]> git.donarmstrong.com Git - ape.git/blob - man/diversi.time.Rd
cbb16c69c0685156daa14054c65a2e1346d1e5a4
[ape.git] / man / diversi.time.Rd
1 \name{diversi.time}
2 \alias{diversi.time}
3 \title{Analysis of Diversification with Survival Models}
4 \usage{
5 diversi.time(x, census = NULL, censoring.codes = c(1, 0), Tc = NULL)
6 }
7 \arguments{
8   \item{x}{a numeric vector with the branching times.}
9   \item{census}{a vector of the same length than `x' used as an
10     indicator variable; thus, it must have only two values, one coding
11     for accurately known branching times, and the other for censored
12     branching times. This argument can be of any mode (numeric, character,
13     logical), or can even be a factor.}
14   \item{censoring.codes}{a vector of length two giving the codes used
15     for \code{census}: by default 1 (accurately known times) and 0 (censored
16     times). The mode must be the same than the one of \code{census}.}
17   \item{Tc}{a single numeric value specifying the break-point time to
18     fit Model C. If none is provided, then it is set arbitrarily to the
19     mean of the analysed branching times.}
20 }
21 \description{
22   This functions fits survival models to a set of branching times, some
23   of them may be known approximately (censored). Three models are
24   fitted, Model A assuming constant diversification, Model B assuming
25   that diversification follows a Weibull law, and Model C assuming that
26   diversification changes with a breakpoint at time `Tc'. The models are
27   fitted by maximum likelihood.
28 }
29 \details{
30   The principle of the method is to consider each branching time as an
31   event: if the branching time is accurately known, then it is a failure
32   event; if it is approximately knwon then it is a censoring event. An
33   analogy is thus made between the failure (or hazard) rate estimated by
34   the survival models and the diversification rate of the lineage. Time
35   is here considered from present to past.
36
37   Model B assumes a monotonically changing diversification rate. The
38   parameter that controls the change of this rate is called beta. If
39   beta is greater than one, then the diversification rate decreases
40   through time; if it is lesser than one, the the rate increases through
41   time. If beta is equal to one, then Model B reduces to Model A.
42 }
43 \value{
44   A NULL value is returned, the results are simply printed.
45 }
46 \references{
47   Paradis, E. (1997) Assessing temporal variations in diversification
48   rates from phylogenies: estimation and hypothesis
49   testing. \emph{Proceedings of the Royal Society of London. Series
50     B. Biological Sciences}, \bold{264}, 1141--1147.
51 }
52 \author{Emmanuel Paradis \email{Emmanuel.Paradis@mpl.ird.fr}}
53 \seealso{
54   \code{\link{branching.times}}, \code{\link{diversi.gof}}
55   \code{\link{ltt.plot}}, \code{\link{birthdeath}},
56   \code{\link{bd.ext}}, \code{\link{yule}}, \code{\link{yule.cov}}
57 }
58 \keyword{models}