]> git.donarmstrong.com Git - lilypond.git/blob - lily/gourlay-breaking.cc
release: 0.1.1
[lilypond.git] / lily / gourlay-breaking.cc
1 /*
2   gourlay-breaking.cc -- implement Gourlay_breaking
3
4   source file of the GNU LilyPond music typesetter
5
6   (c) 1997 Han-Wen Nienhuys <hanwen@stack.nl>
7 */
8
9 #include "gourlay-breaking.hh"
10 #include "colhpos.hh"
11 #include "spring-spacer.hh"
12 #include "debug.hh"
13 #include "p-col.hh"
14 #include "p-score.hh"
15 #include "paper-def.hh"
16
17
18 const HAPPY_DOTS_I = 3;
19
20 /**
21   Helper to trace back an optimal path 
22  */
23 struct Break_node {
24     /** this was the previous. If negative, this break should not be
25       considered: this path has infinite energy
26       
27      */
28     int prev_break_i_;
29     Real energy_f_;
30     Col_hpositions line_config_;
31     Break_node() {
32         prev_break_i_ = -1;
33     }
34 };
35
36 /**
37   This algorithms is adapted from 
38  */
39
40 Array<Col_hpositions>
41 Gourlay_breaking::do_solve()const
42 {
43
44     Array<Break_node> optimal_paths;
45     Line_of_cols all = all_cols();
46     Array<int> breaks = find_break_indices();
47     
48     optimal_paths.set_size(breaks.size());
49
50     Break_node first_node ;
51     first_node.prev_break_i_ = -1;
52     first_node.line_config_.energy_f_ = 0;
53     
54     optimal_paths[0] = first_node; 
55     int break_idx=1;
56
57   
58     for (; break_idx< breaks.size(); break_idx++) {
59         Array<int> candidates;
60         Array<Col_hpositions> candidate_lines;
61         Pointer_list<Line_spacer*> spacer_p_list;
62         
63         /*
64           start with a short line, add measures. At some point 
65           the line becomes infeasible. Then we don't try to add more 
66          */
67         for (int start_idx = break_idx; start_idx--; ){
68             if  (break_idx - start_idx > max_measures_i_) 
69                 break;
70
71             if (optimal_paths[start_idx].prev_break_i_ < 0
72                 && optimal_paths[start_idx].line_config_.energy_f_)
73                 
74                 continue;
75             
76             Line_of_cols line = all.slice(breaks[start_idx], breaks[break_idx]+1);
77             
78             line[0] = line[0]->postbreak_p_;
79             line.top() = line.top()->prebreak_p_;
80             
81             if (!feasible(line))
82                 break;
83             
84             Col_hpositions approx;
85             approx.cols = line;
86             
87             approx.spacer_l_ = generate_spacing_problem( line );
88             spacer_p_list.bottom().add(approx.spacer_l_);
89
90             ((Break_algorithm*)this)->approx_stats_.add( approx.cols );
91             approx.approximate_solve_line(  );
92             
93             if  (approx.energy_f_  > energy_bound_f_ ){ 
94                 continue;
95             }
96
97             
98             // this is a likely candidate. Store it.
99             candidate_lines.push( approx );
100             candidates.push( start_idx );
101         }
102
103             
104         int minimal_j = -1;
105         Real minimal_energy = infinity_f;
106         for (int j=0; j < candidates.size(); j++) {
107             int start = candidates[j];
108             if ( optimal_paths[start].line_config_.energy_f_
109                  + candidate_lines[j].energy_f_  > minimal_energy)
110                 
111                 continue;
112
113             if ( !candidate_lines[j].satisfies_constraints_b_) {
114                  candidate_lines[j].solve_line( );
115                  ((Break_algorithm*)this)->exact_stats_.add ( candidate_lines[j].cols );
116             }
117             
118             Real this_energy 
119                 = optimal_paths[start].line_config_.energy_f_ 
120                 + candidate_lines[j].energy_f_ ;
121             
122             if ( this_energy < minimal_energy ) {
123                 minimal_j = j;
124                 minimal_energy = this_energy;
125             }
126         }
127
128         if (minimal_j < 0) {
129             optimal_paths[break_idx].prev_break_i_ = -1;
130             optimal_paths[break_idx].line_config_.energy_f_ = infinity_f;
131         } else {
132             optimal_paths[break_idx].prev_break_i_ = candidates[minimal_j];
133             optimal_paths[break_idx].line_config_ = candidate_lines[minimal_j];
134         }
135
136         if ( !(break_idx % HAPPY_DOTS_I) )
137             *mlog << "[" << break_idx << "]"<<flush;
138     }
139
140     if  ( break_idx % HAPPY_DOTS_I) 
141         *mlog << "[" << break_idx << "]"<<flush;
142     print_stats();
143
144     
145
146     Array<int> final_breaks;
147
148     /* skip 0-th element, since it is a "dummy" elt*/
149     for (int i = optimal_paths.size()-1; i> 0; ) {
150         final_breaks.push ( i );
151         assert ( i > optimal_paths[i].prev_break_i_);
152         i = optimal_paths[i].prev_break_i_;
153     }
154
155     Array<Col_hpositions> lines;
156     for (int i= final_breaks.size(); i--; ) 
157         lines.push ( optimal_paths[final_breaks[i]].line_config_ );
158
159     
160     return lines;
161 }
162
163
164 Gourlay_breaking::Gourlay_breaking()
165 {
166     get_line_spacer = Spring_spacer::constructor;
167     energy_bound_f_ = infinity_f;
168     max_measures_i_ = INT_MAX;
169 }
170
171 void
172 Gourlay_breaking::do_set_pscore()
173 {
174     energy_bound_f_ = pscore_l_->paper_l_->get_var(  "gourlay_energybound");
175     max_measures_i_ =int (rint( pscore_l_->paper_l_->get_var(  "gourlay_maxmeasures")));
176 }
177