]> git.donarmstrong.com Git - qmk_firmware.git/blob - readme.md
Updated readme to have better backlight breathing info.
[qmk_firmware.git] / readme.md
1 # Quantum Mechanical Keyboard Firmware
2
3 [![Build Status](https://travis-ci.org/jackhumbert/qmk_firmware.svg?branch=master)](https://travis-ci.org/jackhumbert/qmk_firmware)
4
5 This is a keyboard firmware based on the [tmk_keyboard firmware](http://github.com/tmk/tmk_keyboard) with some useful features for Atmel AVR controllers, and more specifically, the [OLKB product line](http://olkb.com), the [ErgoDox EZ](http://www.ergodox-ez.com) keyboard, and the [Clueboard product line](http://clueboard.co/).
6
7 ## Official website
8
9 For an easy-to-read version of this document and the repository, check out [http://qmk.fm](http://qmk.fm). Nicely formatted keyboard and keymap listings are also available there, along with the ability to download .hex files instead of having to setup a build environment and compile them.
10
11 ## Included Keyboards
12
13 * [Planck](/keyboards/planck/)
14 * [Preonic](/keyboards/preonic/)
15 * [Atomic](/keyboards/atomic/)
16 * [ErgoDox EZ](/keyboards/ergodox/)
17 * [Clueboard](/keyboards/clueboard/)
18 * [Cluepad](/keyboards/cluepad/)
19
20 The project also includes community support for [lots of other keyboards](/keyboards/).
21
22 ## Maintainers
23
24 QMK is developed and maintained by Jack Humbert of OLKB with contributions from the community, and of course, [Hasu](https://github.com/tmk). This repo used to be a fork of [TMK](https://github.com/tmk/tmk_keyboard), and we are incredibly grateful for his founding contributions to the firmware. We've had to break the fork due to purely technical reasons - it simply became too different over time, and we've had to start refactoring some of the basic bits and pieces. We are huge fans of TMK and Hasu :)
25
26 This documentation is edited and maintained by Erez Zukerman of ErgoDox EZ. If you spot any typos or inaccuracies, please [open an issue](https://github.com/jackhumbert/qmk_firmware/issues/new).
27
28 The OLKB product firmwares are maintained by [Jack Humbert](https://github.com/jackhumbert), the Ergodox EZ by [Erez Zukerman](https://github.com/ezuk), and the Clueboard by [Zach White](https://github.com/skullydazed).
29
30 ## Documentation roadmap
31
32 This is not a tiny project. While this is the main readme, there are many other files you might want to consult. Here are some points of interest:
33
34 * The readme for your own keyboard: This is found under `keyboards/<your keyboards's name>/`. So for the ErgoDox EZ, it's [here](keyboards/ergodox/ez/); for the Planck, it's [here](keyboards/planck/) and so on.
35 * The list of possible keycodes you can use in your keymap is actually spread out in a few different places:
36   * [doc/keycode.txt](doc/keycode.txt) - an explanation of those same keycodes.
37   * [quantum/keymap.h](quantum/keymap.h) - this is where the QMK-specific aliases are all set up. Things like the Hyper and Meh key, the Leader key, and all of the other QMK innovations. These are also explained and documented below, but `keymap.h` is where they're actually defined.
38 * The [TMK documentation](doc/TMK_README.md). QMK is based on TMK, and this explains how it works internally.
39
40 # Getting started
41
42 Before you are able to compile, you'll need to install an environment for AVR development. You'll find the instructions for any OS below. If you find another/better way to set things up from scratch, please consider [making a pull request](https://github.com/jackhumbert/qmk_firmware/pulls) with your changes!
43
44 ## Build Environment Setup
45
46 ### Windows 10
47
48 It's still recommended to use the method for Vista and later below. The reason for this is that the Windows 10 Subsystem for Linux lacks [USB support](https://wpdev.uservoice.com/forums/266908-command-prompt-console-bash-on-ubuntu-on-windo/suggestions/13355724-unable-to-access-usb-devices-from-bash), so it's not possible to flash the firmware to the keyboard. Please add your vote to the link!
49
50 That said, it's still possible to use it for compilation. And recommended, if you need to compile much, since it's much faster than at least Cygwin (which is also supported, but currently lacking documentation). I haven't tried the method below, so I'm unable to tell.
51
52 Here are the steps
53
54 1. Install the Windows 10 subsystem for Linux, following [these instructions](http://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/).
55 2. If you have previously cloned the repository using the normal Git bash, you will need to clean up the line endings. If you have cloned it after 20th of August 2016, you are likely fine. To clean up the line endings do the following
56    1. Make sure that you have no changes you haven't committed by running `git status`, if you do commit them first
57    2. From within the Git bash run �git rm --cached -r .`
58    3. Followed by `git reset --hard`
59 3. Start the "Bash On Ubuntu On Windows" from the start menu
60 4. With the bash open, navigate to your git checkout. The harddisk can be accessed from `/mnt` for example `/mnt/c` for the `c:\` drive.
61 5. Run `sudo util/install_dependencies.sh`.
62 6. After a while the installation will finish, and you are good to go
63
64 **Note** From time to time, the dependencies might change, so just run `install_dependencies.sh` again if things are not working.
65
66 **Warning:** If you edit Makefiles or shell scripts, make sure you are using an editor that saves the files with Unix line endings. Otherwise the compilation might not work.
67
68
69 ### Windows (Vista and later)
70 1. If you have ever installed WinAVR, uninstall it.
71 2. Install [MHV AVR Tools](https://infernoembedded.com/sites/default/files/project/MHV_AVR_Tools_20131101.exe). Disable smatch, but **be sure to leave the option to add the tools to the PATH checked**.
72 3. Install [MinGW](https://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download). During installation, uncheck the option to install a graphical user interface. **DO NOT change the default installation folder.** The scripts depend on the default location.
73 4. Clone this repository. [This link will download it as a zip file, which you'll need to extract.](https://github.com/jackhumbert/qmk_firmware/archive/master.zip) Open the extracted folder in Windows Explorer.
74 5. Double-click on the 1-setup-path-win batch script to run it. You'll need to accept a User Account Control prompt. Press the spacebar to dismiss the success message in the command prompt that pops up.
75 6. Right-click on the 2-setup-environment-win batch script, select "Run as administrator", and accept the User Account Control prompt. This part may take a couple of minutes, and you'll need to approve a driver installation, but once it finishes, your environment is complete!
76 7. Future build commands should be run from the MHV AVR Shell, which sets up an environment compatible with colorful build output. The standard Command Prompt will also work, but add `COLOR=false` to the end of all make commands when using it.
77
78 ### Mac
79 If you're using [homebrew,](http://brew.sh/) you can use the following commands:
80
81     brew tap osx-cross/avr
82     brew install avr-libc
83     brew install dfu-programmer
84
85 This is the recommended method. If you don't have homebrew, [install it!](http://brew.sh/) It's very much worth it for anyone who works in the command line.
86
87 You can also try these instructions:
88
89 1. Install Xcode from the App Store.
90 2. Install the Command Line Tools from `Xcode->Preferences->Downloads`.
91 3. Install [DFU-Programmer][dfu-prog].
92
93 ### Linux
94
95 To ensure you are always up to date, you can just run `sudo utils/install_dependencies.sh`. That should always install all the dependencies needed.
96
97 You can also install things manually, but this documentation might not be always up to date with all requirements.
98
99 The current requirements are the following, but not all might be needed depending on what you do. Also note that some systems might not have all the dependencies available as packages, or they might be named differently.
100
101 ```
102 build-essential
103 gcc
104 unzip
105 wget
106 zip
107 gcc-avr
108 binutils-avr
109 avr-libc
110 dfu-programmer
111 dfu-util
112 gcc-arm-none-eabi
113 binutils-arm-none-eabi
114 libnewlib-arm-none-eabi
115 git
116 ```
117
118 Install the dependencies with your favorite package manager.
119
120 Debian/Ubuntu example:
121
122     sudo apt-get update
123     sudo apt-get install gcc unzip wget zip gcc-avr binutils-avr avr-libc dfu-programmer dfu-util gcc-arm-none-eabi binutils-arm-none-eabi libnewlib-arm-none-eabi
124
125 ### Docker
126
127 If this is a bit complex for you, Docker might be the turn-key solution you need. After installing [Docker](https://www.docker.com/products/docker), run the following command at the root of the QMK folder to build a keyboard/keymap:
128
129 ```bash
130 # You'll run this every time you want to build a keymap
131 # modify the keymap and keyboard assigment to compile what you want
132 # defaults are ergodox/default
133
134 docker run -e keymap=gwen -e keyboard=ergodox --rm -v $('pwd'):/qmk:rw edasque/qmk_firmware
135
136 ```
137
138 This will compile the targetted keyboard/keymap and leave it in your QMK directory for you to flash.
139
140 ### Vagrant
141 If you have any problems building the firmware, you can try using a tool called Vagrant. It will set up a virtual computer with a known configuration that's ready-to-go for firmware building. OLKB does NOT host the files for this virtual computer. Details on how to set up Vagrant are in the [VAGRANT_GUIDE file](doc/VAGRANT_GUIDE.md).
142
143 ## Verify Your Installation
144 1. If you haven't already, obtain this repository ([https://github.com/jackhumbert/qmk_firmware](https://github.com/jackhumbert/qmk_firmware)). You can either download it as a zip file and extract it, or clone it using the command line tool git or the Github Desktop application.
145 2. Open up a terminal or command prompt and navigate to the `qmk_firmware` folder using the `cd` command. The command prompt will typically open to your home directory. If, for example, you cloned the repository to your Documents folder, then you would type `cd Documents/qmk_firmware`. If you extracted the file from a zip, then it may be named `qmk_firmware-master` instead.
146 3. To confirm that you're in the correct location, you can display the contents of your current folder using the `dir` command on Windows, or the `ls` command on Linux or Mac. You should see several files, including `readme.md` and a `quantum` folder. From here, you need to navigate to the appropriate folder under `keyboards/`. For example, if you're building for a Planck, run `cd keyboards/planck`.
147 4. Once you're in the correct keyboard-specific folder, run the `make` command. This should output a lot of information about the build process. More information about the `make` command can be found below.
148
149 # Customizing your keymap
150
151 In every keymap folder, the following files are recommended:
152
153 * `config.h` - the options to configure your keymap
154 * `keymap.c` - all of your keymap code, required
155 * `Makefile` - the features of QMK that are enabled, required to run `make` in your keymap folder
156 * `readme.md` - a description of your keymap, how others might use it, and explanations of features
157
158 ## The `make` command
159
160 The `make` command is how you compile the firmware into a .hex file, which can be loaded by a dfu programmer (like dfu-progammer via `make dfu`) or the [Teensy loader](https://www.pjrc.com/teensy/loader.html) (only used with Teensys). You can run `make` from the root (`/`), your keyboard folder (`/keyboards/<keyboard>/`), or your keymap folder (`/keyboards/<keyboard>/keymaps/<keymap>/`) if you have a `Makefile` there (see the example [here](/doc/keymap_makefile_example.mk)).
161
162 By default, this will generate a `<keyboard>_<keymap>.hex` file in whichever folder you run `make` from. These files are ignored by git, so don't worry about deleting them when committing/creating pull requests.
163
164 Below are some definitions that will be useful:
165
166 * The "root" (`/`) folder is the qmk_firmware folder, in which are `doc`, `keyboard`, `quantum`, etc.
167 * The "keyboard" folder is any keyboard project's folder, like `/keyboards/planck`.
168 * The "keymap" folder is any keymap's folder, like `/keyboards/planck/keymaps/default`.
169
170 Below is a list of the useful `make` commands in QMK:
171
172 * `make` - builds your keyboard and keymap depending on which folder you're in. This defaults to the "default" layout (unless in a keymap folder), and Planck keyboard in the root folder
173   * `make keyboard=<keyboard>` - specifies the keyboard (only to be used in root)
174   * `make keymap=<keymap>` - specifies the keymap (only to be used in root and keyboard folder - not needed when in keymap folder)
175 * `make clean` - cleans the `.build` folder, ensuring that everything is re-built
176 * `make dfu` - (requires dfu-programmer) builds and flashes the keymap to your keyboard once placed in reset/dfu mode (button or press `KC_RESET`). This does not work for Teensy-based keyboards like the ErgoDox EZ.
177   * `keyboard=` and `keymap=` are compatible with this
178 * `make all-keyboards` - builds all keymaps for all keyboards and outputs status of each (use in root)
179 * `make all-keyboards-default` - builds all default keymaps for all keyboards and outputs status of each (use in root)
180 * `make all-keymaps [keyboard=<keyboard>]` - builds all of the keymaps for whatever keyboard folder you're in, or specified by `<keyboard>`
181 * `make all-keyboards-*`, `make all-keyboards-default-*` and `make all-keymaps-* [keyboard=<keyboard>]` - like the normal "make-all-*" commands, but the last string aftter the `-` (for example clean) is passed to the keyboard make command.
182 Other, less useful functionality:
183
184 * `make COLOR=false` - turns off color output
185 * `make SILENT=true` - turns off output besides errors/warnings
186 * `make VERBOSE=true` - outputs all of the avr-gcc stuff (not interesting)
187
188 ## The `Makefile`
189
190 There are 3 different `make` and `Makefile` locations:
191
192 * root (`/`)
193 * keyboard (`/keyboards/<keyboard>/`)
194 * keymap (`/keyboards/<keyboard>/keymaps/<keymap>/`)
195
196 The root contains the code used to automatically figure out which keymap or keymaps to compile based on your current directory and commandline arguments. It's considered stable, and shouldn't be modified. The keyboard one will contain the MCU set-up and default settings for your keyboard, and shouldn't be modified unless you are the producer of that keyboard. The keymap Makefile can be modified by users, and is optional. It is included automatically if it exists. You can see an example [here](/doc/keymap_makefile_example.mk) - the last few lines are the most important. The settings you set here will override any defaults set in the keyboard Makefile. **It is required if you want to run `make` in the keymap folder.**
197
198 ### Makefile options
199
200 Set the variables to `no` to disable them, and `yes` to enable them.
201
202 `BOOTMAGIC_ENABLE`
203
204 This allows you to hold a key and the salt key (space by default) and have access to a various EEPROM settings that persist over power loss. It's advised you keep this disabled, as the settings are often changed by accident, and produce confusing results that makes it difficult to debug. It's one of the more common problems encountered in help sessions.
205
206 `MOUSEKEY_ENABLE`
207
208 This gives you control over cursor movements and clicks via keycodes/custom functions.
209
210 `EXTRAKEY_ENABLE`
211
212 This allows you to use the system and audio control key codes.
213
214 `CONSOLE_ENABLE`
215
216 This allows you to print messages that can be read using [`hid_listen`](https://www.pjrc.com/teensy/hid_listen.html). Add this to your `Makefile`, and set it to `yes`. Then put `println`, `printf`, etc. in your keymap or anywhere in the `qmk` source. Finally, open `hid_listen` and enjoy looking at your printed messages.
217
218 `COMMAND_ENABLE`
219
220 TODO
221
222 `SLEEP_LED_ENABLE`
223
224 Enables your LED to breath while your computer is sleeping. Timer1 is being used here. This feature is largely unused and untested, and needs updating/abstracting.
225
226 `NKRO_ENABLE`
227
228 This allows for n-key rollover (default is 6) to be enabled. It is off by default, but can be forced by adding `#define FORCE_NKRO` to your config.h.
229
230 `BACKLIGHT_ENABLE`
231
232 This enables your backlight on Timer1 and ports B5, B6, or B7 (for now). You can specify your port by putting this in your `config.h`:
233
234     #define BACKLIGHT_PIN B7
235
236 `MIDI_ENABLE`
237
238 This enables MIDI sending and receiving with your keyboard. To enter MIDI send mode, you can use the keycode `MI_ON`, and `MI_OFF` to turn it off. This is a largely untested feature, but more information can be found in the `quantum/quantum.c` file.
239
240 `UNICODE_ENABLE`
241
242 This allows you to send unicode symbols via `UC(<unicode>)` in your keymap. Only codes up to 0x7FFF are currently supported.
243
244 `BLUETOOTH_ENABLE`
245
246 This allows you to interface with a Bluefruit EZ-key to send keycodes wirelessly. It uses the D2 and D3 pins.
247
248 `AUDIO_ENABLE`
249
250 This allows you output audio on the C6 pin (needs abstracting). See the [audio section](#driving-a-speaker---audio-support) for more information.
251
252 ### Customizing Makefile options on a per-keymap basis
253
254 If your keymap directory has a file called `Makefile` (note the filename), any Makefile options you set in that file will take precedence over other Makefile options for your particular keyboard.
255
256 So let's say your keyboard's makefile has `BACKLIGHT_ENABLE = yes` (or maybe doesn't even list the `BACKLIGHT_ENABLE` option, which would cause it to be off). You want your particular keymap to not have the debug console, so you make a file called `Makefile` and specify `BACKLIGHT_ENABLE = no`.
257
258 You can use the `doc/keymap_makefile_example.md` as a template/starting point.
259
260 ## The `config.h` file
261
262 There are 2 `config.h` locations:
263
264 * keyboard (`/keyboards/<keyboard>/`)
265 * keymap (`/keyboards/<keyboard>/keymaps/<keymap>/`)
266
267 The keyboard `config.h` is included only if the keymap one doesn't exist. The format to use for your custom one [is here](/doc/keymap_config_h_example.h). If you want to override a setting from the parent `config.h` file, you need to do this:
268
269 ```c
270 #undef MY_SETTING
271 #define MY_SETTING 4
272 ```
273
274 For a value of `4` for this imaginary setting. So we `undef` it first, then `define` it.
275
276 You can then override any settings, rather than having to copy and paste the whole thing.
277
278 # Going beyond the keycodes
279
280 Aside from the [basic keycodes](doc/keycode.txt), your keymap can include shortcuts to common operations.
281
282 ## Quick aliases to common actions
283
284 Your keymap can include shortcuts to common operations (called "function actions" in tmk).
285
286 These functions work the same way that their `ACTION_*` functions do - they're just quick aliases. To dig into all of the tmk `ACTION_*` functions, please see the [TMK documentation](https://github.com/jackhumbert/qmk_firmware/blob/master/doc/keymap.md#2-action).
287
288 Instead of using `FNx` when defining `ACTION_*` functions, you can use `F(x)` - the benefit here is being able to use more than 32 function actions (up to 4096), if you happen to need them.
289
290 ### Switching and toggling layers
291
292 `MO(layer)` - momentary switch to *layer*. As soon as you let go of the key, the layer is deactivated and you pop back out to the previous layer. When you apply this to a key, that same key must be set as `KC_TRNS` on the destination layer. Otherwise, you won't make it back to the original layer when you release the key (and you'll get a keycode sent). You can only switch to layers *above* your current layer. If you're on layer 0 and you use `MO(1)`, that will switch to layer 1 just fine. But if you include `MO(3)` on layer 5, that won't do anything for you -- because layer 3 is lower than layer 5 on the stack.
293
294 `OSL(layer)` - momentary switch to *layer*, as a one-shot operation. So if you have a key that's defined as `OSL(1)`, and you tap that key, then only the very next keystroke would come from layer 1. You would drop back to layer zero immediately after that one keystroke. That's handy if you have a layer full of custom shortcuts -- for example, a dedicated key for closing a window. So you tap your one-shot layer mod, then tap that magic 'close window' key, and keep typing like a boss. Layer 1 would remain active as long as you hold that key down, too (so you can use it like a momentary toggle-layer key with extra powers).
295
296 `LT(layer, kc)` - momentary switch to *layer* when held, and *kc* when tapped. Like `MO()`, this only works upwards in the layer stack (`layer` must be higher than the current layer).
297
298 `TG(layer)` - toggles a layer on or off. As with `MO()`, you should set this key as `KC_TRNS` in the destination layer so that tapping it again actually toggles back to the original layer. Only works upwards in the layer stack.
299
300
301 ### Fun with modifier keys
302
303 * `LSFT(kc)` - applies left Shift to *kc* (keycode) - `S(kc)` is an alias
304 * `RSFT(kc)` - applies right Shift to *kc*
305 * `LCTL(kc)` - applies left Control to *kc*
306 * `RCTL(kc)` - applies right Control to *kc*
307 * `LALT(kc)` - applies left Alt to *kc*
308 * `RALT(kc)` - applies right Alt to *kc*
309 * `LGUI(kc)` - applies left GUI (command/win) to *kc*
310 * `RGUI(kc)` - applies right GUI (command/win) to *kc*
311 * `HYPR(kc)` - applies Hyper (all modifiers) to *kc*
312 * `MEH(kc)`  - applies Meh (all modifiers except Win/Cmd) to *kc*
313 * `LCAG(kc)` - applies CtrlAltGui to *kc*
314
315 You can also chain these, like this:
316
317     LALT(LCTL(KC_DEL)) -- this makes a key that sends Alt, Control, and Delete in a single keypress.
318
319 The following shortcuts automatically add `LSFT()` to keycodes to get commonly used symbols. Their long names are also available and documented in `/quantum/keymap_common.h`.
320
321     KC_TILD  ~
322     KC_EXLM  !
323     KC_AT    @
324     KC_HASH  #
325     KC_DLR   $
326     KC_PERC  %
327     KC_CIRC  ^
328     KC_AMPR  &
329     KC_ASTR  *
330     KC_LPRN  (
331     KC_RPRN  )
332     KC_UNDS  _
333     KC_PLUS  +
334     KC_DQUO  "
335     KC_LCBR  {
336     KC_RCBR  }
337     KC_LABK  <
338     KC_RABK  >
339     KC_PIPE  |
340     KC_COLN  :
341
342 `OSM(mod)` - this is a "one shot" modifier. So let's say you have your left Shift key defined as `OSM(MOD_LSFT)`. Tap it, let go, and Shift is "on" -- but only for the next character you'll type. So to write "The", you don't need to hold down Shift -- you tap it, tap t, and move on with life. And if you hold down the left Shift key, it just works as a left Shift key, as you would expect (so you could type THE). There's also a magical, secret way to "lock" a modifier by tapping it multiple times. If you want to learn more about that, open an issue. :)
343
344 `MT(mod, kc)` - is *mod* (modifier key - MOD_LCTL, MOD_LSFT) when held, and *kc* when tapped. In other words, you can have a key that sends Esc (or the letter O or whatever) when you tap it, but works as a Control key or a Shift key when you hold it down.
345
346 These are the values you can use for the `mod` in `MT()` and `OSM()` (right-hand modifiers are not available for `MT()`):
347
348   * MOD_LCTL
349   * MOD_LSFT
350   * MOD_LALT
351   * MOD_LGUI
352   * MOD_HYPR
353   * MOD_MEH
354
355 These can also be combined like `MOD_LCTL | MOD_LSFT` e.g. `MT(MOD_LCTL | MOD_LSFT, KC_ESC)` which would activate Control and Shift when held, and send Escape when tapped.
356
357 We've added shortcuts to make common modifier/tap (mod-tap) mappings more compact:
358
359   * `CTL_T(kc)` - is LCTL when held and *kc* when tapped
360   * `SFT_T(kc)` - is LSFT when held and *kc* when tapped
361   * `ALT_T(kc)` - is LALT when held and *kc* when tapped
362   * `GUI_T(kc)` - is LGUI when held and *kc* when tapped
363   * `ALL_T(kc)` - is Hyper (all mods) when held and *kc* when tapped. To read more about what you can do with a Hyper key, see [this blog post by Brett Terpstra](http://brettterpstra.com/2012/12/08/a-useful-caps-lock-key/)
364   * `LCAG_T(kc)` - is CtrlAltGui when held and *kc* when tapped
365   * `MEH_T(kc)` - is like Hyper, but not as cool -- does not include the Cmd/Win key, so just sends Alt+Ctrl+Shift.
366
367 ## Space Cadet Shift: The future, built in
368
369 Steve Losh [described](http://stevelosh.com/blog/2012/10/a-modern-space-cadet/) the Space Cadet Shift quite well. Essentially, you hit the left Shift on its own, and you get an opening parenthesis; hit the right Shift on its own, and you get the closing one. When hit with other keys, the Shift key keeps working as it always does. Yes, it's as cool as it sounds.
370
371 To use it, use `KC_LSPO` (Left Shift, Parens Open) for your left Shift on your keymap, and `KC_RSPC` (Right Shift, Parens Close) for your right Shift.
372
373 It's defaulted to work on US keyboards, but if your layout uses different keys for parenthesis, you can define those in your `config.h` like this:
374
375     #define LSPO_KEY KC_9
376     #define RSPC_KEY KC_0
377
378 You can also choose between different rollover behaviors of the shift keys by defining:
379
380     #define DISABLE_SPACE_CADET_ROLLOVER
381
382 in your `config.h`. Disabling rollover allows you to use the opposite shift key to cancel the space cadet state in the event of an erroneous press instead of emitting a pair of parentheses when the keys are released.
383
384 The only other thing you're going to want to do is create a `Makefile` in your keymap directory and set the following:
385
386 ```
387 COMMAND_ENABLE   = no  # Commands for debug and configuration
388 ```
389
390 This is just to keep the keyboard from going into command mode when you hold both Shift keys at the same time.
391
392 ## The Leader key: A new kind of modifier
393
394 If you've ever used Vim, you know what a Leader key is. If not, you're about to discover a wonderful concept. :) Instead of hitting Alt+Shift+W for example (holding down three keys at the same time), what if you could hit a _sequence_ of keys instead? So you'd hit our special modifier (the Leader key), followed by W and then C (just a rapid succession of keys), and something would happen.
395
396 That's what `KC_LEAD` does. Here's an example:
397
398 1. Pick a key on your keyboard you want to use as the Leader key. Assign it the keycode `KC_LEAD`. This key would be dedicated just for this -- it's a single action key, can't be used for anything else.
399 2. Include the line `#define LEADER_TIMEOUT 300` somewhere in your keymap.c file, probably near the top. The 300 there is 300ms -- that's how long you have for the sequence of keys following the leader. You can tweak this value for comfort, of course.
400 3. Within your `matrix_scan_user` function, do something like this:
401
402 ```
403 LEADER_EXTERNS();
404
405 void matrix_scan_user(void) {
406   LEADER_DICTIONARY() {
407     leading = false;
408     leader_end();
409
410     SEQ_ONE_KEY(KC_F) {
411       register_code(KC_S);
412       unregister_code(KC_S);
413     }
414     SEQ_TWO_KEYS(KC_A, KC_S) {
415       register_code(KC_H);
416       unregister_code(KC_H);
417     }
418     SEQ_THREE_KEYS(KC_A, KC_S, KC_D) {
419       register_code(KC_LGUI);
420       register_code(KC_S);
421       unregister_code(KC_S);
422       unregister_code(KC_LGUI);
423     }
424   }
425 }
426 ```
427
428 As you can see, you have three function. you can use - `SEQ_ONE_KEY` for single-key sequences (Leader followed by just one key), and `SEQ_TWO_KEYS` and `SEQ_THREE_KEYS` for longer sequences. Each of these accepts one or more keycodes as arguments. This is an important point: You can use keycodes from **any layer on your keyboard**. That layer would need to be active for the leader macro to fire, obviously.
429
430 ## Tap Dance: A single key can do 3, 5, or 100 different things
431
432 Hit the semicolon key once, send a semicolon. Hit it twice, rapidly -- send a colon. Hit it three times, and your keyboard's LEDs do a wild dance. That's just one example of what Tap Dance can do. It's one of the nicest community-contributed features in the firmware, conceived and created by [algernon](https://github.com/algernon) in [#451](https://github.com/jackhumbert/qmk_firmware/pull/451). Here's how algernon describes the feature:
433
434 With this feature one can specify keys that behave differently, based on the amount of times they have been tapped, and when interrupted, they get handled before the interrupter.
435
436 To make it clear how this is different from `ACTION_FUNCTION_TAP`, lets explore a certain setup! We want one key to send `Space` on single tap, but `Enter` on double-tap.
437
438 With `ACTION_FUNCTION_TAP`, it is quite a rain-dance to set this up, and has the problem that when the sequence is interrupted, the interrupting key will be send first. Thus, `SPC a` will result in `a SPC` being sent, if they are typed within `TAPPING_TERM`. With the tap dance feature, that'll come out as `SPC a`, correctly.
439
440 The implementation hooks into two parts of the system, to achieve this: into `process_record_quantum()`, and the matrix scan. We need the latter to be able to time out a tap sequence even when a key is not being pressed, so `SPC` alone will time out and register after `TAPPING_TERM` time.
441
442 But lets start with how to use it, first!
443
444 First, you will need `TAP_DANCE_ENABLE=yes` in your `Makefile`, because the feature is disabled by default. This adds a little less than 1k to the firmware size. Next, you will want to define some tap-dance keys, which is easiest to do with the `TD()` macro, that - similar to `F()`, takes a number, which will later be used as an index into the `tap_dance_actions` array.
445
446 This array specifies what actions shall be taken when a tap-dance key is in action. Currently, there are three possible options:
447
448 * `ACTION_TAP_DANCE_DOUBLE(kc1, kc2)`: Sends the `kc1` keycode when tapped once, `kc2` otherwise. When the key is held, the appropriate keycode is registered: `kc1` when pressed and held, `kc2` when tapped once, then pressed and held.
449 * `ACTION_TAP_DANCE_FN(fn)`: Calls the specified function - defined in the user keymap - with the final tap count of the tap dance action.
450 * `ACTION_TAP_DANCE_FN_ADVANCED(on_each_tap_fn, on_dance_finished_fn, on_reset_fn)`: Calls the first specified function - defined in the user keymap - on every tap, the second function on when the dance action finishes (like the previous option), and the last function when the tap dance action resets.
451
452 The first option is enough for a lot of cases, that just want dual roles. For example, `ACTION_TAP_DANCE(KC_SPC, KC_ENT)` will result in `Space` being sent on single-tap, `Enter` otherwise.
453
454 And that's the bulk of it!
455
456 And now, on to the explanation of how it works!
457
458 The main entry point is `process_tap_dance()`, called from `process_record_quantum()`, which is run for every keypress, and our handler gets to run early. This function checks whether the key pressed is a tap-dance key. If it is not, and a tap-dance was in action, we handle that first, and enqueue the newly pressed key. If it is a tap-dance key, then we check if it is the same as the already active one (if there's one active, that is). If it is not, we fire off the old one first, then register the new one. If it was the same, we increment the counter and the timer.
459
460 This means that you have `TAPPING_TERM` time to tap the key again, you do not have to input all the taps within that timeframe. This allows for longer tap counts, with minimal impact on responsiveness.
461
462 Our next stop is `matrix_scan_tap_dance()`. This handles the timeout of tap-dance keys.
463
464 For the sake of flexibility, tap-dance actions can be either a pair of keycodes, or a user function. The latter allows one to handle higher tap counts, or do extra things, like blink the LEDs, fiddle with the backlighting, and so on. This is accomplished by using an union, and some clever macros.
465
466 ### Examples
467
468 Here's a simple example for a single definition:
469
470 1. In your `makefile`, add `TAP_DANCE_ENABLE = yes`
471 2. In your `config.h` (which you can copy from `qmk_firmware/keyboards/planck/config.h` to your keymap directory), add `#define TAPPING_TERM 200`
472 3. In your `keymap.c` file, define the variables and definitions, then add to your keymap:
473
474 ```c
475 //Tap Dance Declarations
476 enum {
477   TD_ESC_CAPS = 0
478 };
479
480 //Tap Dance Definitions
481 qk_tap_dance_action_t tap_dance_actions[] = {
482   //Tap once for Esc, twice for Caps Lock
483   [TD_ESC_CAPS]  = ACTION_TAP_DANCE_DOUBLE(KC_ESC, KC_CAPS)
484 // Other declarations would go here, separated by commas, if you have them
485 };
486
487 //In Layer declaration, add tap dance item in place of a key code
488 TD(TD_ESC_CAPS)
489 ```
490
491 Here's a more complex example involving custom actions:
492
493 ```c
494 enum {
495  CT_SE = 0,
496  CT_CLN,
497  CT_EGG,
498  CT_FLSH,
499 };
500
501 /* Have the above three on the keymap, TD(CT_SE), etc... */
502
503 void dance_cln_finished (qk_tap_dance_state_t *state, void *user_data) {
504   if (state->count == 1) {
505     register_code (KC_RSFT);
506     register_code (KC_SCLN);
507   } else {
508     register_code (KC_SCLN);
509   }
510 }
511
512 void dance_cln_reset (qk_tap_dance_state_t *state, void *user_data) {
513   if (state->count == 1) {
514     unregister_code (KC_RSFT);
515     unregister_code (KC_SCLN);
516   } else {
517     unregister_code (KC_SCLN);
518   }
519 }
520
521 void dance_egg (qk_tap_dance_state_t *state, void *user_data) {
522   if (state->count >= 100) {
523     SEND_STRING ("Safety dance!");
524     reset_tap_dance (state);
525   }
526 }
527
528 // on each tap, light up one led, from right to left
529 // on the forth tap, turn them off from right to left
530 void dance_flsh_each(qk_tap_dance_state_t *state, void *user_data) {
531   switch (state->count) {
532   case 1:
533     ergodox_right_led_3_on();
534     break;
535   case 2:
536     ergodox_right_led_2_on();
537     break;
538   case 3:
539     ergodox_right_led_1_on();
540     break;
541   case 4:
542     ergodox_right_led_3_off();
543     _delay_ms(50);
544     ergodox_right_led_2_off();
545     _delay_ms(50);
546     ergodox_right_led_1_off();
547   }
548 }
549
550 // on the fourth tap, set the keyboard on flash state
551 void dance_flsh_finished(qk_tap_dance_state_t *state, void *user_data) {
552   if (state->count >= 4) {
553     reset_keyboard();
554     reset_tap_dance(state);
555   }
556 }
557
558 // if the flash state didnt happen, then turn off leds, left to right
559 void dance_flsh_reset(qk_tap_dance_state_t *state, void *user_data) {
560   ergodox_right_led_1_off();
561   _delay_ms(50);
562   ergodox_right_led_2_off();
563   _delay_ms(50);
564   ergodox_right_led_3_off();
565 }
566
567 qk_tap_dance_action_t tap_dance_actions[] = {
568   [CT_SE]  = ACTION_TAP_DANCE_DOUBLE (KC_SPC, KC_ENT)
569  ,[CT_CLN] = ACTION_TAP_DANCE_FN_ADVANCED (NULL, dance_cln_finished, dance_cln_reset)
570  ,[CT_EGG] = ACTION_TAP_DANCE_FN (dance_egg)
571  ,[CT_FLSH] = ACTION_TAP_DANCE_FN_ADVANCED (dance_flsh_each, dance_flsh_finished, dance_flsh_reset)
572 };
573 ```
574
575 ## Temporarily setting the default layer
576
577 `DF(layer)` - sets default layer to *layer*. The default layer is the one at the "bottom" of the layer stack - the ultimate fallback layer. This currently does not persist over power loss. When you plug the keyboard back in, layer 0 will always be the default. It is theoretically possible to work around that, but that's not what `DF` does.
578
579 ## Prevent stuck modifiers
580
581 Consider the following scenario:
582
583 1. Layer 0 has a key defined as Shift.
584 2. The same key is defined on layer 1 as the letter A.
585 3. User presses Shift.
586 4. User switches to layer 1 for whatever reason.
587 5. User releases Shift, or rather the letter A.
588 6. User switches back to layer 0.
589
590 Shift was actually never released and is still considered pressed.
591
592 If such situation bothers you add this to your `config.h`:
593
594     #define PREVENT_STUCK_MODIFIERS
595
596 This option uses 5 bytes of memory per every 8 keys on the keyboard
597 rounded up (5 bits per key). For example on Planck (48 keys) it uses
598 (48/8)\*5 = 30 bytes.
599
600 ## Macro shortcuts: Send a whole string when pressing just one key
601
602 Instead of using the `ACTION_MACRO` function, you can simply use `M(n)` to access macro *n* - *n* will get passed into the `action_get_macro` as the `id`, and you can use a switch statement to trigger it. This gets called on the keydown and keyup, so you'll need to use an if statement testing `record->event.pressed` (see keymap_default.c).
603
604 ```c
605 const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) // this is the function signature -- just copy/paste it into your keymap file as it is.
606 {
607   switch(id) {
608     case 0: // this would trigger when you hit a key mapped as M(0)
609       if (record->event.pressed) {
610         return MACRO( I(255), T(H), T(E), T(L), T(L), W(255), T(O), END  ); // this sends the string 'hello' when the macro executes
611       }
612       break;
613   }
614   return MACRO_NONE;
615 };
616 ```
617 A macro can include the following commands:
618
619 * I() change interval of stroke in milliseconds.
620 * D() press key.
621 * U() release key.
622 * T() type key(press and release).
623 * W() wait (milliseconds).
624 * END end mark.
625
626 So above you can see the stroke interval changed to 255ms between each keystroke, then a bunch of keys being typed, waits a while, then the macro ends.
627
628 Note: Using macros to have your keyboard send passwords for you is possible, but a bad idea.
629
630 ### Advanced macro functions
631
632 To get more control over the keys/actions your keyboard takes, the following functions are available to you in the `action_get_macro` function block:
633
634 * `record->event.pressed`
635
636 This is a boolean value that can be tested to see if the switch is being pressed or released. An example of this is
637
638 ```c
639 if (record->event.pressed) {
640   // on keydown
641 } else {
642   // on keyup
643 }
644 ```
645
646 * `register_code(<kc>);`
647
648 This sends the `<kc>` keydown event to the computer. Some examples would be `KC_ESC`, `KC_C`, `KC_4`, and even modifiers such as `KC_LSFT` and `KC_LGUI`.
649
650 * `unregister_code(<kc>);`
651
652 Parallel to `register_code` function, this sends the `<kc>` keyup event to the computer. If you don't use this, the key will be held down until it's sent.
653
654 * `layer_on(<n>);`
655
656 This will turn on the layer `<n>` - the higher layer number will always take priority. Make sure you have `KC_TRNS` for the key you're pressing on the layer you're switching to, or you'll get stick there unless you have another plan.
657
658 * `layer_off(<n>);`
659
660 This will turn off the layer `<n>`.
661
662 * `clear_keyboard();`
663
664 This will clear all mods and keys currently pressed.
665
666 * `clear_mods();`
667
668 This will clear all mods currently pressed.
669
670 * `clear_keyboard_but_mods();`
671
672 This will clear all keys besides the mods currently pressed.
673
674 * `update_tri_layer(layer_1, layer_2, layer_3);`
675
676 If the user attempts to activate layer 1 AND layer 2 at the same time (for example, by hitting their respective layer keys), layer 3 will be activated. Layers 1 and 2 will _also_ be activated, for the purposes of fallbacks (so a given key will fall back from 3 to 2, to 1 -- and only then to 0).
677
678 #### Naming your macros
679
680 If you have a bunch of macros you want to refer to from your keymap, while keeping the keymap easily readable, you can just name them like so:
681
682 ```
683 #define AUD_OFF M(6)
684 #define AUD_ON M(7)
685 #define MUS_OFF M(8)
686 #define MUS_ON M(9)
687 #define VC_IN M(10)
688 #define VC_DE M(11)
689 #define PLOVER M(12)
690 #define EXT_PLV M(13)
691 ```
692
693 As was done on the [Planck default keymap](/keyboards/planck/keymaps/default/keymap.c#L33-L40)
694
695 #### Timer functionality
696
697 It's possible to start timers and read values for time-specific events - here's an example:
698
699 ```c
700 static uint16_t key_timer;
701 key_timer = timer_read();
702 if (timer_elapsed(key_timer) < 100) {
703   // do something if less than 100ms have passed
704 } else {
705   // do something if 100ms or more have passed
706 }
707 ```
708
709 It's best to declare the `static uint16_t key_timer;` outside of the macro block (top of file, etc).
710
711 #### Example: Single-key copy/paste (hold to copy, tap to paste)
712
713 With QMK, it's easy to make one key do two things, as long as one of those things is being a modifier. :) So if you want a key to act as Ctrl when held and send the letter R when tapped, that's easy: `CTL_T(KC_R)`. But what do you do when you want that key to send Ctrl-V (paste) when tapped, and Ctrl-C (copy) when held?
714
715 Here's what you do:
716
717
718 ```
719 static uint16_t key_timer;
720
721 const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
722 {
723       switch(id) {
724         case 0: {
725             if (record->event.pressed) {
726                 key_timer = timer_read(); // if the key is being pressed, we start the timer.
727             }
728             else { // this means the key was just released, so we can figure out how long it was pressed for (tap or "held down").
729                 if (timer_elapsed(key_timer) > 150) { // 150 being 150ms, the threshhold we pick for counting something as a tap.
730                     return MACRO( D(LCTL), T(C), U(LCTL), END  );
731                 }
732                 else {
733                     return MACRO( D(LCTL), T(V), U(LCTL), END  );
734                 }
735             }
736             break;
737         }
738       }
739     return MACRO_NONE;
740 };
741 ```
742
743 And then, to assign this macro to a key on your keyboard layout, you just use `M(0)` on the key you want to press for copy/paste.
744
745 ## Dynamic macros: record and replay macros in runtime
746
747 In addition to the static macros described above, you may enable the dynamic macros which you may record while writing. They are forgotten as soon as the keyboard is unplugged. Only two such macros may be stored at the same time, with the total length of 128 keypresses.
748
749 To enable them, first add a new element to the `planck_keycodes` enum -- `DYNAMIC_MACRO_RANGE`:
750
751     enum planck_keycodes {
752       QWERTY = SAFE_RANGE,
753       COLEMAK,
754       DVORAK,
755       PLOVER,
756       LOWER,
757       RAISE,
758       BACKLIT,
759       EXT_PLV,
760       DYNAMIC_MACRO_RANGE,
761     };
762
763 Afterwards create a new layer called `_DYN`:
764
765     #define _DYN 6    /* almost any other free number should be ok */
766
767 Below these two modifications include the `dynamic_macro.h` header:
768
769     #include "dynamic_macro.h"`
770
771 Then define the `_DYN` layer with the following keys: `DYN_REC_START1`, `DYN_MACRO_PLAY1`,`DYN_REC_START2` and `DYN_MACRO_PLAY2`. It may also contain other keys, it doesn't matter apart from the fact that you won't be able to record these keys in the dynamic macros.
772
773     [_DYN]= {
774         {_______,  DYN_REC_START1, DYN_MACRO_PLAY1, _______, _______, _______, _______, _______, _______, _______, _______, _______},
775         {_______,  DYN_REC_START2, DYN_MACRO_PLAY2, _______, _______, _______, _______, _______, _______, _______, _______, _______},
776         {_______,  _______,        _______,         _______, _______, _______, _______, _______, _______, _______, _______, _______},
777         {_______,  _______,        _______,         _______, _______, _______, _______, _______, _______, _______, _______, _______}
778     },
779
780 Add the following code to the very beginning of your `process_record_user()` function:
781
782     if (!process_record_dynamic_macro(keycode, record)) {
783         return false;
784     }
785
786 To start recording the macro, press either `DYN_REC_START1` or `DYN_REC_START2`. To finish the recording, press the `_DYN` layer button. The handler awaits specifically for the `MO(_DYN)` keycode as the "stop signal" so please don't use any fancy ways to access this layer, use the regular `MO()` modifier. To replay the macro, press either `DYN_MACRO_PLAY1` or `DYN_MACRO_PLAY2`.
787
788 If the LED-s start blinking during the recording with each keypress, it means there is no more space for the macro in the macro buffer. To fit the macro in, either make the other macro shorter (they share the same buffer) or increase the buffer size by setting the `DYNAMIC_MACRO_SIZE` preprocessor macro (default value: 256; please read the comments for it in the header).
789
790 For the details about the internals of the dynamic macros, please read the comments in the `dynamic_macro.h` header.
791
792 ## Additional keycode aliases for software-implemented layouts (Colemak, Dvorak, etc)
793
794 Everything is assuming you're in Qwerty (in software) by default, but there is built-in support for using a Colemak or Dvorak layout by including this at the top of your keymap:
795
796    #include <keymap_colemak.h>
797
798 If you use Dvorak, use `keymap_dvorak.h` instead of `keymap_colemak.h` for this line. After including this line, you will get access to:
799
800  * `CM_*` for all of the Colemak-equivalent characters
801  * `DV_*` for all of the Dvorak-equivalent characters
802
803 These implementations assume you're using Colemak or Dvorak on your OS, not on your keyboard - this is referred to as a software-implemented layout. If your computer is in Qwerty and your keymap is in Colemak or Dvorak, this is referred to as a firmware-implemented layout, and you won't need these features.
804
805 To give an example, if you're using software-implemented Colemak, and want to get an `F`, you would use `CM_F` - `KC_F` under these same circumstances would result in `T`.
806
807 ## Additional language support
808
809 In `quantum/keymap_extras/`, you'll see various language files - these work the same way as the alternative layout ones do. Most are defined by their two letter country/language code followed by an underscore and a 4-letter abbreviation of its name. `FR_UGRV` which will result in a `ù` when using a software-implemented AZERTY layout. It's currently difficult to send such characters in just the firmware (but it's being worked on - see Unicode support).
810
811 ## Unicode support
812
813 You can currently send 4 hex digits with your OS-specific modifier key (RALT for OSX with the "Unicode Hex Input" layout) - this is currently limited to supporting one OS at a time, and requires a recompile for switching. 8 digit hex codes are being worked on. The keycode function is `UC(n)`, where *n* is a 4 digit hexidecimal. Enable from the Makefile.
814
815 ## Other firmware shortcut keycodes
816
817 * `RESET` - puts the MCU in DFU mode for flashing new firmware (with `make dfu`)
818 * `DEBUG` - the firmware into debug mode - you'll need hid_listen to see things
819 * `BL_ON` - turns the backlight on
820 * `BL_OFF` - turns the backlight off
821 * `BL_<n>` - sets the backlight to level *n*
822 * `BL_INC` - increments the backlight level by one
823 * `BL_DEC` - decrements the backlight level by one
824 * `BL_TOGG` - toggles the backlight
825 * `BL_STEP` - steps through the backlight levels
826
827 Enable the backlight from the Makefile.
828
829 # Custom Quantum functions
830
831 All of these functions are available in the `*_kb()` or `*_user()` variety. `kb` ones should only be used in the `<keyboard>/<keyboard>.c` file, and `user` ones should only be used in the `keymap.c`. The keyboard ones call the user ones - it's necessary to keep these calls to allow the keymap functions to work correctly.
832
833 ## `void matrix_init_*(void)`
834
835 This function gets called when the matrix is initiated, and can contain start-up code for your keyboard/keymap.
836
837 ## `void matrix_scan_*(void)`
838
839 This function gets called at every matrix scan, which is basically as often as the MCU can handle. Be careful what you put here, as it will get run a lot.
840
841 ## `bool process_record_*(uint16_t keycode, keyrecord_t *record)`
842
843 This function gets called on every keypress/release, and is where you can define custom functionality. The return value is whether or not QMK should continue processing the keycode - returning `false` stops the execution.
844
845 The `keycode` variable is whatever is defined in your keymap, eg `MO(1)`, `KC_L`, etc. and can be switch-cased to execute code whenever a particular code is pressed.
846
847 The `record` variable contains infomation about the actual press:
848
849 ```
850 keyrecord_t record {
851   keyevent_t event {
852     keypos_t key {
853       uint8_t col
854       uint8_t row
855     }
856     bool     pressed
857     uint16_t time
858   }
859 }
860 ```
861
862 The conditional `if (record->event.pressed)` can tell if the key is being pressed or released, and you can execute code based on that.
863
864 ## `void led_set_*(uint8_t usb_led)`
865
866 This gets called whenever there is a state change on your host LEDs (eg caps lock, scroll lock, etc). The LEDs are defined as:
867
868 ```
869 #define USB_LED_NUM_LOCK                0
870 #define USB_LED_CAPS_LOCK               1
871 #define USB_LED_SCROLL_LOCK             2
872 #define USB_LED_COMPOSE                 3
873 #define USB_LED_KANA                    4
874 ```
875
876 and can be tested against the `usb_led` with a conditional like `if (usb_led & (1<<USB_LED_CAPS_LOCK))` - if this is true, you can turn your LED one, otherwise turn it off.
877
878 # Modding your keyboard
879
880 ## Audio output from a speaker
881
882 Your keyboard can make sounds! If you've got a Planck, Preonic, or basically any keyboard that allows access to the C6 port, you can hook up a simple speaker and make it beep. You can use those beeps to indicate layer transitions, modifiers, special keys, or just to play some funky 8bit tunes.
883
884 The audio code lives in [quantum/audio/audio.h](/quantum/audio/audio.h) and in the other files in the audio directory. It's enabled by default on the Planck [stock keymap](/keyboards/planck/keymaps/default/keymap.c). Here are the important bits:
885
886 ```
887 #include "audio.h"
888 ```
889
890 Then, lower down the file:
891
892 ```
893 float tone_startup[][2] = {
894     ED_NOTE(_E7 ),
895     E__NOTE(_CS7),
896     E__NOTE(_E6 ),
897     E__NOTE(_A6 ),
898     M__NOTE(_CS7, 20)
899 };
900 ```
901
902 This is how you write a song. Each of these lines is a note, so we have a little ditty composed of five notes here.
903
904 Then, we have this chunk:
905
906 ```
907 float tone_qwerty[][2]     = SONG(QWERTY_SOUND);
908 float tone_dvorak[][2]     = SONG(DVORAK_SOUND);
909 float tone_colemak[][2]    = SONG(COLEMAK_SOUND);
910 float tone_plover[][2]     = SONG(PLOVER_SOUND);
911 float tone_plover_gb[][2]  = SONG(PLOVER_GOODBYE_SOUND);
912
913 float music_scale[][2] = SONG(MUSIC_SCALE_SOUND);
914 float goodbye[][2] = SONG(GOODBYE_SOUND);
915 ```
916
917 Wherein we bind predefined songs (from [quantum/audio/song_list.h](/quantum/audio/song_list.h)) into named variables. This is one optimization that helps save on memory: These songs only take up memory when you reference them in your keymap, because they're essentially all preprocessor directives.
918
919 So now you have something called `tone_plover` for example. How do you make it play the Plover tune, then? If you look further down the keymap, you'll see this:
920
921 ```
922 PLAY_NOTE_ARRAY(tone_plover, false, 0); // Signature is: Song name, repeat, rest style
923 ```
924
925 This is inside one of the macros. So when that macro executes, your keyboard plays that particular chime.
926
927 "Rest style" in the method signature above (the last parameter) specifies if there's a rest (a moment of silence) between the notes.
928
929
930 ## Recording And Playing back Music
931 * ```Music On``` - Turn music mode on. The default mapping is ```Lower+Upper+C```
932 * ```LCTL``` - start a recording
933 * play some tones
934 * ```LALT``` - stop recording, stop playing
935 * ```LGUI``` - play recording
936 * ```LALT``` - stop playing
937 * ```Music Off``` - Turn music mode off. The default mapping is ```Lower+Upper+V```
938
939
940 ## MIDI functionalty
941
942 This is still a WIP, but check out `quantum/keymap_midi.c` to see what's happening. Enable from the Makefile.
943
944 ## Bluetooth functionality
945
946 This requires [some hardware changes](https://www.reddit.com/r/MechanicalKeyboards/comments/3psx0q/the_planck_keyboard_with_bluetooth_guide_and/?ref=search_posts), but can be enabled via the Makefile. The firmware will still output characters via USB, so be aware of this when charging via a computer. It would make sense to have a switch on the Bluefruit to turn it off at will.
947
948 ## International Characters on Windows
949
950 [AutoHotkey](https://autohotkey.com) allows Windows users to create custom hotkeys among others.
951
952 The method does not require Unicode support in the keyboard itself but depends instead of AutoHotkey running in the background.
953
954 First you need to select a modifier combination that is not in use by any of your programs.
955 CtrlAltWin is not used very widely and should therefore be perfect for this.
956 There is a macro defined for a mod-tab combo `LCAG_T`.
957 Add this mod-tab combo to a key on your keyboard, e.g.: `LCAG_T(KC_TAB)`.
958 This makes the key behave like a tab key if pressed and released immediately but changes it to the modifier if used with another key.
959
960 In the default script of AutoHotkey you can define custom hotkeys.
961
962     <^<!<#a::Send, ä
963     <^<!<#<+a::Send, Ä
964
965 The hotkeys above are for the combination CtrlAltGui and CtrlAltGuiShift plus the letter a.
966 AutoHotkey inserts the Text right of `Send, ` when this combination is pressed.
967
968 ## Backlight Breathing
969
970 In order to enable backlight breathing, the following line must be added to your config.h file.
971
972     #define BACKLIGHT_BREATHING
973
974 The following function calls are used to control the breathing effect.
975
976 * ```breathing_enable()``` - Enable the free-running breathing effect.
977 * ```breathing_disable()``` - Disable the free-running breathing effect immediately.
978 * ```breathing_self_disable()``` - Disable the free-running breathing effect after the current effect ends.
979 * ```breathing_toggle()``` - Toggle the free-running breathing effect.
980 * ```breathing_defaults()``` - Reset the speed and brightness settings of the breathing effect.
981
982 The following function calls are used to control the maximum brightness of the breathing effect.
983
984 * ```breathing_intensity_set(value)``` - Set the brightness of the breathing effect when it is at its max value.
985 * ```breathing_intensity_default()``` - Reset the brightness of the breathing effect to the default value based on the current backlight intensity.
986
987 The following function calls are used to control the cycling speed of the breathing effect.
988
989 * ```breathing_speed_set(value)``` - Set the speed of the breathing effect - how fast it cycles.
990 * ```breathing_speed_inc(value)``` - Increase the speed of the breathing effect by a fixed value.
991 * ```breathing_speed_dec(value)``` - Decrease the speed of the breathing effect by a fixed value.
992 * ```breathing_speed_default()``` - Reset the speed of the breathing effect to the default value.
993
994 The following example shows how to enable the backlight breathing effect when the FUNCTION layer macro button is pressed:
995
996     case MACRO_FUNCTION:
997         if (record->event.pressed)
998         {
999             breathing_speed_set(3);
1000             breathing_enable();
1001             layer_on(LAYER_FUNCTION);
1002         }
1003         else
1004         {
1005             breathing_speed_set(1);
1006             breathing_self_disable();
1007             layer_off(LAYER_FUNCTION);
1008         }
1009         break;
1010
1011 The following example shows how to pulse the backlight on-off-on when the RAISED layer macro button is pressed:
1012
1013     case MACRO_RAISED:
1014       if (record->event.pressed)
1015       {
1016         layer_on(LAYER_RAISED);
1017         breathing_speed_set(2);
1018         breathing_pulse();
1019         update_tri_layer(LAYER_LOWER, LAYER_RAISED, LAYER_ADJUST);
1020       }
1021       else
1022       {
1023         layer_off(LAYER_RAISED);
1024         update_tri_layer(LAYER_LOWER, LAYER_RAISED, LAYER_ADJUST);
1025       }
1026       break;
1027
1028 ## RGB Under Glow Mod
1029
1030 ![Planck with RGB Underglow](https://raw.githubusercontent.com/jackhumbert/qmk_firmware/master/keyboards/planck/keymaps/yang/planck-with-rgb-underglow.jpg)
1031
1032 Here is a quick demo on Youtube (with NPKC KC60) (https://www.youtube.com/watch?v=VKrpPAHlisY).
1033
1034 For this mod, you need an unused pin wiring to DI of WS2812 strip. After wiring the VCC, GND, and DI, you can enable the underglow in your Makefile.
1035
1036     RGBLIGHT_ENABLE = yes
1037
1038 In order to use the underglow timer functions, you need to have `#define RGBLIGHT_TIMER` in your `config.h`, and have audio disabled (`AUDIO_ENABLE = no` in your Makefile).
1039
1040 Please add the following options into your config.h, and set them up according your hardware configuration. These settings are for the `F4` pin by default:
1041
1042     #define RGB_DI_PIN F4     // The pin your RGB strip is wired to
1043     #define RGBLIGHT_TIMER    // Require for fancier stuff (not compatible with audio)
1044     #define RGBLED_NUM 14     // Number of LEDs
1045     #define RGBLIGHT_HUE_STEP 10
1046     #define RGBLIGHT_SAT_STEP 17
1047     #define RGBLIGHT_VAL_STEP 17
1048
1049 You'll need to edit `RGB_DI_PIN` to the pin you have your `DI` on your RGB strip wired to.
1050
1051 The firmware supports 5 different light effects, and the color (hue, saturation, brightness) can be customized in most effects. To control the underglow, you need to modify your keymap file to assign those functions to some keys/key combinations. For details, please check this keymap. `keyboards/planck/keymaps/yang/keymap.c`
1052
1053 ### WS2812 Wiring
1054
1055 ![WS2812 Wiring](https://raw.githubusercontent.com/jackhumbert/qmk_firmware/master/keyboards/planck/keymaps/yang/WS2812-wiring.jpg)
1056
1057 Please note the USB port can only supply a limited amount of power to the keyboard (500mA by standard, however, modern computer and most usb hubs can provide 700+mA.). According to the data of NeoPixel from Adafruit, 30 WS2812 LEDs require a 5V 1A power supply, LEDs used in this mod should not more than 20.
1058
1059 ## Safety Considerations
1060
1061 You probably don't want to "brick" your keyboard, making it impossible
1062 to rewrite firmware onto it.  Here are some of the parameters to show
1063 what things are (and likely aren't) too risky.
1064
1065 - If a keyboard map does not include RESET, then, to get into DFU
1066   mode, you will need to press the reset button on the PCB, which
1067   requires unscrewing some bits.
1068 - Messing with tmk_core / common files might make the keyboard
1069   inoperable
1070 - Too large a .hex file is trouble; `make dfu` will erase the block,
1071   test the size (oops, wrong order!), which errors out, failing to
1072   flash the keyboard
1073 - DFU tools do /not/ allow you to write into the bootloader (unless
1074   you throw in extra fruitsalad of options), so there is little risk
1075   there.
1076 - EEPROM has around a 100000 write cycle.  You shouldn't rewrite the
1077   firmware repeatedly and continually; that'll burn the EEPROM
1078   eventually.
1079
1080 # Porting your keyboard to QMK
1081
1082 If your keyboard is running an Atmega chip (atmega32u4 and others), it's pretty easy to get things setup for compiling your own firmware to flash onto your board. There is a `/util/new_project.sh <keyboard>` script to help get you started - you can simply pass your keyboard's name into the script, and all of the necessary files will be created. The components of each are described below.
1083
1084 ## `/keyboards/<keyboard>/config.h`
1085
1086 The `USB Device descriptor parameter` block contains parameters are used to uniquely identify your keyboard, but they don't really matter to the machine.
1087
1088 Your `MATRIX_ROWS` and `MATRIX_COLS` are the numbers of rows and cols in your keyboard matrix - this may be different than the number of actual rows and columns on your keyboard. There are some tricks you can pull to increase the number of keys in a given matrix, but most keyboards are pretty straight-forward.
1089
1090 The `MATRIX_ROW_PINS` and `MATRIX_COL_PINS` are the pins your MCU uses on each row/column. Your schematic (if you have one) will have this information on it, and the values will vary depending on your setup. This is one of the most important things to double-check in getting your keyboard setup correctly.
1091
1092 For the `DIODE_DIRECTION`, most hand-wiring guides will instruct you to wire the diodes in the `COL2ROW` position, but it's possible that they are in the other - people coming from EasyAVR often use `ROW2COL`. Nothing will function if this is incorrect.
1093
1094 `BACKLIGHT_PIN` is the pin that your PWM-controlled backlight (if one exists) is hooked-up to. Currently only B5, B6, and B7 are supported.
1095
1096 `BACKLIGHT_BREATHING` is a fancier backlight feature that adds breathing/pulsing/fading effects to the backlight. It uses the same timer as the normal backlight. These breathing effects must be called by code in your keymap.
1097
1098 `BACKLIGHT_LEVELS` is how many levels exist for your backlight - max is 15, and they are computed automatically from this number.
1099
1100 ## `/keyboards/<keyboard>/Makefile`
1101
1102 The values at the top likely won't need to be changed, since most boards use the `atmega32u4` chip. The `BOOTLOADER_SIZE` will need to be adjusted based on your MCU type. It's defaulted to the Teensy, since that's the most common controller. Below is quoted from the `Makefile`.
1103
1104 ```
1105 # Boot Section Size in *bytes*
1106 #   Teensy halfKay   512
1107 #   Teensy++ halfKay 1024
1108 #   Atmel DFU loader 4096
1109 #   LUFA bootloader  4096
1110 #   USBaspLoader     2048
1111 OPT_DEFS += -DBOOTLOADER_SIZE=512
1112 ```
1113
1114 At the bottom of the file, you'll find lots of features to turn on and off - all of these options should be set with `?=` to allow for the keymap overrides. `?=` only assigns if the variable was previously undefined. For the full documenation of these features, see the [Makefile options](#makefile-options).
1115
1116 ## `/keyboards/<keyboard>/readme.md`
1117
1118 This is where you'll describe your keyboard - please write as much as you can about it! Talking about default functionality/features is useful here. Feel free to link to external pages/sites if necessary. Images can be included here as well. This file will be rendered into a webpage at qmk.fm/keyboards/<keyboard>/.
1119
1120 ## `/keyboards/<keyboard>/<keyboard>.c`
1121
1122 This is where all of the custom logic for your keyboard goes - you may not need to put anything in this file, since a lot of things are configured automatically. All of the `*_kb()` functions are defined here. If you modify them, remember to keep the calls to `*_user()`, or things in the keymaps might not work. You can read more about the functions [here](#custom-quantum-functions-for-keyboards-and-keymaps)
1123
1124 ## `/keyboards/<keyboard>/<keyboard>.h`
1125
1126 Here is where you can (optionally) define your `KEYMAP` function to remap your matrix into a more readable format. With ortholinear boards, this isn't always necessary, but it can help to accomodate the dead spots on your matrix, where there are keys that take up more than one space (2u, staggering, 6.25u, etc). The example shows the difference between the physical keys, and the matrix design:
1127
1128 ```
1129 #define KEYMAP( \
1130     k00, k01, k02, \
1131       k10,  k11   \
1132 ) \
1133 { \
1134     { k00, k01,   k02 }, \
1135     { k10, KC_NO, k11 }, \
1136 }
1137 ```
1138
1139 Each of the `kxx` variables needs to be unique, and usually follows the format `k<row><col>`. You can place `KC_NO` where your dead keys are in your matrix.