }
+    }
+       catch(exception& e) {
+               m->errorOut(e, "LinearAlgebra", "ludcmp");
+               exit(1);
+       }
+}
+
+/*********************************************************************************************************************************/
+
+void LinearAlgebra::lubksb(vector<vector<float> >& A, vector<int>& index, vector<float>& b){
+    try {
+        float total;
+        int n = (int)A.size();
+        int ii = 0;
+        
+        for(int i=0;i<n;i++){
+            if (m->control_pressed) { break; }
+            int ip = index[i];
+            total = b[ip];
+            b[ip] = b[i];
+            
+            if (ii != 0) {
+                for(int j=ii-1;j<i;j++){
+                    total -= A[i][j] * b[j];
+                }
+            }
+            else if(total != 0){  ii = i+1;   }
+            b[i] = total;
+        }
+        for(int i=n-1;i>=0;i--){
+            total = b[i];
+            for(int j=i+1;j<n;j++){ total -= A[i][j] * b[j];  }
+            b[i] = total / A[i][i];
+        }
+    }
+       catch(exception& e) {
+               m->errorOut(e, "LinearAlgebra", "lubksb");
+               exit(1);
+       }
+}
 
 /*********************************************************************************************************************************/
 
@@ -1663,5 +2014,3 @@ vector<vector<double> > LinearAlgebra::getInverse(vector<vector<double> > matrix
                exit(1);
        }
 }
-
-/*********************************************************************************************************************************/