]> git.donarmstrong.com Git - kiibohd-controller.git/blobdiff - Scan/MD2/scan_loop.c
Initial I2C work for ISSI IS31FL3731
[kiibohd-controller.git] / Scan / MD2 / scan_loop.c
diff --git a/Scan/MD2/scan_loop.c b/Scan/MD2/scan_loop.c
new file mode 100644 (file)
index 0000000..edeff30
--- /dev/null
@@ -0,0 +1,659 @@
+/* Copyright (C) 2014 by Jacob Alexander
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+// ----- Includes -----
+
+// Compiler Includes
+#include <Lib/ScanLib.h>
+
+// Project Includes
+#include <cli.h>
+#include <led.h>
+#include <print.h>
+#include <matrix_scan.h>
+
+// Local Includes
+#include "scan_loop.h"
+#include "macro.h"
+
+
+
+
+typedef struct I2C_Buffer {
+       volatile uint16_t  head;
+       volatile uint16_t  tail;
+       volatile uint8_t   sequencePos;
+       volatile uint16_t  size;
+       volatile uint8_t  *buffer;
+} I2C_Buffer;
+
+// ----- Function Declarations -----
+
+// CLI Functions
+void cliFunc_echo( char* args );
+void cliFunc_i2cRecv( char* args );
+void cliFunc_i2cSend( char* args );
+void cliFunc_ledZero( char* args );
+
+uint8_t I2C_TxBufferPop();
+void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer );
+uint16_t I2C_BufferLen( I2C_Buffer *buffer );
+
+
+
+// ----- Variables -----
+
+// Scan Module command dictionary
+CLIDict_Entry( echo,        "Example command, echos the arguments." );
+CLIDict_Entry( i2cRecv,     "Send I2C sequence of bytes and expect a reply of 1 byte." );
+CLIDict_Entry( i2cSend,     "Send I2C sequence of bytes." );
+CLIDict_Entry( ledZero,     "Zero out LED register pages (non-configuration)." );
+
+CLIDict_Def( scanCLIDict, "Scan Module Commands" ) = {
+       CLIDict_Item( echo ),
+       CLIDict_Item( i2cRecv ),
+       CLIDict_Item( i2cSend ),
+       CLIDict_Item( ledZero ),
+       { 0, 0, 0 } // Null entry for dictionary end
+};
+
+// Number of scans since the last USB send
+uint16_t Scan_scanCount = 0;
+
+
+
+// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented
+// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent
+#define I2C_TxBufferLength 300
+#define I2C_RxBufferLength 8
+volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ];
+volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ];
+
+volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, I2C_TxBufferPtr };
+volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, I2C_RxBufferPtr };
+
+void I2C_setup()
+{
+       // Enable I2C internal clock
+       SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0
+
+       // External pull-up resistor
+       PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
+       PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
+
+       // SCL Frequency Divider
+       // 400kHz -> 120 (0x85) @ 48 MHz F_BUS
+       I2C0_F = 0x85;
+       I2C0_FLT = 4;
+       I2C0_C1 = I2C_C1_IICEN;
+       I2C0_C2 = I2C_C2_HDRS; // High drive select
+
+       // Enable I2C Interrupt
+       NVIC_ENABLE_IRQ( IRQ_I2C0 );
+}
+
+
+
+// ----- Interrupt Functions -----
+
+void i2c0_isr()
+{
+       cli(); // Disable Interrupts
+
+       uint8_t status = I2C0_S; // Read I2C Bus status
+
+       // Master Mode Transmit
+       if ( I2C0_C1 & I2C_C1_TX )
+       {
+               // Check current use of the I2C bus
+               // Currently sending data
+               if ( I2C_TxBuffer.sequencePos > 0 )
+               {
+                       // Make sure slave sent an ACK
+                       if ( status & I2C_S_RXAK )
+                       {
+                               // NACK Detected, disable interrupt
+                               erro_print("I2C NAK detected...");
+                               I2C0_C1 = I2C_C1_IICEN;
+
+                               // Abort Tx Buffer
+                               I2C_TxBuffer.head = 0;
+                               I2C_TxBuffer.tail = 0;
+                               I2C_TxBuffer.sequencePos = 0;
+                       }
+                       else
+                       {
+                               // Transmit byte
+                               I2C0_D = I2C_TxBufferPop();
+                       }
+               }
+               // Receiving data
+               else if ( I2C_RxBuffer.sequencePos > 0 )
+               {
+                       // Master Receive, addr sent
+                       if ( status & I2C_S_ARBL )
+                       {
+                               // Arbitration Lost
+                               erro_print("Arbitration lost...");
+                               // TODO Abort Rx
+
+                               I2C0_C1 = I2C_C1_IICEN;
+                               I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt
+                       }
+                       if ( status & I2C_S_RXAK )
+                       {
+                               // Slave Address NACK Detected, disable interrupt
+                               erro_print("Slave Address I2C NAK detected...");
+                               // TODO Abort Rx
+
+                               I2C0_C1 = I2C_C1_IICEN;
+                       }
+                       else
+                       {
+                               I2C0_C1 = I2C_RxBuffer.sequencePos == 1
+                                       ? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read
+                                       : I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read
+                       }
+               }
+               else
+               {
+                       dbug_msg("STOP - ");
+                       printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) );
+                       print(NL);
+
+                       // If there is another sequence, start sending
+                       if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size )
+                       {
+                               // Check to see if we already have control of the bus
+                               if ( I2C0_C1 & I2C_C1_MST )
+                               {
+                                       // Already the master (ah yeah), send a repeated start
+                                       I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
+                               }
+                               // Otherwise, seize control
+                               else
+                               {
+                                       // Wait...till the master dies
+                                       while ( I2C0_S & I2C_S_BUSY );
+
+                                       // Now we're the master (ah yisss), get ready to send stuffs
+                                       I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
+                               }
+
+                               // Enable I2C interrupt
+                               I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
+
+                               // Transmit byte
+                               I2C0_D = I2C_TxBufferPop();
+                       }
+                       // Issue STOP
+                       else
+                       {
+                               delayMicroseconds( 1 ); // Should be enough time before issuing STOP
+                               I2C0_C1 = I2C_C1_IICEN; // Send STOP
+                       }
+               }
+       }
+       // Master Mode Receive
+       else
+       {
+               // XXX Do we need to handle 2nd last byte?
+               //I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv
+
+               // Last byte
+               if ( I2C_TxBuffer.sequencePos <= 1 )
+               {
+                       // Change to Tx mode
+                       I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
+
+                       // Grab last byte
+                       I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
+
+                       delayMicroseconds( 1 ); // Should be enough time before issuing the stop
+                       I2C0_C1 = I2C_C1_IICEN; // Send STOP
+               }
+               else
+               {
+                       // Retrieve data
+                       I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
+               }
+       }
+
+       I2C0_S = I2C_S_IICIF; // Clear interrupt
+
+       sei(); // Re-enable Interrupts
+}
+
+
+
+// ----- Functions -----
+
+// Setup
+inline void LED_setup()
+{
+       I2C_setup();
+}
+
+
+inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer )
+{
+       uint8_t reTurn = 0;
+
+       // If sendLen is greater than buffer fail right away
+       if ( sendLen > buffer->size )
+               return 0;
+
+       // Calculate new tail to determine if buffer has enough space
+       // The first element specifies the expected number of bytes from the slave (+1)
+       // The second element in the new buffer is the length of the buffer sequence (+1)
+       uint16_t newTail = buffer->tail + sendLen + 2;
+       if ( newTail >= buffer->size )
+               newTail -= buffer->size;
+
+       if ( I2C_BufferLen( buffer ) < sendLen + 2 )
+               return 0;
+
+/*
+       print("|");
+       printHex( sendLen + 2 );
+       print("|");
+       printHex( *tail );
+       print("@");
+       printHex( newTail );
+       print("@");
+*/
+
+       // If buffer is clean, return 1, otherwise 2
+       reTurn = buffer->head == buffer->tail ? 1 : 2;
+
+       // Add to buffer, already know there is enough room (simplifies adding logic)
+       uint8_t bufferHeaderPos = 0;
+       for ( uint16_t c = 0; c < sendLen; c++ )
+       {
+               // Add data to buffer
+               switch ( bufferHeaderPos )
+               {
+               case 0:
+                       buffer->buffer[ buffer->tail ] = recvLen;
+                       bufferHeaderPos++;
+                       c--;
+                       break;
+
+               case 1:
+                       buffer->buffer[ buffer->tail ] = sendLen;
+                       bufferHeaderPos++;
+                       c--;
+                       break;
+
+               default:
+                       buffer->buffer[ buffer->tail ] = data[ c ];
+                       break;
+               }
+
+               // Check for wrap-around case
+               if ( buffer->tail + 1 >= buffer->size )
+               {
+                       buffer->tail = 0;
+               }
+               // Normal case
+               else
+               {
+                       buffer->tail++;
+               }
+       }
+
+       return reTurn;
+}
+
+
+inline uint16_t I2C_BufferLen( I2C_Buffer *buffer )
+{
+       // Tail >= Head
+       if ( buffer->tail >= buffer->head )
+               return buffer->head + buffer->size - buffer->tail;
+
+       // Head > Tail
+       return buffer->head - buffer->tail;
+}
+
+
+void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer )
+{
+       // Make sure buffer isn't full
+       if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) )
+       {
+               warn_msg("I2C_BufferPush failed, buffer full: ");
+               printHex( byte );
+               print( NL );
+               return;
+       }
+
+       // Check for wrap-around case
+       if ( buffer->tail + 1 >= buffer->size )
+       {
+               buffer->tail = 0;
+       }
+       // Normal case
+       else
+       {
+               buffer->tail++;
+       }
+
+       // Add byte to buffer
+       buffer->buffer[ buffer->tail ] = byte;
+}
+
+
+uint8_t I2C_TxBufferPop()
+{
+       // Return 0xFF if no buffer left (do not rely on this)
+       if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size )
+       {
+               erro_msg("No buffer to pop an entry from... ");
+               printHex( I2C_TxBuffer.head );
+               print(" ");
+               printHex( I2C_TxBuffer.tail );
+               print(" ");
+               printHex( I2C_TxBuffer.sequencePos );
+               print(NL);
+               return 0xFF;
+       }
+
+       // If there is currently no sequence being sent, the first entry in the RingBuffer is the length
+       if ( I2C_TxBuffer.sequencePos == 0 )
+       {
+               I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop
+               I2C_RxBuffer.sequencePos = I2C_TxBufferPop();
+               I2C_TxBuffer.sequencePos = I2C_TxBufferPop();
+       }
+
+       uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ];
+
+       // Prune head
+       I2C_TxBuffer.head++;
+
+       // Wrap-around case
+       if ( I2C_TxBuffer.head >= I2C_TxBuffer.size )
+               I2C_TxBuffer.head = 0;
+
+       // Decrement buffer sequence (until next stop will be sent)
+       I2C_TxBuffer.sequencePos--;
+
+       dbug_msg("Popping: ");
+       printHex( data );
+       print(" ");
+       printHex( I2C_TxBuffer.head );
+       print(" ");
+       printHex( I2C_TxBuffer.tail );
+       print(" ");
+       printHex( I2C_TxBuffer.sequencePos );
+       print(NL);
+       return data;
+}
+
+
+uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen )
+{
+       // Check head and tail pointers
+       // If full, return 0
+       // If empty, start up I2C Master Tx
+       // If buffer is non-empty and non-full, just append to the buffer
+       switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) )
+       {
+       // Not enough buffer space...
+       case 0:
+               /*
+               erro_msg("Not enough Tx buffer space... ");
+               printHex( I2C_TxBuffer.head );
+               print(":");
+               printHex( I2C_TxBuffer.tail );
+               print("+");
+               printHex( sendLen );
+               print("|");
+               printHex( I2C_TxBuffer.size );
+               print( NL );
+               */
+               return 0;
+
+       // Empty buffer, initialize I2C
+       case 1:
+               // Clear status flags
+               I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
+
+               // Check to see if we already have control of the bus
+               if ( I2C0_C1 & I2C_C1_MST )
+               {
+                       // Already the master (ah yeah), send a repeated start
+                       I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
+               }
+               // Otherwise, seize control
+               else
+               {
+                       // Wait...till the master dies
+                       while ( I2C0_S & I2C_S_BUSY );
+
+                       // Now we're the master (ah yisss), get ready to send stuffs
+                       I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
+               }
+
+               // Enable I2C interrupt
+               I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
+
+               // Depending on what type of transfer, the first byte is configured for R or W
+               I2C0_D = I2C_TxBufferPop();
+               return 1;
+       }
+
+       // Dirty buffer, I2C already initialized
+       return 2;
+}
+
+
+void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t pageLen )
+{
+       // Page Setup
+       uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 };
+
+       // Max length of a page + chip id + reg start
+       uint8_t fullPage[ 0xB3 + 2 ] = { 0 };
+       fullPage[0] = 0xE8; // Set chip id, starting reg is already 0x00
+
+       // Iterate through given pages, zero'ing out the given register regions
+       for ( uint8_t page = startPage; page < startPage + numPages; page++ )
+       {
+               // Set page
+               pageSetup[2] = page;
+
+               // Setup page
+               while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
+                       delay(1);
+
+               // Zero out page
+               while ( I2C_Send( fullPage, pageLen + 2, 0 ) == 0 )
+                       delay(1);
+       }
+}
+
+
+
+// LED State processing loop
+inline uint8_t LED_loop()
+{
+
+       // I2C Busy
+       // S & I2C_S_BUSY
+       //I2C_S_BUSY
+}
+
+
+
+// Setup
+inline void Scan_setup()
+{
+       // Register Scan CLI dictionary
+       CLI_registerDictionary( scanCLIDict, scanCLIDictName );
+
+       // Setup GPIO pins for matrix scanning
+       //Matrix_setup();
+
+       // Reset scan count
+       Scan_scanCount = 0;
+
+       // Setup LED Drivers
+       LED_setup();
+}
+
+
+// Main Detection Loop
+inline uint8_t Scan_loop()
+{
+       //Matrix_scan( Scan_scanCount++ );
+       //LED_scan();
+
+       return 0;
+}
+
+
+// Signal from Macro Module that all keys have been processed (that it knows about)
+inline void Scan_finishedWithMacro( uint8_t sentKeys )
+{
+}
+
+
+// Signal from Output Module that all keys have been processed (that it knows about)
+inline void Scan_finishedWithOutput( uint8_t sentKeys )
+{
+       // Reset scan loop indicator (resets each key debounce state)
+       // TODO should this occur after USB send or Macro processing?
+       Scan_scanCount = 0;
+}
+
+
+// ----- CLI Command Functions -----
+
+// XXX Just an example command showing how to parse arguments (more complex than generally needed)
+void cliFunc_echo( char* args )
+{
+       char* curArgs;
+       char* arg1Ptr;
+       char* arg2Ptr = args;
+
+       // Parse args until a \0 is found
+       while ( 1 )
+       {
+               print( NL ); // No \r\n by default after the command is entered
+
+               curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
+               CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
+
+               // Stop processing args if no more are found
+               if ( *arg1Ptr == '\0' )
+                       break;
+
+               // Print out the arg
+               dPrint( arg1Ptr );
+       }
+}
+
+void cliFunc_i2cSend( char* args )
+{
+       char* curArgs;
+       char* arg1Ptr;
+       char* arg2Ptr = args;
+
+       // Buffer used after interpretting the args, will be sent to I2C functions
+       // NOTE: Limited to 8 bytes currently (can be increased if necessary
+       #define i2cSend_BuffLenMax 8
+       uint8_t buffer[ i2cSend_BuffLenMax ];
+       uint8_t bufferLen = 0;
+
+       // No \r\n by default after the command is entered
+       print( NL );
+       info_msg("Sending: ");
+
+       // Parse args until a \0 is found
+       while ( bufferLen < i2cSend_BuffLenMax )
+       {
+               curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
+               CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
+
+               // Stop processing args if no more are found
+               if ( *arg1Ptr == '\0' )
+                       break;
+
+               // Interpret the argument
+               buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
+
+               // Print out the arg
+               dPrint( arg1Ptr );
+               print(" ");
+       }
+
+       print( NL );
+
+       I2C_Send( buffer, bufferLen, 0 );
+}
+
+void cliFunc_i2cRecv( char* args )
+{
+       char* curArgs;
+       char* arg1Ptr;
+       char* arg2Ptr = args;
+
+       // Buffer used after interpretting the args, will be sent to I2C functions
+       // NOTE: Limited to 8 bytes currently (can be increased if necessary
+       #define i2cSend_BuffLenMax 8
+       uint8_t buffer[ i2cSend_BuffLenMax ];
+       uint8_t bufferLen = 0;
+
+       // No \r\n by default after the command is entered
+       print( NL );
+       info_msg("Sending: ");
+
+       // Parse args until a \0 is found
+       while ( bufferLen < i2cSend_BuffLenMax )
+       {
+               curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
+               CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
+
+               // Stop processing args if no more are found
+               if ( *arg1Ptr == '\0' )
+                       break;
+
+               // Interpret the argument
+               buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
+
+               // Print out the arg
+               dPrint( arg1Ptr );
+               print(" ");
+       }
+
+       print( NL );
+
+       I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip
+}
+
+void cliFunc_ledZero( char* args )
+{
+       print( NL ); // No \r\n by default after the command is entered
+       LED_zeroPages( 0x00, 8, 0xB3 );
+}
+