]> git.donarmstrong.com Git - qmk_firmware.git/blob - protocol/usb_hid/arduino-1.0.1/cores/arduino/wiring.c
Change TOP_DIR to TMK_DIR in makefiles
[qmk_firmware.git] / protocol / usb_hid / arduino-1.0.1 / cores / arduino / wiring.c
1 /*
2   wiring.c - Partial implementation of the Wiring API for the ATmega8.
3   Part of Arduino - http://www.arduino.cc/
4
5   Copyright (c) 2005-2006 David A. Mellis
6
7   This library is free software; you can redistribute it and/or
8   modify it under the terms of the GNU Lesser General Public
9   License as published by the Free Software Foundation; either
10   version 2.1 of the License, or (at your option) any later version.
11
12   This library is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15   Lesser General Public License for more details.
16
17   You should have received a copy of the GNU Lesser General
18   Public License along with this library; if not, write to the
19   Free Software Foundation, Inc., 59 Temple Place, Suite 330,
20   Boston, MA  02111-1307  USA
21
22   $Id$
23 */
24
25 #include "wiring_private.h"
26
27 // the prescaler is set so that timer0 ticks every 64 clock cycles, and the
28 // the overflow handler is called every 256 ticks.
29 #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
30
31 // the whole number of milliseconds per timer0 overflow
32 #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
33
34 // the fractional number of milliseconds per timer0 overflow. we shift right
35 // by three to fit these numbers into a byte. (for the clock speeds we care
36 // about - 8 and 16 MHz - this doesn't lose precision.)
37 #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
38 #define FRACT_MAX (1000 >> 3)
39
40 volatile unsigned long timer0_overflow_count = 0;
41 volatile unsigned long timer0_millis = 0;
42 static unsigned char timer0_fract = 0;
43
44 #if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
45 SIGNAL(TIM0_OVF_vect)
46 #else
47 SIGNAL(TIMER0_OVF_vect)
48 #endif
49 {
50         // copy these to local variables so they can be stored in registers
51         // (volatile variables must be read from memory on every access)
52         unsigned long m = timer0_millis;
53         unsigned char f = timer0_fract;
54
55         m += MILLIS_INC;
56         f += FRACT_INC;
57         if (f >= FRACT_MAX) {
58                 f -= FRACT_MAX;
59                 m += 1;
60         }
61
62         timer0_fract = f;
63         timer0_millis = m;
64         timer0_overflow_count++;
65 }
66
67 unsigned long millis()
68 {
69         unsigned long m;
70         uint8_t oldSREG = SREG;
71
72         // disable interrupts while we read timer0_millis or we might get an
73         // inconsistent value (e.g. in the middle of a write to timer0_millis)
74         cli();
75         m = timer0_millis;
76         SREG = oldSREG;
77
78         return m;
79 }
80
81 unsigned long micros() {
82         unsigned long m;
83         uint8_t oldSREG = SREG, t;
84         
85         cli();
86         m = timer0_overflow_count;
87 #if defined(TCNT0)
88         t = TCNT0;
89 #elif defined(TCNT0L)
90         t = TCNT0L;
91 #else
92         #error TIMER 0 not defined
93 #endif
94
95   
96 #ifdef TIFR0
97         if ((TIFR0 & _BV(TOV0)) && (t < 255))
98                 m++;
99 #else
100         if ((TIFR & _BV(TOV0)) && (t < 255))
101                 m++;
102 #endif
103
104         SREG = oldSREG;
105         
106         return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
107 }
108
109 void delay(unsigned long ms)
110 {
111         uint16_t start = (uint16_t)micros();
112
113         while (ms > 0) {
114                 if (((uint16_t)micros() - start) >= 1000) {
115                         ms--;
116                         start += 1000;
117                 }
118         }
119 }
120
121 /* Delay for the given number of microseconds.  Assumes a 8 or 16 MHz clock. */
122 void delayMicroseconds(unsigned int us)
123 {
124         // calling avrlib's delay_us() function with low values (e.g. 1 or
125         // 2 microseconds) gives delays longer than desired.
126         //delay_us(us);
127 #if F_CPU >= 20000000L
128         // for the 20 MHz clock on rare Arduino boards
129
130         // for a one-microsecond delay, simply wait 2 cycle and return. The overhead
131         // of the function call yields a delay of exactly a one microsecond.
132         __asm__ __volatile__ (
133                 "nop" "\n\t"
134                 "nop"); //just waiting 2 cycle
135         if (--us == 0)
136                 return;
137
138         // the following loop takes a 1/5 of a microsecond (4 cycles)
139         // per iteration, so execute it five times for each microsecond of
140         // delay requested.
141         us = (us<<2) + us; // x5 us
142
143         // account for the time taken in the preceeding commands.
144         us -= 2;
145
146 #elif F_CPU >= 16000000L
147         // for the 16 MHz clock on most Arduino boards
148
149         // for a one-microsecond delay, simply return.  the overhead
150         // of the function call yields a delay of approximately 1 1/8 us.
151         if (--us == 0)
152                 return;
153
154         // the following loop takes a quarter of a microsecond (4 cycles)
155         // per iteration, so execute it four times for each microsecond of
156         // delay requested.
157         us <<= 2;
158
159         // account for the time taken in the preceeding commands.
160         us -= 2;
161 #else
162         // for the 8 MHz internal clock on the ATmega168
163
164         // for a one- or two-microsecond delay, simply return.  the overhead of
165         // the function calls takes more than two microseconds.  can't just
166         // subtract two, since us is unsigned; we'd overflow.
167         if (--us == 0)
168                 return;
169         if (--us == 0)
170                 return;
171
172         // the following loop takes half of a microsecond (4 cycles)
173         // per iteration, so execute it twice for each microsecond of
174         // delay requested.
175         us <<= 1;
176     
177         // partially compensate for the time taken by the preceeding commands.
178         // we can't subtract any more than this or we'd overflow w/ small delays.
179         us--;
180 #endif
181
182         // busy wait
183         __asm__ __volatile__ (
184                 "1: sbiw %0,1" "\n\t" // 2 cycles
185                 "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
186         );
187 }
188
189 void init()
190 {
191         // this needs to be called before setup() or some functions won't
192         // work there
193         sei();
194         
195         // on the ATmega168, timer 0 is also used for fast hardware pwm
196         // (using phase-correct PWM would mean that timer 0 overflowed half as often
197         // resulting in different millis() behavior on the ATmega8 and ATmega168)
198 #if defined(TCCR0A) && defined(WGM01)
199         sbi(TCCR0A, WGM01);
200         sbi(TCCR0A, WGM00);
201 #endif  
202
203         // set timer 0 prescale factor to 64
204 #if defined(__AVR_ATmega128__)
205         // CPU specific: different values for the ATmega128
206         sbi(TCCR0, CS02);
207 #elif defined(TCCR0) && defined(CS01) && defined(CS00)
208         // this combination is for the standard atmega8
209         sbi(TCCR0, CS01);
210         sbi(TCCR0, CS00);
211 #elif defined(TCCR0B) && defined(CS01) && defined(CS00)
212         // this combination is for the standard 168/328/1280/2560
213         sbi(TCCR0B, CS01);
214         sbi(TCCR0B, CS00);
215 #elif defined(TCCR0A) && defined(CS01) && defined(CS00)
216         // this combination is for the __AVR_ATmega645__ series
217         sbi(TCCR0A, CS01);
218         sbi(TCCR0A, CS00);
219 #else
220         #error Timer 0 prescale factor 64 not set correctly
221 #endif
222
223         // enable timer 0 overflow interrupt
224 #if defined(TIMSK) && defined(TOIE0)
225         sbi(TIMSK, TOIE0);
226 #elif defined(TIMSK0) && defined(TOIE0)
227         sbi(TIMSK0, TOIE0);
228 #else
229         #error  Timer 0 overflow interrupt not set correctly
230 #endif
231
232         // timers 1 and 2 are used for phase-correct hardware pwm
233         // this is better for motors as it ensures an even waveform
234         // note, however, that fast pwm mode can achieve a frequency of up
235         // 8 MHz (with a 16 MHz clock) at 50% duty cycle
236
237 #if defined(TCCR1B) && defined(CS11) && defined(CS10)
238         TCCR1B = 0;
239
240         // set timer 1 prescale factor to 64
241         sbi(TCCR1B, CS11);
242 #if F_CPU >= 8000000L
243         sbi(TCCR1B, CS10);
244 #endif
245 #elif defined(TCCR1) && defined(CS11) && defined(CS10)
246         sbi(TCCR1, CS11);
247 #if F_CPU >= 8000000L
248         sbi(TCCR1, CS10);
249 #endif
250 #endif
251         // put timer 1 in 8-bit phase correct pwm mode
252 #if defined(TCCR1A) && defined(WGM10)
253         sbi(TCCR1A, WGM10);
254 #elif defined(TCCR1)
255         #warning this needs to be finished
256 #endif
257
258         // set timer 2 prescale factor to 64
259 #if defined(TCCR2) && defined(CS22)
260         sbi(TCCR2, CS22);
261 #elif defined(TCCR2B) && defined(CS22)
262         sbi(TCCR2B, CS22);
263 #else
264         #warning Timer 2 not finished (may not be present on this CPU)
265 #endif
266
267         // configure timer 2 for phase correct pwm (8-bit)
268 #if defined(TCCR2) && defined(WGM20)
269         sbi(TCCR2, WGM20);
270 #elif defined(TCCR2A) && defined(WGM20)
271         sbi(TCCR2A, WGM20);
272 #else
273         #warning Timer 2 not finished (may not be present on this CPU)
274 #endif
275
276 #if defined(TCCR3B) && defined(CS31) && defined(WGM30)
277         sbi(TCCR3B, CS31);              // set timer 3 prescale factor to 64
278         sbi(TCCR3B, CS30);
279         sbi(TCCR3A, WGM30);             // put timer 3 in 8-bit phase correct pwm mode
280 #endif
281
282 #if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
283         sbi(TCCR4B, CS42);              // set timer4 prescale factor to 64
284         sbi(TCCR4B, CS41);
285         sbi(TCCR4B, CS40);
286         sbi(TCCR4D, WGM40);             // put timer 4 in phase- and frequency-correct PWM mode 
287         sbi(TCCR4A, PWM4A);             // enable PWM mode for comparator OCR4A
288         sbi(TCCR4C, PWM4D);             // enable PWM mode for comparator OCR4D
289 #else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
290 #if defined(TCCR4B) && defined(CS41) && defined(WGM40)
291         sbi(TCCR4B, CS41);              // set timer 4 prescale factor to 64
292         sbi(TCCR4B, CS40);
293         sbi(TCCR4A, WGM40);             // put timer 4 in 8-bit phase correct pwm mode
294 #endif
295 #endif /* end timer4 block for ATMEGA1280/2560 and similar */   
296
297 #if defined(TCCR5B) && defined(CS51) && defined(WGM50)
298         sbi(TCCR5B, CS51);              // set timer 5 prescale factor to 64
299         sbi(TCCR5B, CS50);
300         sbi(TCCR5A, WGM50);             // put timer 5 in 8-bit phase correct pwm mode
301 #endif
302
303 #if defined(ADCSRA)
304         // set a2d prescale factor to 128
305         // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
306         // XXX: this will not work properly for other clock speeds, and
307         // this code should use F_CPU to determine the prescale factor.
308         sbi(ADCSRA, ADPS2);
309         sbi(ADCSRA, ADPS1);
310         sbi(ADCSRA, ADPS0);
311
312         // enable a2d conversions
313         sbi(ADCSRA, ADEN);
314 #endif
315
316         // the bootloader connects pins 0 and 1 to the USART; disconnect them
317         // here so they can be used as normal digital i/o; they will be
318         // reconnected in Serial.begin()
319 #if defined(UCSRB)
320         UCSRB = 0;
321 #elif defined(UCSR0B)
322         UCSR0B = 0;
323 #endif
324 }