#!/usr/bin/perl use Getopt::Long; use Pod::Usage; use File::Basename; use Switch; use strict; #const my $BURNIN = 200; my $NCV = 1000; my $SAMPLEGAP = 1; my $CONFIDENCE = 0.95; my $NSPC = 50; my $NMB = 1024; # default my $status = 0; my $read_type = 1; # default, single end with qual my $bowtie_path = ""; my $C = 2; my $E = 99999999; my $L = 25; my $maxHits = 200; my $chunkMbs = 0; # 0 = use bowtie default my $phred33 = 0; my $phred64 = 0; my $solexa = 0; my $is_sam = 0; my $is_bam = 0; my $fn_list = ""; my $tagName = "XM"; my $probF = 0.5; my $minL = 1; my $maxL = 1000; my $mean = -1; my $sd = 0; my $estRSPD = 0; my $B = 20; my $nThreads = 1; my $genBamF = 1; # default is generating transcript bam file my $genGenomeBamF = 0; my $sampling = 0; my $calcCI = 0; my $var_opt = 0; # temporarily, only for internal use my $quiet = 0; my $help = 0; my $paired_end = 0; my $no_qual = 0; my $keep_intermediate_files = 0; my $strand_specific = 0; my $mTime = 0; my ($time_start, $time_end, $time_alignment, $time_rsem, $time_ci) = (0, 0, 0, 0, 0); my $mate1_list = ""; my $mate2_list = ""; my $inpF = ""; my ($refName, $sampleName, $sampleToken, $temp_dir, $stat_dir, $imdName, $statName) = (); my $gap = 32; GetOptions("keep-intermediate-files" => \$keep_intermediate_files, "temporary-folder=s" => \$temp_dir, "no-qualities" => \$no_qual, "paired-end" => \$paired_end, "strand-specific" => \$strand_specific, "sam" => \$is_sam, "bam" => \$is_bam, "sam-header-info=s" => \$fn_list, "tag=s" => \$tagName, "seed-length=i" => \$L, "bowtie-path=s" => \$bowtie_path, "bowtie-n=i" => \$C, "bowtie-e=i" => \$E, "bowtie-m=i" => \$maxHits, "bowtie-chunkmbs=i" => \$chunkMbs, "phred33-quals" => \$phred33, "phred64-quals" => \$phred64, #solexa1.3-quals" => \$phred64, "solexa-quals" => \$solexa, "forward-prob=f" => \$probF, "fragment-length-min=i" => \$minL, "fragment-length-max=i" => \$maxL, "fragment-length-mean=f" => \$mean, "fragment-length-sd=f" => \$sd, "estimate-rspd" => \$estRSPD, "num-rspd-bins=i" => \$B, "p|num-threads=i" => \$nThreads, "no-bam-output" => sub { $genBamF = 0; }, "output-genome-bam" => \$genGenomeBamF, "sampling-for-bam" => \$sampling, "var" => \$var_opt, "calc-ci" => \$calcCI, "ci-memory=i" => \$NMB, "time" => \$mTime, "q|quiet" => \$quiet, "h|help" => \$help) or pod2usage(-exitval => 2, -verbose => 2); pod2usage(-verbose => 2) if ($help == 1); #check parameters and options if ($is_sam || $is_bam) { pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (scalar(@ARGV) != 3); pod2usage(-msg => "--sam and --bam cannot be active at the same time!", -exitval => 2, -verbose => 2) if ($is_sam == 1&& $is_bam == 1); pod2usage(-msg => "--bowtie-path, --bowtie-n, --bowtie-e, --bowtie-m, --phred33-quals, --phred64-quals or --solexa-quals cannot be set if input is SAM/BAM format!", -exitval => 2, -verbose => 2) if ($bowtie_path ne "" || $C != 2 || $E != 99999999 || $maxHits != 200 || $phred33 || $phred64 || $solexa); } else { pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (!$paired_end && scalar(@ARGV) != 3 || $paired_end && scalar(@ARGV) != 4); pod2usage(-msg => "Only one of --phred33-quals --phred64-quals/--solexa1.3-quals --solexa-suqls can be active!", -exitval => 2, -verbose => 2) if ($phred33 + $phred64 + $solexa > 1); podwusage(-msg => "--sam , --bam or --sam-header-info cannot be set if use bowtie aligner to produce alignments!", -exitval => 2, -verbose => 2) if ($is_sam || $is_bam || $fn_list ne ""); } pod2usage(-msg => "Forward probability should be in [0, 1]!", -exitval => 2, -verbose => 2) if ($probF < 0 || $probF > 1); pod2usage(-msg => "Min fragment length should be at least 1!", -exitval => 2, -verbose => 2) if ($minL < 1); pod2usage(-msg => "Min fragment length should be smaller or equal to max fragment length!", -exitval => 2, -verbose => 2) if ($minL > $maxL); pod2usage(-msg => "The memory allocated for calculating credibility intervals should be at least 1 MB!\n", -exitval => 2, -verbose => 2) if ($NMB < 1); pod2usage(-msg => "Number of threads should be at least 1!\n", -exitval => 2, -verbose => 2) if ($nThreads < 1); pod2usage(-msg => "Seed length should be at least 5!\n", -exitval => 2, -verbose => 2) if ($L < 5); pod2usage(-msg => "--sampling-for-bam cannot be specified if --no-bam-output is specified!\n", -exitval => 2, -verbose => 2) if ($sampling && !$genBamF); pod2usage(-msg => "--output-genome-bam cannot be specified if --no-bam-output is specified!\n", -exitval => 2, -verbose => 2) if ($genGenomeBamF && !$genBamF); if ($L < 25) { print "Warning: the seed length set is less than 25! This is only allowed if the references are not added poly(A) tails.\n"; } if ($strand_specific) { $probF = 1.0; } if ($paired_end) { if ($no_qual) { $read_type = 2; } else { $read_type = 3; } } else { if ($no_qual) { $read_type = 0; } else { $read_type = 1; } } if (scalar(@ARGV) == 3) { if ($is_sam || $is_bam) { $inpF = $ARGV[0]; } else {$mate1_list = $ARGV[0]; } $refName = $ARGV[1]; $sampleName = $ARGV[2]; } else { $mate1_list = $ARGV[0]; $mate2_list = $ARGV[1]; $refName = $ARGV[2]; $sampleName = $ARGV[3]; } if ($genGenomeBamF) { open(INPUT, "$refName.ti"); my $line = ; chomp($line); close(INPUT); my ($M, $type) = split(/ /, $line); pod2usage(-msg => "No genome information provided, so genome bam file cannot be generated!\n", -exitval => 2, -verbose => 2) if ($type != 0); } my $pos = rindex($sampleName, '/'); if ($pos < 0) { $sampleToken = $sampleName; } else { $sampleToken = substr($sampleName, $pos + 1); } if ($temp_dir eq "") { $temp_dir = "$sampleName.temp"; } $stat_dir = "$sampleName.stat"; if (!(-d $temp_dir) && !mkdir($temp_dir)) { print "Fail to create folder $temp_dir.\n"; exit(-1); } if (!(-d $stat_dir) && !mkdir($stat_dir)) { print "Fail to create folder $stat_dir.\n"; exit(-1); } $imdName = "$temp_dir/$sampleToken"; $statName = "$stat_dir/$sampleToken"; if (!$is_sam && !$is_bam && !$no_qual && ($phred33 + $phred64 + $solexa == 0)) { $phred33 = 1; } my ($mate_minL, $mate_maxL) = (1, $maxL); if ($bowtie_path ne "") { $bowtie_path .= "/"; } my ($fn, $dir, $suf) = fileparse($0); my $command = ""; if (!$is_sam && !$is_bam) { $command = $bowtie_path."bowtie"; if ($no_qual) { $command .= " -f"; } else { $command .= " -q"; } if ($phred33) { $command .= " --phred33-quals"; } elsif ($phred64) { $command .= " --phred64-quals"; } elsif ($solexa) { $command .= " --solexa-quals"; } $command .= " -n $C -e $E -l $L"; if ($read_type == 2 || $read_type == 3) { $command .= " -I $minL -X $maxL"; } if ($chunkMbs > 0) { $command .= " --chunkmbs $chunkMbs"; } if ($strand_specific || $probF == 1.0) { $command .= " --norc"; } elsif ($probF == 0.0) { $command .= " --nofw"; } $command .= " -p $nThreads -a -m $maxHits -S"; if ($quiet) { $command .= " --quiet"; } $command .= " $refName"; if ($read_type == 0 || $read_type == 1) { $command .= " $mate1_list"; } else { $command .= " -1 $mate1_list -2 $mate2_list"; } # pipe to samtools to generate a BAM file $command .= " | $dir\sam/samtools view -S -b -o $imdName.bam -"; if ($mTime) { $time_start = time(); } &runCommand($command); if ($mTime) { $time_end = time(); $time_alignment = $time_end - $time_start; } $inpF = "$imdName.bam"; $is_bam = 1; # alignments are outputed as a BAM file } if ($mTime) { $time_start = time(); } $command = $dir."rsem-parse-alignments $refName $imdName $statName"; my $samInpType; if ($is_sam) { $samInpType = "s"; } elsif ($is_bam) { $samInpType = "b"; } $command .= " $samInpType $inpF -t $read_type"; if ($fn_list ne "") { $command .= " -l $fn_list"; } if ($tagName ne "") { $command .= " -tag $tagName"; } if ($quiet) { $command .= " -q"; } &runCommand($command); $command = $dir."rsem-build-read-index $gap"; switch($read_type) { case 0 { $command .= " 0 $quiet $imdName\_alignable.fa"; } case 1 { $command .= " 1 $quiet $imdName\_alignable.fq"; } case 2 { $command .= " 0 $quiet $imdName\_alignable_1.fa $imdName\_alignable_2.fa"; } case 3 { $command .= " 1 $quiet $imdName\_alignable_1.fq $imdName\_alignable_2.fq"; } } &runCommand($command); my $doesOpen = open(OUTPUT, ">$imdName.mparams"); if ($doesOpen == 0) { print "Cannot generate $imdName.mparams!\n"; exit(-1); } print OUTPUT "$minL $maxL\n"; print OUTPUT "$probF\n"; print OUTPUT "$estRSPD\n"; print OUTPUT "$B\n"; print OUTPUT "$mate_minL $mate_maxL\n"; print OUTPUT "$mean $sd\n"; print OUTPUT "$L\n"; close(OUTPUT); $command = $dir."rsem-run-em $refName $read_type $sampleName $imdName $statName -p $nThreads"; if ($genBamF) { $command .= " -b $samInpType $inpF"; if ($fn_list ne "") { $command .= " 1 $fn_list"; } else { $command .= " 0"; } if ($sampling) { $command .= " --sampling"; } } if ($calcCI || $var_opt) { $command .= " --gibbs-out"; } if ($quiet) { $command .= " -q"; } &runCommand($command); &collectResults("$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level &collectResults("$imdName.gene_res", "$sampleName.genes.results"); # gene level if ($genBamF) { $command = $dir."sam/samtools sort $sampleName.transcript.bam $sampleName.transcript.sorted"; &runCommand($command); $command = $dir."sam/samtools index $sampleName.transcript.sorted.bam"; &runCommand($command); if ($genGenomeBamF) { $command = $dir."rsem-tbam2gbam $refName $sampleName.transcript.bam $sampleName.genome.bam"; &runCommand($command); $command = $dir."sam/samtools sort $sampleName.genome.bam $sampleName.genome.sorted"; &runCommand($command); $command = $dir."sam/samtools index $sampleName.genome.sorted.bam"; &runCommand($command); } } if ($mTime) { $time_end = time(); $time_rsem = $time_end - $time_start; } if ($mTime) { $time_start = time(); } if ($calcCI || $var_opt) { $command = $dir."rsem-run-gibbs $refName $imdName $statName $BURNIN $NCV $SAMPLEGAP"; $command .= " -p $nThreads"; if ($var_opt) { $command .= " --var"; } if ($quiet) { $command .= " -q"; } &runCommand($command); } if ($calcCI) { system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak1"); system("mv $sampleName.genes.results $imdName.genes.results.bak1"); &collectResults("$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level &collectResults("$imdName.gene_res", "$sampleName.genes.results"); # gene level $command = $dir."rsem-calculate-credibility-intervals $refName $imdName $statName $CONFIDENCE $NCV $NSPC $NMB"; $command .= " -p $nThreads"; if ($quiet) { $command .= " -q"; } &runCommand($command); system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak2"); system("mv $sampleName.genes.results $imdName.genes.results.bak2"); &collectResults("$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level &collectResults("$imdName.gene_res", "$sampleName.genes.results"); # gene level } if ($mTime) { $time_end = time(); $time_ci = $time_end - $time_start; } if ($mTime) { $time_start = time(); } if (!$keep_intermediate_files) { &runCommand("rm -rf $temp_dir", "Fail to delete the temporary folder!"); } if ($mTime) { $time_end = time(); } if ($mTime) { open(OUTPUT, ">$sampleName.time"); print OUTPUT "Aligning reads: $time_alignment s.\n"; print OUTPUT "Estimating expression levels: $time_rsem s.\n"; print OUTPUT "Calculating credibility intervals: $time_ci s.\n"; my $time_del = $time_end - $time_start; # print OUTPUT "Delete: $time_del s.\n"; close(OUTPUT); } # command, {err_msg} sub runCommand { print $_[0]."\n"; my $status = system($_[0]); if ($status != 0) { my $errmsg = ""; if (scalar(@_) > 1) { $errmsg .= $_[1]."\n"; } $errmsg .= "\"$_[0]\" failed! Plase check if you provide correct parameters/options for the pipeline!\n"; print $errmsg; exit(-1); } print "\n"; } # inpF, outF sub collectResults { my $local_status; my ($inpF, $outF); my (@results, @ids) = (); my $line; my $cnt; $inpF = $_[0]; $outF = $_[1]; $local_status = open(INPUT, $inpF); if ($local_status == 0) { print "Fail to open file $inpF!\n"; exit(-1); } $cnt = 0; @results = (); while ($line = ) { ++$cnt; chomp($line); my @local_arr = split(/\t/, $line); if ($cnt == 4) { @ids = @local_arr; } else { push(@results, \@local_arr); } } push(@results, \@ids); close(INPUT); $local_status = open(OUTPUT, ">$outF"); if ($local_status == 0) { print "Fail to create file $outF!\n"; exit(-1); } my $n = scalar(@results); my $m = scalar(@{$results[0]}); for (my $i = 0; $i < $m; $i++) { my @out_arr = (); for (my $j = 0; $j < $n; $j++) { push(@out_arr, $results[$j][$i]); } $" = "\t"; print OUTPUT "@out_arr\n"; } close(OUTPUT); } __END__ =head1 NAME rsem-calculate-expression =head1 SYNOPSIS =over rsem-calculate-expression [options] upstream_read_file(s) reference_name sample_name rsem-calculate-expression [options] --paired-end upstream_read_file(s) downstream_read_file(s) reference_name sample_name rsem-calculate-expression [options] --sam/--bam [--paired-end] input reference_name sample_name =back =head1 ARGUMENTS =over =item B Comma-separated list of files containing single-end reads or upstream reads for paired-end data. By default, these files are assumed to be in FASTQ format. If the --no-qualities option is specified, then FASTA format is expected. =item B Comma-separated list of files containing downstream reads which are paired with the upstream reads. By default, these files are assumed to be in FASTQ format. If the --no-qualities option is specified, then FASTA format is expected. =item B SAM/BAM formatted input file. If "-" is specified for the filename, SAM/BAM input is instead assumed to come from standard input. RSEM requires all alignments of the same read group together. For paired-end reads, RSEM also requires the two mates of any alignment be adjacent. See Description section for how to make input file obey RSEM's requirements. =item B The name of the reference used. The user must have run 'rsem-prepare-reference' with this reference_name before running this program. =item B The name of the sample analyzed. All output files are prefixed by this name (e.g., sample_name.genes.results) =back =head1 OPTIONS =over =item B<--paired-end> Input reads are paired-end reads. (Default: off) =item B<--no-qualities> Input reads do not contain quality scores. (Default: off) =item B<--strand-specific> The RNA-Seq protocol used to generate the reads is strand specific, i.e., all (upstream) reads are derived from the forward strand. This option is equivalent to --forward-prob=1.0. With this option set, if RSEM runs the Bowtie aligner, the '--norc' Bowtie option will be used, which disables alignment to the reverse strand of transcripts. (Default: off) =item B<--sam> Input file is in SAM format. (Default: off) =item B<--bam> Input file is in BAM format. (Default: off) =item B<--sam-header-info> RSEM reads header information from input by default. If this option is on, header information is read from the specified file. For the format of the file, please see SAM official website. (Default: "") =item B<-p/--num-threads> Number of threads to use. Both Bowtie and expression estimation will use this many threads. (Default: 1) =item B<--no-bam-output> Do not output any BAM file. (Default: off) =item B<--output-genome-bam> Generate a BAM file, 'sample_name.genome.bam', with alignments mapped to genomic coordinates and annotated with their posterior probabilities. In addition, RSEM will call samtools (included in RSEM package) to sort and index the bam file. 'sample_name.genome.sorted.bam' and 'sample_name.genome.sorted.bam.bai' will be generated. (Default: off) =item B<--sampling-for-bam> When RSEM generates a BAM file, instead of outputing all alignments a read has with their posterior probabilities, one alignment is sampled according to the posterior probabilities. The sampling procedure includes the alignment to the "noise" transcript, which does not appear in the BAM file. Only the sampled alignment has a weight of 1. All other alignments have weight 0. If the "noise" transcript is sampled, all alignments appeared in the BAM file should have weight 0. (Default: off) =item B<--calc-ci> Calculate 95% credibility intervals and posterior mean estimates. (Default: off) =item B<--seed-length> Seed length used by the read aligner. Providing the correct value is important for RSEM. If RSEM runs Bowtie, it uses this value for Bowtie's seed length parameter. Any read with its or at least one of its mates' (for paired-end reads) length less than this value will be ignored. If the references are not added poly(A) tails, the minimum allowed value is 5, otherwise, the minimum allowed value is 25. Note that this script will only check if the value >= 5 and give a warning message if the value < 25 but >= 5. (Default: 25) =item B<--tag> The name of the optional field used in the SAM input for identifying a read with too many valid alignments. The field should have the format :i:, where a bigger than 0 indicates a read with too many alignments. (Default: "") =item B<--bowtie-path> The path to the bowtie executables. (Default: the path to the bowtie executables is assumed to be in the user's PATH environment variable) =item B<--bowtie-n> (Bowtie parameter) max # of mismatches in the seed. (Range: 0-3, Default: 2) =item B<--bowtie-e> (Bowtie parameter) max sum of mismatch quality scores across the alignment. (Default: 99999999) =item B<--bowtie-m> (Bowtie parameter) suppress all alignments for a read if > valid alignments exist. (Default: 200) =item B<--bowtie-chunkmbs> (Bowtie parameter) memory allocated for best first alignment calculation (Default: 0 - use bowtie's default) =item B<--phred33-quals> Input quality scores are encoded as Phred+33. (Default: on) =item B<--phred64-quals> Input quality scores are encoded as Phred+64 (default for GA Pipeline ver. >= 1.3). (Default: off) =item B<--solexa-quals> Input quality scores are solexa encoded (from GA Pipeline ver. < 1.3). (Default: off) =item B<--forward-prob> Probability of generating a read from the forward strand of a transcript. Set to 1 for a strand-specific protocol where all (upstream) reads are derived from the forward strand, 0 for a strand-specific protocol where all (upstream) read are derived from the reverse strand, or 0.5 for a non-strand-specific protocol. (Default: 0.5) =item B<--fragment-length-min> Minimum read/insert length allowed. This is also the value for the bowtie -I option. (Default: 1) =item B<--fragment-length-max> Maximum read/insert length allowed. This is also the value for the bowtie -X option. (Default: 1000) =item B<--fragment-length-mean> (single-end data only) The mean of the fragment length distribution, which is assumed to be a Gaussian. (Default: -1, which disables use of the fragment length distribution) =item B<--fragment-length-sd> (single-end data only) The standard deviation of the fragment length distribution, which is assumed to be a Gaussian. (Default: 0, which assumes that all fragments are of the same length, given by the rounded value of B<--fragment-length-mean>) =item B<--estimate-rspd> Set this option if you want to estimate the read start position distribution (RSPD) from data. Otherwise, RSEM will use a uniform RSPD. (Default: off) =item B<--num-rspd-bins> Number of bins in the RSPD. Only relevant when '--estimate-rspd' is specified. Use of the default setting is recommended. (Default: 20) =item B<--ci-memory> Maximum size (in memory, MB) of the auxiliary buffer used for computing credibility intervals (CI). Set it larger for a faster CI calculation. However, leaving 2 GB memory free for other usage is recommended. (Default: 1024) =item B<--keep-intermediate-files> Keep temporary files generated by RSEM. RSEM creates a temporary directory, 'sample_name.temp', into which it puts all intermediate output files. If this directory already exists, RSEM overwrites all files generated by previous RSEM runs inside of it. By default, after RSEM finishes, the temporary directory is deleted. Set this option to prevent the deletion of this directory and the intermediate files inside of it. (Default: off) =item B<--temporary-folder> Set where to put the temporary files generated by RSEM. If the folder specified does not exist, RSEM will try to create it. (Default: sample_name.temp) =item B<--time> Output time consumed by each step of RSEM to 'sample_name.time'. (Default: off) =item B<-q/--quiet> Suppress the output of logging information. (Default: off) =item B<-h/--help> Show help information. =back =head1 DESCRIPTION In its default mode, this program aligns input reads against a reference transcriptome with Bowtie and calculates expression values using the alignments. RSEM assumes the data are single-end reads with quality scores, unless the '--paired-end' or '--no-qualities' options are specified. Users may use an alternative aligner by specifying one of the --sam and --bam options, and providing an alignment file in the specified format. However, users should make sure that they align against the indices generated by 'rsem-prepare-reference' and the alignment file satisfies the requirements mentioned in ARGUMENTS section. One simple way to make the alignment file satisfying RSEM's requirements (assuming the aligner used put mates in a paired-end read adjacent) is to use 'convert-sam-for-rsem' script. This script only accept SAM format files as input. If a BAM format file is obtained, please use samtools to convert it to a SAM file first. For example, if '/ref/mouse_125' is the 'reference_name' and the SAM file is named 'input.sam', you can run the following command: convert-sam-for-rsem /ref/mouse_125 input.sam -o input_for_rsem.sam For details, please refer to 'convert-sam-for-rsem's documentation page. The SAM/BAM format RSEM uses is v1.4. However, it is compatible with old SAM/BAM format. However, RSEM cannot recognize 0x100 in the FLAG field. In addition, RSEM requires SEQ and QUAL are not '*'. The user must run 'rsem-prepare-reference' with the appropriate reference before using this program. For single-end data, it is strongly recommended that the user provide the fragment length distribution parameters (--fragment-length-mean and --fragment-length-sd). For paired-end data, RSEM will automatically learn a fragment length distribution from the data. Please note that some of the default values for the Bowtie parameters are not the same as those defined for Bowtie itself. The temporary directory and all intermediate files will be removed when RSEM finishes unless '--keep-intermediate-files' is specified. With the '--calc-ci' option, 95% credibility intervals and posterior mean estimates will be calculated in addition to maximum likelihood estimates. =head1 OUTPUT =over =item B File containing gene level expression estimates. The format of each line in this file is: gene_id expected_counts tau_value [pmc_value tau_pme_value tau_ci_lower_bound tau_ci_upper_bound] transcript_id_list Fields are separated by the tab character. Fields within "[]" are only presented if '--calc-ci' is set. pme stands for posterior mean estimation. pmc stands for posterior mean counts. ci_lower_bound(l) means the lower bound of the credibility intervals, ci_upper_bound(u) means the upper bound of the credibility intervals. So the credibility interval is [l, u]. 'transcript_id_list' is a space-separated list of transcript_ids belonging to the gene. If no gene information is provided, this file has the same content as 'sample_name.isoforms.results'. =item B File containing isoform level expression values. The format of each line in this file is: transcript_id expected_counts tau_value [pmc_value tau_pme_value tau_ci_lower_bound tau_ci_upper_bound] gene_id Fields are separated by the tab character. 'gene_id' is the gene_id of the gene which this transcript belongs to. If no gene information is provided, 'gene_id' and 'transcript_id' are the same. =item B Only generated when --no-bam-output is not specified. 'sample_name.transcript.bam' is a BAM-formatted file of read alignments in transcript coordinates. The MAPQ field of each alignment is set to min(100, floor(-10 * log10(1.0 - w) + 0.5)), where w is the posterior probability of that alignment being the true mapping of a read. In addition, RSEM pads a new tag ZW:f:value, where value is a single precision floating number representing the posterior probability. Because this file contains all alignment lines produced by bowtie or user-specified aligners, it can also be used as a replacement of the aligner generated BAM/SAM file. For paired-end reads, if one mate has alignments but the other does not, this file marks the alignable mate as "unmappable" (flag bit 0x4) and appends an optional field "Z0:A:!". 'sample_name.transcript.sorted.bam' and 'sample_name.transcript.sorted.bam.bai' are the sorted BAM file and indices generated by samtools (included in RSEM package). =item B Only generated when --no-bam-output is not specified and --output-genome-bam is specified. 'sample_name.genome.bam' is a BAM-formatted file of read alignments in genomic coordinates. Alignments of reads that have identical genomic coordinates (i.e., alignments to different isoforms that share the same genomic region) are collapsed into one alignment. The MAPQ field of each alignment is set to min(100, floor(-10 * log10(1.0 - w) + 0.5)), where w is the posterior probability of that alignment being the true mapping of a read. In addition, RSEM pads a new tag ZW:f:value, where value is a single precision floating number representing the posterior probability. If an alignment is spliced, a XS:A:value tag is also added, where value is either '+' or '-' indicating the strand of the transcript it aligns to. 'sample_name.genome.sorted.bam' and 'sample_name.genome.sorted.bam.bai' are the sorted BAM file and indices generated by samtools (included in RSEM package). =item B Only generated when --time is specified. It contains time (in seconds) consumed by aligning reads, estimating expression levels and calculating credibility intervals. =item B This is a folder instead of a file. All model related statistics are stored in this folder. Use 'rsem-plot-model' can generate plots using this folder. =back =head1 EXAMPLES Assume the path to the bowtie executables is in the user's PATH environment variable. Reference files are under '/ref' with name 'mouse_125'. 1) '/data/mmliver.fq', single-end reads with quality scores. Quality scores are encoded as for 'GA pipeline version >= 1.3'. We want to use 8 threads and generate a genome BAM file: rsem-calculate-expression --phred64-quals \ -p 8 \ --output-genome-bam \ /data/mmliver.fq \ /ref/mouse_125 \ mmliver_single_quals 2) '/data/mmliver_1.fq' and '/data/mmliver_2.fq', paired-end reads with quality scores. Quality scores are in SANGER format. We want to use 8 threads and do not generate a genome BAM file: rsem-calculate-expression -p 8 \ --paired-end \ /data/mmliver_1.fq \ /data/mmliver_2.fq \ /ref/mouse_125 \ mmliver_paired_end_quals 3) '/data/mmliver.fa', single-end reads without quality scores. We want to use 8 threads: rsem-calculate-expression -p 8 \ --no-qualities \ /data/mmliver.fa \ /ref/mouse_125 \ mmliver_single_without_quals 4) Data are the same as 1). We want to take a fragment length distribution into consideration. We set the fragment length mean to 150 and the standard deviation to 35. In addition to a BAM file, we also want to generate credibility intervals. We allow RSEM to use 1GB of memory for CI calculation: rsem-calculate-expression --bowtie-path /sw/bowtie \ --phred64-quals \ --fragment-length-mean 150.0 \ --fragment-length-sd 35.0 \ -p 8 \ --output-genome-bam \ --calc-ci \ --ci-memory 1024 \ /data/mmliver.fq \ /ref/mouse_125 \ mmliver_single_quals 5) '/data/mmliver_paired_end_quals.bam', paired-end reads with quality scores. We want to use 8 threads: rsem-calculate-expression --paired-end \ --bam \ -p 8 \ /data/mmliver_paired_end_quals.bam \ /ref/mouse_125 \ mmliver_paired_end_quals =cut