#!/usr/bin/env Rscript printUsage <- function() { cat("Usage: rsem-find-DE data_matrix_file [--ngvector ngvector_file] number_of_samples_in_condition_1 FDR_rate output_file\n\n") cat("This script calls EBSeq to find differentially expressed genes/transcripts in two conditions.\n\n") cat("data_matrix_file: m by n matrix containing expected counts, m is the number of transcripts/genes, n is the number of total samples.\n") cat("[--ngvector ngvector_file]: optional field. 'ngvector_file' is calculated by 'rsem-generate-ngvector'. Having this field is recommended for transcript data.\n") cat("number_of_samples_in_condition_1: the number of samples in condition 1. A condition's samples must be adjacent. The left group of samples are defined as condition 1.\n") cat("FDR_rate: false discovery rate.\n") cat("output_file: the output file. Three files will be generated: 'output_file', 'output_file.hard_threshold' and 'output_file.all'. The first file reports all DE genes/transcripts using a soft threshold (calculated by crit_func in EBSeq). The second file reports all DE genes/transcripts using a hard threshold (only report if PPEE <= fdr). The third file reports all genes/transcripts. The first file is recommended to be used as DE results because it generally contains more called genes/transcripts.\n\n") cat("The results are written as a matrix with row and column names. The row names are the genes'/transcripts' ids. The column names are 'PPEE', 'PPDE', 'PostFC' and 'RealFC'.\n\n") cat("PPEE: posterior probability of being equally expressed.\n") cat("PPDE: posterior probability of being differentially expressed.\n") cat("PostFC: posterior fold change (condition 1 over condition2).\n") cat("RealFC: real fold change (condition 1 over condition2).\n") q(status = 1) } argv <- commandArgs(FALSE) path <- dirname(sub("--file=", "", argv[grep("--file", argv)])) path <- paste(path, "EBSeq", sep = "/") start_pos <- grep("--args", argv) + 1 end_pos <- length(argv) if (start_pos <= end_pos) argv <- argv[start_pos : end_pos] else argv <- NULL ng_pos <- grep("--ngvector", argv) if (length(ng_pos) > 1 || length(ng_pos) == 0 && length(argv) != 4 || length(ng_pos) == 1 && length(argv) != 6) printUsage() ngvector_file <- NULL if (length(ng_pos) == 1) { if (ng_pos == length(argv)) printUsage() ngvector_file <- argv[ng_pos + 1] argv <- argv[-c(ng_pos, ng_pos + 1)] } data_matrix_file <- argv[1] num_con1 <- as.numeric(argv[2]) fdr <- as.numeric(argv[3]) output_file <- argv[4] library(blockmodeling, lib.loc = path) library(EBSeq, lib.loc = path) DataMat <- data.matrix(read.table(data_matrix_file)) n <- dim(DataMat)[2] conditions <- as.factor(rep(c("C1", "C2"), times = c(num_con1, n - num_con1))) Sizes <- MedianNorm(DataMat) ngvector <- NULL if (!is.null(ngvector_file)) { ngvector <- as.vector(data.matrix(read.table(ngvector_file))) } EBOut <- NULL if (is.null(ngvector)) { EBOut <- EBTest(Data = DataMat, Conditions = conditions, sizeFactors = Sizes, maxround = 5) } else { EBOut <- EBTest(Data = DataMat, NgVector = ngvector, Conditions = conditions, sizeFactors = Sizes, maxround = 5) } stopifnot(!is.null(EBOut)) PP <- as.data.frame(GetPPMat(EBOut)) fc_res <- PostFC(EBOut) # soft threshold, default output thre <- crit_fun(PP[, "PPEE"], fdr) DEfound <- rownames(PP)[which(PP[, "PPDE"] >= thre)] results <- cbind(PP[DEfound, ], fc_res$PostFC[DEfound], fc_res$RealFC[DEfound]) colnames(results) <- c("PPEE", "PPDE", "PostFC", "RealFC") write.table(results, file = output_file) # hard threshold thre <- 1.0 - fdr DEfound <- rownames(PP)[which(PP[, "PPDE"] >= thre)] results <- cbind(PP[DEfound, ], fc_res$PostFC[DEfound], fc_res$RealFC[DEfound]) colnames(results) <- c("PPEE", "PPDE", "PostFC", "RealFC") write.table(results, file = paste(output_file, ".hard_threshold", sep = "")) # all results <- cbind(PP, fc_res$PostFC, fc_res$RealFC) colnames(results) <- c("PPEE", "PPDE", "PostFC", "RealFC") write.table(results, file = paste(output_file, ".all", sep = ""))