

User Guide

PAML:

Phylogenetic Analysis

by Maximum Likelihood
Version 4.8a (August 2014)

Ziheng Yang

 P A M L M A N U A L 1

© Copyright 1993-2008 by Ziheng Yang

The software package is provided "as is" without warranty of any kind. In no event shall the author or his employer be held
responsible for any damage resulting from the use of this software, including but not limited to the frustration that you may
experience in using the package. The program package, including source codes, example data sets, executables, and this
documentation, is distributed free of charge for academic use only. Permission is granted to copy and use programs in the
package provided no fee is charged for it and provided that this copyright notice is not removed.

Suggested citations:

Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood
Computer Applications in BioSciences 13:555-556.

Yang, Z. 2007. PAML 4: a program package for phylogenetic analysis by maximum likelihood.
Molecular Biology and Evolution 24: 1586-1591
(http://abacus.gene.ucl.ac.uk/software/paml.html).

Recent changes and bug fixes are documented in the file doc/pamlHistory.txt.

The author can be reached at the following address. However, emails are not welcome: please post
your questions and comments at the PAML discussion site: http://gsf.gc.ucdavis.edu/.

Ziheng Yang

Department of Biology
University College London
Gower Street
London WC1E 6BT
England

Fax: +44 (20) 7679 7096

 P A M L M A N U A L 2

Table of Contents
1 Overview... 3

PAML documentation .. 3
What PAML programs can do ... 3
What PAML programs cannot do .. 4

2 Compiling and punning PAML programs... 6
Windows... 6
UNIX.. 6
Mac OS X... 7
Running a program.. 7
Example data sets .. 8

3 Data file formats .. 10
Sequence data file format .. 10

Sequential and interleaved formats .. 10
Site pattern counts.. 12

Tree file format and representations of tree topology ... 14
4 baseml ... 17

Nucleotide substitution models .. 17
The control file... 18

5 basemlg ... 27
6 codeml (codonml and aaml) .. 28

Codon substitution models... 28
Amino acid substitution models ... 32
The control file... 32

Codon sequences (seqtype = 1)... 33
Amino acid sequences (seqtype = 2) ... 36

7 evolver... 38
8 yn00... 41
9 mcmctree .. 42

Overview.. 42
The control file... 44
Fossil calibration... 48
Dating viral divergences.. 53
Approximate likelihood calculation... 53
Infinitesites program.. 54

10 Miscelaneous notes... 55
Analysing large data sets and iteration algorithms ... 55
Tree search algorithms .. 55
Generating bootstrap data sets.. 56
The rub file recording the progress of iteration .. 56
Specifying initial values ... 57
Fine-tuning the iteration algorithm ... 57
Adjustable variables in the source codes... 58
Using PAML with other phylogenetic programs ... 58

PHYLIP ... 58
PAUP, MacClade, and MrBayes ... 59
Clustal .. 59
MEGA ... 59
MOLPHY .. 59
FigTree... 59
TreeView ... 60

Windows notes ... 60
UNIX/Linux/Mac OSX notes.. 60

11 References... 62
Index ... 68

 P A M L M A N U A L 3

1 Overview

PAML (for Phylogenetic Analysis by Maximum Likelihood) is a package of programs for
phylogenetic analyses of DNA and protein sequences using maximum likelihood.

PAML documentation

Besides this manual, please note the following resources:

 PAML web site: http://abacus.gene.ucl.ac.uk/software/PAML.html has information about
downloading and compiling the programs.

 PAML FAQ page: http://abacus.gene.ucl.ac.uk/software/pamlFAQs.pdf

 PAML discussion group at http://www.rannala.org/phpBB2/, where you can post bug
reports and questions.

What PAML programs can do

The PAML package currently includes the following programs: baseml, basemlg, codeml, evolver,
pamp, yn00, mcmctree, and chi2. A brief overview of the most commonly used models and
methods implemented in PAML is provided by Yang (2007). The book (Yang 2006) describes the
statistical and computational details. Examples of analyses that can be performed using the package
include

 Comparison and tests of phylogenetic trees (baseml and codeml);

 Estimation of parameters in sophisticated substitution models, including models of variable rates
among sites and models for combined analysis of multiple genes or site partitions (baseml and
codeml);

 Likelihood ratio tests of hypotheses through comparison of implemented models (baseml,
codeml, chi2);

 Estimation of divergence times under global and local clock models (baseml and codeml);

 Likelihood (Empirical Bayes) reconstruction of ancestral sequences using nucleotide, amino
acid and codon models (baseml and codeml);

 Generation of datasets of nucleotide, codon, and amino acid sequence by Monte Carlo
simulation (evolver);

 Estimation of synonymous and nonsynonymous substitution rates and detection of positive
selection in protein-coding DNA sequences (yn00 and codeml).

 Bayesian estimation of species divergence times incorporating uncertainties in fossil calibrations
(mcmctree).

The strength of PAML is its collection of sophisticated substitution models. Tree search algorithms
implemented in baseml and codeml are rather primitive, so except for very small data sets with say,
<10 species, you are better off to use another package, such as phylip, paup, or mrBayes, to infer the
tree topology. You can get a collection of trees from other programs and evaluate them using
baseml or codeml as user trees.

baseml and codeml. The program baseml is for maximum likelihood analysis of nucleotide
sequences. The program codeml is formed by merging two old programs: codonml, which
implements the codon substitution model of Goldman and Yang (1994) for protein-coding
DNA sequences, and aaml, which implements models for amino acid sequences. These two

 P A M L M A N U A L 4

are now distinguished by the variable seqtype in the control file codeml.ctl, with 1 for codon
sequences and 2 for amino acid sequences. In this document I use codonml and aaml to
mean codeml with seqtype = 1 and 2, respectively. The programs baseml, codonml, and
aaml use similar algorithms to fit models by maximum likelihood, the main difference being
that the unit of evolution in the Markov model, referred to as a "site" in the sequence, is a
nucleotide, a codon, or an amino acid for the three programs, respectively. Markov process
models are used to describe substitutions between nucleotides, codons or amino acids, with
substitution rates assumed to be either constant or variable among sites.

evolver. This program can be used to simulate sequences under nucleotide, codon and amino acid
substitution models. It also has some other options such as generating random trees, and
calculating the partition distances (Robinson and Foulds 1981) between trees.

basemlg. This program implements the (continuous) gamma model of Yang (1993). It is very slow
and unfeasible for data of more than 6 or 7 species. Instead the discrete-gamma model in
baseml should be used.

mcmctree. This implements the Bayesian MCMC algorithm of Yang and Rannala (2006) and
Rannala and Yang (2007) for estimating species divergence times.

pamp. This implements the parsimony-based analysis of Yang and Kumar (1996).

yn00. This implements the method of Yang and Nielsen (2000) for estimating synonymous and
nonsynonymous substitution rates (dS and dN) in pairwise comparisons of protein-coding
DNA sequences.

chi2. This calculates the 2 critical value and p value for conducting the likelihood ratio test. Run
the program by typing the program name “chi2”: it will print out the critical values for
different df (for example the 5% critical value with d.f. = 1 is 3.84). If you run the program
with one command-line argument, the program enters a loop to ask you to input the d.f. and
the test statistic and then calculates the p value. A third way of running the progam is to
include the d.f. and test statistic both as command-line argument.
chi2
chi2 p
chi2 1 3.84

What PAML programs cannot do

There are many things that you might well expect a phylogenetics package should do but PAML
cannot. Here is a partial list, provided in the hope that it might help you avoid wasting time.

 Sequence alignment. You should use some other programs such as Clustal or TreeAlign to
align the sequences automatically or do a manual alignment, perhaps with assistance from
programs such as BioEdit and GeneDoc. Manual adjustment does not seem to have reached
the mature stage to be entirely trustable so you should always do manual adjustment if you
can. If you are constructing thousands of alignments in genome-wide analysis, you should
implement some quality control, and, say, calculate some measure of sequence divergence
as an indication of the unreliability of the alignment. For coding sequences, you might align
the protein sequences and construct the DNA alignment based on the protein alignment.
Note that alignment gaps are treated as missing data in baseml and codeml (if cleandata
= 1). If cleandata = 1, all sites with ambiguity characters and alignment gaps are
removed.

 P A M L M A N U A L 5

 Gene prediction. The codon-based analysis implemented in codonml (codeml for codons
with seqtype = 1) assumes that the sequences are pre-aligned exons, the sequence length is
an exact multiple of 3, and the first nucleotide in the sequence is codon position 1. Introns,
spacers and other noncoding regions must be removed and the coding sequences must be
aligned before running the program. The program cannot process sequences downloaded
directly from GenBank, even though the CDS information is there. It cannot predict coding
regions either.

 Tree search in large data sets. As mentioned earlier, you should use another program to get
a tree or some candidate trees and use them as user trees to fit models that might not be
available in other packages.

 P A M L M A N U A L 6

2 Compiling and punning PAML programs

PAML programs use the old simple command-line interface. You download the archive from the
PAML web site, typically named PAML*.*.tar.gz, and unpack the files onto your hard disk. This is
one file for all platforms. Executables for windows are included, while for UNIX or MAC OS X,
you need compile the programs before running them.

Windows

The executables for Windows are included in the package.

1. Go to the PAML web site http://abacus.gene.ucl.ac.uk/software/paml.html and download the
latest archive and save it on your hard disk. Unpack, say, using WinZip, the archive into a
folder, say D:\software\paml\. Remember the name of the folder.

2. Start a "Command Prompt". Go to "Start – Programs – Accessories”. Alternatively,
choose “Start – Run” and type the command cmd and hit OK. You can right click on the
title bar to change the font, colour, size etc. of the window.

3. Change directory to the paml folder. For example you type one of the following.

d:
cd \software\paml
dir

4. Note that Windows commands and file names are case-insensitive. The folder src\ contains the source
files. The examples\ contains various example files, and bin\ contains Windows executables. You can
use Windows Explorer to look at the files. To run the program baseml using the default control file
baseml.ctl in the current folder, you can a command somewhat like the following.

bin\baseml

D:\software\paml4\bin\baseml

This causes baseml to read the default control file baseml.ctl in the current folder and do the
analysis according to its specifications. Now you can print out a copy of baseml.ctl, and
open a text editor to view the relevant sequence and tree files.
Similarly you can run codeml and look at the control file codeml.ctl.

Next you can prepare your own sequence data files and tree files. Control files and other input files
are all plain text files. A common problem occurs due to differences in the way UNIX and
Windows deal with carriage return or line breaks. If you use MS Word to prepare the input files,
you should save them as “Text with line breaks” or “Text without line breaks”. Sometimes only one
of those two works. Do not save the file as a Word document. I have collected some notes in the
section “Overcoming Windows Annoyances” in Appendix B.

If you insist on double-clicking, you can start Widows Explorer, and copy the executables to the
folder that contains the control file, and then double-click on the executables.

UNIX

UNIX executables are not provided in the package, so you will have to compile them using the
source files included in the package, in the src/folder. Note that UNIX commands and file or folder
names are case-sensitive. The following assumes that you are at the UNIX prompt.

1. Go to the PAML web site http://abacus.gene.ucl.ac.uk/software/paml.html and download the
lat

 P A M L M A N U A L 7

2. est archive and save on your hard disk. Unpack it using gzip, with a command like the
following (replace the version numbers and use the correct name for the archive file)
 gzip –d paml4.tar.gz
 tar xf paml4.tar

3. You can use ls to look at the files in the folder. Delete the Windows executables (.exe files) in the bin folder.
Then cd to the src/ folder to compile using make.

ls -lF bin (this should list the .exe files in the bin folder)
rm –r bin/*.exe
cd src
make
ls -lF
rm *.o
mv baseml basemlg codeml pamp evolver yn00 chi2 ../bin
cd ..
bin/codeml

4. Those commands compile the programs and generate executables called baseml, basemlg,
codeml, pamp, evolver, yn00, and chi2, which you can see with the ls command. Then
remove (rm) the intermediate object files *.o, and move (mv) the compiled executables into
bin/ folder in the PAML main folder (that is, ../bin from paml/src/). Then cd to the PAML
main folder and run codeml, using the default control file codeml.ctl. You can then print
out a copy of codeml.ctl and look at it (and the main result file mlc).

If the compilation (the make command) is unsuccessful, you might have to open and edit the file
Makefile before issuing the make command. For example, you can change cc to gcc and -fast to -
O3 or -O4. If that none of these works, look at the file readme.txt in the src/ folder for compiling
instructions. You can copy the compiling commands onto the command line. For example

cc –o baseml baseml.c tools.c –lm
cc –o codeml codeml.c tools.c -lm

would compile baseml and codeml using the C compiler cc. However, in this case code
optimization is not turned on. You should use compiler switches to optimize the code, say,

cc –o codeml –O3 codeml.c tools.c -lm

Finally, if your current folder is not on your search path, you will have to add ./ in front of the
executable file name even if the executable is in your current working folder; that is, use ./codeml
instead of codeml to run codeml.

Mac OS X

Since Mac OSX is UNIX, you should follow the instructions for UNIX above. Open a command
terminal (Applications-Utilities-Terminal) and then compile and run the programs from the terminal.
You cd to the paml/src/ folder and look at the readme.txt or Makefile files. See above. If you type
commands gcc or make and get a "Command not found" error, you will have to download the Apple
Developer’s Toolkit at the Apple web site http://developer.apple.com/tools/. There are some notes
about running programs on MAC OS X or UNIX at the FAQ page.

I have stopped distributing executables for old MACs running OS 9 or earlier.

Running a program

As indicated above, you run a program by typing its name from the command line. You should
know which folder your sequence file, tree file, and control file are, relative to your working folder.
If inexperienced, you may copy the executables to the folder containing your data files. Depending

 P A M L M A N U A L 8

on the model used, codeml may need a data file such as grantham.dat, dayhoff.dat,
jones.dat, wag.dat, mtREV24.dat, or mtmam.dat, so you should copy these files as well.

The programs produce result files, with names such as rub, lnf, rst, or rates. You should
not use these names for your own files as otherwise they will be overwritten.

Example data sets

The examples/ folder contains many example data sets. They were used in the original papers to
test the new methods, and I included them so that you could duplicate our results in the papers.
Sequence alignments, control files, and detailed readme files are included. They are intended to
help you get familiar with the input data formats and with interpretation of the results, and also to
help you discover bugs in the program. If you are interested in a particular analysis, get a copy of
the paper that described the method and analyze the example dataset to duplicate the published
results. This is particularly important because the manual, as it is written, describes the meanings of
the control variables used by the programs but does not clearly explain how to set up the control file
to conduct a particular analysis.

examples/HIVNSsites/: This folder contains example data files for the HIV-1 env V3 region
analyzed in Yang et al. (2000b). The data set is for demonstrating the NSsites models
described in that paper, that is, models of variable ratios among amino acid sites. Those
models are called the “random-sites” models by Yang & Swanson (2002) since a priori we
do not know which sites might be highly conserved and which under positive selection.
They are also known as “fishing-expedition” models. The included data set is the 10th data
set analyzed by Yang et al. (2000b) and the results are in table 12 of that paper. Look at the
readme file in that folder.

examples/lysin/: This folder contains the sperm lysin genes from 25 abalone species
analyzed by Yang, Swanson & Vacquier (2000a) and Yang and Swanson (2002). The data
set is for demonstrating both the “random-sites” models (as in Yang, Swanson & Vacquier
(2000a)) and the “fixed-sites” models (as in (Yang and Swanson 2002)). In the latter paper,
we used structural information to partition amino acid sites in the lysin into the “buried” and
“exposed” classes and assigned and estimated different ratios for the two partitions. The
hypothesis is that the sites exposed on the surface are likely to be under positive selection.
Look at the readme file in that folder.

examples/lysozyme/: This folder contains the primate lysozyme c genes of Messier and
Stewart (1997), re-analyzed by Yang (1998). This is for demonstrating codon models that
assign different ratios for different branches in the tree, useful for testing positive
selection along lineages. Those models are sometimes called branch models or branch-
specific models. Both the “large” and the “small” data sets in Yang (1998) are included.
Those models require the user to label branches in the tree, and the readme file and included
tree file explain the format in great detail. See also the section “Tree file and
representations of tree topology” later about specifying branch/node labels.

The lysozyme data set was also used by Yang and Nielsen (2002) to implement the so-
callled “branch-site” models, which allow the ratio to vary both among lineages and
among sites. Look at the readme file to learn how to run those models.

examples/MouseLemurs/: This folder includes the mtDNA alignment that Yang and Yoder
(2003) analyzed to estimate divergence dates in mouse lemurs. The data set is for
demonstrating maximum likelihood estimation of divergence dates under models of global
and local clocks. The most sophisticated model described in that paper uses multiple

 P A M L M A N U A L 9

calibration nodes simultaneously, analyzes multiple genes (or site partitions) while
accounting for their differences, and also account for variable rates among branch groups.
The readme file explains the input data format as well as model specification in detail. The
readme2 file explains the ad hoc rate smoothing procedure of Yang (2004).

examples/mtCDNA/: This folder includes the alignment of 12 protein-coding genes on the same
strand of the mitochondrial genome from seven ape species analyzed by Yang, Nielsen, &
Hasegawa (1998) under a number of codon and amino acid substitution models. The data
set is the “small” data set referred to in that paper, and was used to fit both the
“mechanistic” and empirical models of amino acid substitution as well as the “mechanistic”
models of codon substitution. The model can be used, for example, to test whether the rates
of conserved and radical amino acid substitutions are equal. See the readme file for details.

examples/TipDate/: This folder includes the alignment of 33 SIV/HIV-2 sequences,
compiled and analyzed by Lemey et al. (2003) and re-analyzed by Stadler and Yang (2012).
The readme file explains how to duplicate the ML and Bayesian results published in that
paper. Note that the sample date is the last field in the sequence name.

Some other data files are included in the package as well. The details follow.

brown.nuc and brown.trees: the 895-bp mtDNA data of Brown et al. (1982), used in Yang et
al. (1994) and Yang (1994b) to test models of variable rates among sites.

mtprim9.nuc and 9s.trees: mitochondrial segment consisting of 888 aligned sites from 9
primate species (Hayasaka et al. 1988), used by Yang (1994a) to test the discrete-gamma
model and Yang (1995) to test the auto-discrete-gamma models.

abglobin.nuc and abglobin.trees: the concatenated - and -globin genes, used by
Goldman and Yang (1994) in their description of the codon model. abglobin.aa is the
alignment of the translated amino acid sequences.

stewart.aa and stewart.trees: lysozyme protein sequences of six mammals (Stewart et al.
1987), used by Yang et al. (1995a) to test methods for reconstructing ancestral amino acid
sequences.

 P A M L M A N U A L 1 0

3 Data file formats

Sequence data file format

Have a look at some of the example data files in the package (.nuc, .aa, and .nex). As long as you
get your data file into one of the formats, PAML programs should be able to read it. The “native”
format is the PHYLIP format used in Joe Felsenstein’s PHYLIP package (Felsenstein 2005) (but see
below). PAML has limited support for the NEXUS file format used by PAUP and MacClade. Only
the sequence data or trees are read, and command blocks are ignored. PAML does not deal with
comment blocks in the sequence data block, so please avoid them.

Sequential and interleaved formats

Below is an example of the PHYLIP format (Felsenstein 2005). The first line contains the number
of species and the sequence length (possibly followed by option characters). For codon sequences
(codeml with seqtype = 1), the sequence length in the sequence file refers to the number of
nucleotides rather than the number of codons. The only options allowed in the sequence file are I, S,
P, C, and G. The sequences may be in either interleaved format (option I, example data file
abglobin.nuc), or sequential format (option S, example data file brown.nuc). The default option
is S, so you don’t have to specify it. Option G is used for combined analysis of multiple gene data
and is explained below. The following is an example data set in the sequential format. It has 4
sequences each of 60 nucleotides (or 20 codons).

 4 60
sequence 1
AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2
AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3
AAGCTTCACCGGCGCAGTTGTTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4
AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

Species/sequence names. Do not use the following special symbols in a species/sequence name: “, :
() $ =” in a species name as they are used for special purposes and may confuse the programs.
The symbol @ can be used as part and end of the sequence name to specify the date of
determination of that sequence, for example, virus1@1984. The @ symbol is considered part of the
name and the sequence was determined in 1984. The maximum number of characters in a species
name (LSPNAME) is specified at the beginning of the main programs baseml.c and codeml.c.
In PHYLIP, exactly 10 characters are used for a species name, which I often found to be too
restrictive. So I use a default value of 30. To make this discrepancy less a problem, PAML
considers two consecutive spaces as the end of a species name, so that the species name does not
have to have exactly 30 (or 10) characters. To make this rule work, you should not have two
consecutive spaces within a species name. For example the above data set can have the following
format too.

 4 60
sequence 1 AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2 AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3 AAGCTTCACC GGCGCAGTTG TTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4 AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

 P A M L M A N U A L 1 1

If you want the file to be readable by both PHYLIP and PAML, you should limit the number of
characters in the name to 10 and separate the name and the sequence by at least two spaces.

In a sequence, T, C, A, G, U, t, c, a, g, u are recognized as nucleotides (for baseml, basemlg and
codonml), while the standard one-letter codes (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W,
Y, V or their lowercase equivalents) are recognized as amino acids. Ambiguity characters
(undetermined nucleotides or amino acids) are allowed as well. Three special characters ".", "-", and
"?" are interpreted like this: a dot means the same character as in the first sequence, a dash means an
alignment gap, and a question mark means an undetermined nucleotide or amino acid. Non-
alphabetic symbols such as ><!’"£$%&^[]()0123456789 inside a sequence are simply ignored and
can be freely used as signposts. Lines do not have to be equally long and you can put the whole
sequence on one line.

The way that ambiguity characters and alignment gaps are treated in baseml and codeml depends
on the variable cleandata in the control file. In the maximum likelihood analysis, sites at which at
least one sequence involves an ambiguity character are removed from all sequences before analysis
if cleandata = 1, while if cleandata = 0, both ambiguity characters and alignment gaps are treated
as ambiguity characters. In the pairwise distance calculation (the lower-diagonal distance matrix in
the output), cleandata = 1 means “complete deletion”, with all sites involving ambiguity characters
and alignment gaps removed from all sequences, while cleandata = 0 means “pairwise deletion”,
with only sites which have missing characters in the pair removed.

There are no models for insertions and deletions in the PAML programs. So an alignment gap is
treated as an ambiguity (that is, a question mark ?). Note also that for codon sequences, removal of
any nucleotide means removal of the whole codon.

Notes may be placed at the end of the sequence file and will be ignored by the programs.

Option G: This option is for combined analyses of heterogeneous data sets such as data of multiple
genes or data of the three codon positions. The sequences must be concatenated and the option is
used to specify which gene or codon position each site is from.

There are three formats with this option. The first format is illustrated by an excerpt of a sequence
file listed below. The example data of Brown et al. (1982) are an 895-bp segment from the
mitochondrial genome, which codes for parts of two proteins (ND4 and ND5) at the two ends and
three tRNAs in the middle. Sites in the sequence fall naturally into 4 classes: the three codon
positions and the tRNA coding region. The first line of the file contains the option character G. The
second line begins with a G at the first column, followed by the number of site classes. The
following lines contain the site marks, one for each site in the sequence (or each codon in the case of
codonml). The site mark specifies which class each site is from. If there are g classes, the marks
should be 1, 2, ..., g, and if g > 9, the marks need to be separated by spaces. The total number of
marks must be equal to the total number of sites in each sequence.

 5 895 G
G 4
3
123
123
123
123
123
123
123
1231231231231231231231231231231231231
44

 P A M L M A N U A L 1 2

44
44
444444444444444444
123
123
123
12312312312312312312312312312312312312312312312312312312312
Human
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATT
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATC........
Chimpanzee
.........

The second format is useful if the data are concatenated sequences of multiple genes, shown below
for an example data set. This sequence has 1000 nucleotides from 4 genes, obtained from
concatenating four genes with 100, 200, 300, and 400 nucleotides from genes 1, 2, 3, and 4,
respectively. The "lengths" for the genes must be on the line that starts with G, i.e., on the second
line of the sequence file. (This requirement allows the program to determine which of the two
formats is being used.) The sum of the lengths for the genes should be equal to the number of
nucleotides, amino acids, or codons in the combined sequence for baseml (or basemlg), aaml, and
codonml, respectively.

5 1000 G
G 4 100 200 300 400
Sequence 1
TCGATAGATAGGTTTTAGGGGGGGGGGTAAAAAAAAA.......

The third format applies to protein-coding DNA sequences only (for baseml). You use option
characters GC on the first line instead of G alone. The program will then treat the three codon
positions differently in the nucleotide-based analysis. It is assumed that the sequence length is an
exact multiple of three.

 5 855 GC
human GTG CTG TCT CCT ...

Option G for codon sequences (codeml with seqtype = 1). The format is similar to the same option
for baseml, but note that the sequence length is in number of nucleotides while the gene lengths are
in number of codons. This has been a source of confusion. Below is an example:

 5 300 G
G2 40 60

This data set has 5 sequences, each of 300 nucleotides (100 codons), which are partitioned into two
genes, with the first gene having 40 codons and the second gene 60 codons.

Site pattern counts

The sequence alignment can also be input in the form of site patterns and counts of sites having
those site patterns. This format is specified by the option “P” on the first line of the input data file,
as illustrated by the following example. Here there are 3 sequences, 8 site patterns, with "P"
indicating that the data are site patterns and not sites. The "P" option is used in the same way as
options "I" for interleaved format and "S" for sequential format (default). The 8 numbers below the
alignment are the numbers of sites having the 8 patterns above. For example, at 100 sites, all three
species has G, and at 200 sites all three species has T, and so on. In total there are 100 + 200 + 40 +
… + 14 = 440 sites.

 3 8 P

human GTACTGCC
rabbit GTACTACT
rat GTACAGAC

100 200 40 50 11 12 13 14

 P A M L M A N U A L 1 3

This example applies to baseml and basemlg, program for nucleotide-based analysis. To specify
multiple genes (site partitions), one may use option G together with option P.

 3 10 PG
G 2 4 6

human GTTA CATGTC
rabbit GTCA CATATT
rat GTTA CAAGTC

100 200 40 50 120 61 12 13 54 12

Here there are 10 site patterns and 2 genes (site partitions). The first 4 patterns are for the first gene
while the next 6 patterns are for the second gene, with a total of 10 site patterns. In partition 1 there
are 40 sites having the data AAA (nucleotide A in all three species), and while in partition 2 there
are 61 such sites.

The same format applies to protein sequences (codeml with seqtype = 2), with amino acids replacing
nucleotides in the examples above.

For codon sequences (codeml with seqtype = 1), the format is as follows. There are 3 species, and 9
site patterns, with 6 sites having the first site pattern (which has the codon GTG in all three species).
Note that 27 = 9*3. The program requires that you use 3 times the number of codon site patterns
here. This is strange but consistent with the sequential or interleaved sequence format, where the
sequence length is specified in the number of nucleotides rather than number of codons. (Initially I
did this so that the same file can be read by both baseml for nucleotide based analysis and codonml
for codon based analysis.)

 3 27 P G

human GTG CTG TCT CCT GCC GAC AAG ACC
rabbit G.C T..
rat C ..T

 6 1 1 1 1 4 3 1 1

To specify multiple genes for codon site patterns, see the following example.

 3 27 P G
G 2 4 5

human GTG CTG TCT CCT GCC GAC AAG ACC
rabbit G.C T..
rat C ..T

 6 1 1 1 1 4 3 1 1

Here there are again 9 codon site patterns in total, with the first 4 patterns for gene 1 and the next 5
patterns for gene 2.

Furthermore, option variable P can be used together with option variable I or S. PI means that the
site patterns are listed using the interleaved format while PS means that the site patterns are listed
using the sequential format. P without I or S uses the default sequential format. Having the whole
sequence of all site patterns on one line conforms with both the I and S formats, so there is no need
to specify I or S.

If you run baseml and codeml to read the sequential or interleaved formats of sequences, the output
will include a print-out in this partitioned format. Look for the line “Printing out site pattern
counts”. You can move this block into a new file and later on read that file instead, if it takes a long
time to pack sites into patterns. Note the restrictions with the P format below.

 P A M L M A N U A L 1 4

Here are some restrictions to this option. Some outputs are disabled for this option, including
ancestral sequence reconstruction and posterior estimates of rates for sites (or site patterns), that you
can get for sequences by using RateAncestor = 1. Second, some of the calculations require the
sequence length, which I set to the sum of the site pattern frequencies. If the site pattern frequencies
are not counts of sites but are instead site pattern probabilities, calculations involving sequence
length will not be correct. Such calculations include the SEs for MLEs, the numbers of sites S and N
in codonml, for example.

Possible uses of this option. Sometimes I use evolver to simulate very long sequences (with >1M
sites) and it can take minutes or hours to collapse sites into patterns, which is irritating when the
maximum likelihood iteration takes a few seconds and I want to use the same data to run multiple
models. A similar case is analysis of large genomic data of long sequences with >100Mb sites. In
this case you can run baseml or codeml once, and then copy the pattern counts from the output file
into a data file. Next time, you run the program you can read the new file. This way the program
skips the step of counting site patterns. Note that the pattern counts do not have to be integers. You
can calculate the site pattern probabilities under a model and then read the probabilities for analysis
using a different model to see whether the correct tree is still recovered. The site pattern
probabilities under the model amount to a dataset of infinite size (infinitely many sites). This way,
you can check whether the tree reconstruction method is still consistent. See Debry (1992) and
Yang (1994c) for such analysis. (I need to enable baseml and codeml for printing site pattern
probabilities.)

Tree file format and representations of tree topology

A tree structure file is used when runmode = 0 or 1. The file name is specified in the appropriate
control file. The tree topology is typically specified using the parenthesis notation, although it is
possible to use a branch representation, as described below.

Parenthesis notation: The first is the familiar parenthesis representation, used in most phylogenetic
software. The species can be represented using either their names or their indexes corresponding to
the order of their occurrences in the sequence data file. If species names are used, they have to
match exactly those in the sequence data file (including spaces or strange characters). Branch
lengths are allowed. The following is a possible tree structure file for a data set of four species
(human, chimpanzee, gorilla, and orangutan, occurring in this order in the data file). The first tree is
a star tree, while the next four trees are the same.

 4 5 // 4 species, 5 trees
(1,2,3,4); // the star tree
((1,2),3,4); // species 1 and 2 are clustered together
((1,2),3,4); // Commas are needed with more than 9 species
((human,chimpanzee),gorilla,orangutan);
((human:.1,chimpanzee:.2):.05,gorilla:.3,orangutan:.5);

If the tree has branch lengths, baseml and codeml allow you to use the branch lengths in the tree as
starting values for maximum likelihood iteration.

Whether you should use rooted or unrooted trees depends on the model, for example, on whether a
molecular clock is assumed. Without the clock (clock = 0), unrooted trees should be used, such as
((1,2),3,4) or (1,2,(3,4)). With the clock or local-clock models, the trees should be rooted and these
two trees are different and both are different from (((1,2),3),4). In PAML, a rooted tree has a
bifurcation at the root, while an unrooted tree has a trifurcation or multifurcation at the root.

Tree files produced by PAUP and MacClade. PAML programs have only limited compatibility with
the tree file generated by PAUP or MacClade. First the “[&U]” notation for specifying an unrooted
tree is ignored. For the tree to be accepted as an unrooted tree by PAML, you have to manually

 P A M L M A N U A L 1 5

modify the tree file so that there is a trifurcation at the root, for example, by changing “(((1,2),3),4)”
into “((1,2),3,4)”. Second, the “Translate” keyword is ignored by PAML as well, and it is assumed
that the ordering of the sequences in the tree file is exactly the same as the ordering of the sequences
in the sequence data file.

Branch or node labels. Some models implemented in baseml and codeml allow several groups
of branches on the tree, which are assigned different parameters of interest. For example, in the
local clock models (clock = 2 or 3) in baseml or codeml, you can have, say, 3 branch rate groups,
with low, medium, and high rates respectively. Also the branch-specific codon models (model = 2
or 3 for codonml) allow different branch groups to have different s, leading to so called “two-
ratios” and “three-ratios” models. All those models require branches or nodes in the tree to be
labeled. Branch labels are specified in the same way as branch lengths except that the symbol “#” is
used rather than “:”. The branch labels are consecutive integers starting from 0, which is the default
and does not have to be specified. For example, the following tree

((Hsa_Human, Hla_gibbon) #1, ((Cgu/Can_colobus, Pne_langur), Mmu_rhesus), (Ssc_squirrelM, Cja_marmoset));

is from the tree file examples/lysozyme/lysozyme.trees, with a branch label for fitting models of
different ratios for branches. The internal branch ancestral to human and gibbon has the ratio 1,
while all other branches (with the default label #0) have the background ratio 0. This fits the
model in table 1C for the small data set of lysozyme genes in Yang (1998). See the readme file in
the examples/lysozyme/ folder.

On a big tree, you might want to label all branches within a clade. For this purpose, you can use the
clade label $. $ is for , which looks like a good clade symbol but is missing on most keyboards.
So (clade) $2 is equivalent to labeling all nodes/branches within the clade with #2. The following
two trees are thus equivalent.

(((rabbit, rat) $1, human), goat_cow, marsupial);
(((rabbit #1, rat #1) #1, human), goat_cow, marsupial);

Here are the rules concerning nested clade labels. The symbol # takes precedence over the symbol
$, and clade labels close to the tips take precedence over clade labels for ancestral nodes close to the
root. So the following two trees are equivalent. In the first tree below, $1 is first applied to the
whole clade of placental mammals (except for the human lineage), and then $2 is applied to the
rabbit-rat clade.

((((rabbit, rat) $2, human #3), goat_cow) $1, marsupial);
((((rabbit #2, rat #2) #2, human #3) #1, goat_cow #1) #1, marsupial);

Note that with this rule, it may make a difference whether or not you include a label $0. For
example

((a, b) $0, (c, d)) $1;

labels the three branches on the left side (to a, to b, and to both a and b) as #0, while the other
branches are #1. However the following would label all branches in the tree as #1.

((a, b), (c, d)) $1;

I have found it convenient to create the tree file with labels and read the tree using Rod page’s
(1996) TreeView to check that the tree and labels are right. The example trees above should be
readable by TreeView. For TreeView X, however, you may have to put the labels inside single
quotation marks, like the following.

((((rabbit '#2', rat '#2') '#2', human '#3') '#1', goat_cow '#1') '#1', marsupial);

 P A M L M A N U A L 1 6

This way, the tree is readable by both TreeView and TreeView X (and by baseml/codeml as well).
Note that TreeView and TreeView X do not accept labels for tips or tip branches, and may interpret
the labels as part of the sequence name. Another program that you can use to create and/or view
branch or node labels is Andrew Rambaut’s FigTree, available for the MAC. I have no experiencing
of using it.

Divergence date symbol @. Fossil calibration information is specified using the symbol @. This is
used for the clock and local clock models in baseml and codeml. See the readme file in the
examples/MouseLemurs/ folder. So in the following example, the human-chimpanzee divergence is
fixed at 5MY.

((gorilla, (human, chimpanzee) '@0.05'), orangutan);

This kind of calibration information (point calibration) is not used by the Bayesian dating program
mcmctree. See descriptions later.

Branch representation of tree topology: A second way of representing the tree topology used in
PAML is by enumerating its branches, each of which is represented by its starting and ending nodes.
This representation is also used in the result files for outputting the estimated branch lengths, but
you can also use it in the tree file. For example, the tree ((1,2),3,4) can be specified by enumerating
its 5 branches:

 5
 5 6 6 1 6 2 5 3 5 4

The nodes in the tree are indexed by consecutive natural numbers, with 1, 2, ..., s representing the s
known sequences in the data, in the same order as in the data. A number larger than s labels an
internal node, at which the sequence is unknown. So in the above tree, node 5 is ancestral to nodes
6, 3, and 4, while node 6 is ancestral to nodes 1 and 2.

This notation is convenient to specify a tree in which some sequences in the data are direct ancestors
to some others. For example, the following tree for 5 sequences has 4 branches, with sequence 5 to
be the common ancestor of sequences 1, 2, 3, and 4:

 4
5 1 5 2 5 3 5 4

Warning. I did not try to make this tree representation work with all models implemented in
baseml and codeml. If you use this representation, you should test the program carefully. If it does
not work, you can let me know so that I will try to fix it.

 P A M L M A N U A L 1 7

4 baseml

Nucleotide substitution models

For detailed descriptions of Markov models of nucleotide substitution, see Whelan et al. (2001),
Felsenstein (2004) or Yang (2006: Chapter 1).

Models used in PAML include JC69 (Jukes and Cantor 1969), K80 (Kimura 1980), F81 (Felsenstein
1981), F84 (Felsenstein, DNAML program since 1984, PHYLIP Version 2.6), HKY85 (Hasegawa
et al. 1984; Hasegawa et al. 1985), Tamura (1992), Tamura and Nei (1993), and REV, also known
as GTR for general-time-reversible (Yang 1994b; Zharkikh 1994). The rate matrices are
parametrized as follows.

JC69 : Q =

. 1 1 1

. 1 1

1 . 1 1

1 1 . 1

1 1 1 .

K80 : Q =
. 1 1

1 1 .

1 1 .

.

G

F81 : Q =
.

.

.

C A G

T A

T C G

T C A

F84: Q =

. (1)

R G

(1) .

. (1)

(1) .

Y C A G

Y T A G

T C

T C R A

.

G

with Y = T + C and R = A + G.

HKY85: Q =
.

.

.

C A G

T A

T C G

T C A

 P A M L M A N U A L 1 8

T92: Q =

. (1) / 2 / 2 / 2

.

G

G

(1) / 2 . / 2 / 2

(1) / 2 (1) / 2 . / 2

(1) / 2 (1) / 2 / 2 .

GC GC GC

GC GC GC

GC GC GC

GC GC GC

TN93: Q =

1

1

2

2

.

.

.

C A G

T A

T C

T C A

.

G

a b c

e

REV (GTR): Q =
.

.

.

C A G

T A

T C G

T C A

a d

b d

c e

. .q q q a b c

f

UNREST Q = .
. .

. .

. .

TC TA TG

CT CA CG

AT AC AG

GT GC GA

q q q d e

q q q g h i

q q q j k l

The control file

The default control file for baseml is baseml.ctl, and an example is shown below. Note that
spaces are required on both sides of the equal sign, and blank lines or lines beginning with "*" are
treated as comments. Options not used can be deleted from the control file. The order of the
variables is unimportant.

 seqfile = brown.nuc * sequence data file name
 outfile = mlb * main result file
 treefile = brown.trees * tree structure file name

 noisy = 3 * 0,1,2,3: how much rubbish on the screen
 verbose = 0 * 1: detailed output, 0: concise output
 runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
 * 3: StepwiseAddition; (4,5):PerturbationNNI

 model = 5 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
 * 5:T92, 6:TN93, 7:REV, 8:UNREST, 9:REVu; 10:UNRESTu
 Mgene = 0 * 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff

* ndata = 1 * number of data sets
 clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:CombinedAnalysis
 TipDate = 0 100 * TipDate (1) & time unit
 fix_kappa = 0 * 0: estimate kappa; 1: fix kappa at value below
 kappa = 2.5 * initial or fixed kappa

 fix_alpha = 1 * 0: estimate alpha; 1: fix alpha at value below
 alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
 Malpha = 0 * 1: different alpha's for genes, 0: one alpha
 ncatG = 5 * # of categories in the dG, AdG, or nparK models of rates

 fix_rho = 1 * 0: estimate rho; 1: fix rho at value below
 rho = 0. * initial or fixed rho, 0:no correlation
 nparK = 0 * rate-class models. 1:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK

 nhomo = 0 * 0 & 1: homogeneous, 2: kappa for branches, 3: N1, 4: N2
 getSE = 0 * 0: don't want them, 1: want S.E.s of estimates

 P A M L M A N U A L 1 9

 RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states

 Small_Diff = 1e-6
* cleandata = 1 * remove sites with ambiguity data (1:yes, 0:no)?
* icode = 0 * (RateAncestor=1 for coding genes, "GC" in data)
* fix_blength = 0 * 0: ignore, -1: random, 1: initial, 2: fixed
 method = 0 * 0: simultaneous; 1: one branch at a time

The control variables are described below.

seqfile, outfile, and treefile specifies the names of the sequence data file, main result file,
and the tree structure file, respectively. You should not have spaces inside a file name. In
general try to avoid special characters in a file name as they might have special meanings
under the OS.

noisy controls how much output you want on the screen. If the model being fitted involves much
computation, you can choose a large number for noisy to avoid loneliness. verbose
controls how much output in the result file.

runmode = 0 means evaluation of the tree topologies specified in the tree structure file, and
runmode = 1 or 2 means heuristic tree search by the star-decomposition algorithm. With
runmode = 2, the algorithm starts from the star tree, while if runmode = 1, the program will
read a multifurcating tree from the tree structure file and try to estimate the best bifurcating
tree compatible with it. runmode = 3 means stepwise addition. runmode = 4 means NNI
perturbation with the starting tree obtained by a parsimony algorithm, while runmode = 5
means NNI perturbation with the starting tree read from the tree structure file. The tree
search options do not work well, and so use runmode = 0 as much as you can. For
relatively small data set, the stepwise addition algorithm seems usable.

model specifies the model of nucleotide substitution. Models 0, 1, …, 8 represent models JC69,
K80, F81, F84, HKY85, T92, TN93, REV (also known as GTR), and UNREST,
respectively. Check Yang (1994b) or Yang (2006: table 1.1) for notation. Two more user-
specified models are implemented as special cases of the REV/GTR model (model = 9) or
of the UNREST model (model = 10). These models are called REVu and UNRESTu. The
format is illustrated in the following examples. The number in the brackets [] is the number
of free rate parameters; this is then followed by nucleotide pairs which should have the same
rates, grouped in the same pair of parentheses. For example, the line for SYM specifies an
UNRESTu model with 5 rates, with one rate for AC and CA changes, one rate for
AG and GA changes, and so on. The model has a symmetrical rate matrix Q, so that
the equilibrium frequencies are ¼ for each nucleotide. Note that under UNREST and
UNRESTu, the equilibrium nucleotide frequencies are not parameters but are given by the
rate parameters: see equation 1.56 in Yang (2006). Similarly model = 9 specifies special
cases of the REV/GTR model, or REVu models. In one specifies TC or CT, but not both of
them, since those are assumed to have the same rate (exchangeability) parameers.

model = 10 [0] /* JC69 */
model = 10 [1 (TC CT AG GA)] /* K80 */
model = 10 [11 (TA) (TG) (CT) (CA) (CG) (AT) (AC) (AG) (GT) (GC) (GA)] /* UNREST */
model = 10 [5 (AC CA) (AG GA) (AT TA) (CG GC) (CT TC)] /* SYM */
model = 9 [2 (TA TG CA CG) (AG)] /* TN93 */

Mgene is used in combination with option G in the sequence data file, for combined analysis of data
from multiple genes or multiple site partitions (such as the three codon positions) (Yang
1996a; pages 116-8 in Yang 2006). Such models are also called partition models. Choose
0 if option G is not used in the data file.

 P A M L M A N U A L 2 0

The description here refers to multiple genes, but apply to any strategy of partitioning sites,
such as by codon position. Similar partition models are implemented in codeml for
analyzing codon or amino acid sequences.

The models are summarized in table 1. The simplest model which assumes complete
homogeneity among genes can be fitted by concatenating different genes into one sequence
without using the option G (and by specifying Mgene = 0 in the control file). The most
general model is equavilent to a separate analysis, and can be done by fitting the same
model to each data set (each gene), but can also be done by specifying Mgene = 1 with the
option G in the combined data file. The sum of the log-likelihood values over different
genes is then the log likelihood of the most general model considered here. Models
accounting for some aspects of the heterogeneity of multiple genes are fitted by specifying
Mgene in combination with the option G in the sequence data file. Mgene = 0 means a
model that asumes different substitution rates but the same pattern of nucleotide substitution
for different genes. Mgene = 2 means different frequency parameters for different genes but
the same rate ratio parameters (in the K80, F84, HKY85 models or the rate parameters in
the TN93 and REV models). Mgene = 3 means different rate ratio parameters and the same
frequency parameters. Mgene = 4 means both different rate ratio parameters and different
frequency parameters for different genes. Parameters and assumptions made in these models
are summarized in the following table, with the HKY85 model used as an example. When
substitution rates are assumed to vary from site to site, the control variable Malpha
specifies whether one gamma distribution will be applied across all sites (Malpha = 0) or a
different gamma distribution is used for each gene (or codon position).

Table 1. Setups of partition models of nucleotide substitution
Sequence file Control file Parameters across genes
No G Mgene = 0 everything equal
Option G Mgene = 0 the same and , but different cs (proportional

branch lengths)
Option G Mgene = 2 the same , but different s and cs
Option G Mgene = 3 the same , but different s and cs
Option G Mgene = 4 different , s, and cs
Option G Mgene = 1 different , s, and different (unproportional) branch

lengths

The different cs for different genes mean that branch lengths estimated for different genes
are proportional. Parameters represent the equilibrium nucleotide frequencies, which are
estimated using the observed frequencies (nhomo = 0). The transition/transversion rate ratio
 in HKY85 can be replaced by the two or five rate ratio parameters under the TN93 or
REV models, respectively. The likelihood ratio test can be used to compare these models,
using an approach called the analysis of deviance (McCullagh and Nelder 1989), which is
very similar to the more familiar analysis of variance.

ndata: specifies the number of separate data sets in the file. This variable is useful for simulation.
You can use evolver to generate 200 replicate data sets, and then set ndata = 200 to use
baseml to analyze them.

clock specifies models concerning rate constancy or variation among lineages. clock = 0 means
no clock and rates are entirely free to vary from branch to branch. An unrooted tree should
be used under this model. For a binary tree with n species (sequences), this model has (2n –
3) parameters (branch lengths). clock = 1 means the global clock, and all branches have
the same rate. This model has (n – 1) parameters corresponding to the (n – 1) internal nodes

 P A M L M A N U A L 2 1

in the binary tree. So a test of the molecular clock assumption, which compares those two
models, should have d.f. = n – 2.

clock = 2 specifies the local clock models(Yoder and Yang 2000; Yang and Yoder 2003).
Most branches in the phylogeny conform with the clock assumption and has the default rate
(r0 = 1), but some pre-defined branches may have different rates. Rates for branches are
specified using branch labels (# and $) in the tree file. For example, the tree (((1,2) #1, 3),
4) specifies rate r1 for the branch ancestral to species 1 and 2 while all other branches have
the default rate r0, which does not have to be specified. The user need to specify which
branch has which rate, and the program estimates the unknown rates (such as r1 in the above
example; r0 = 1 is the default rate). You need to be careful when specifying rates for
branches to make sure that all rates can be estimated by the model; if you specify too many
rate parameters, especially for branches around the root, it may not be possible to estimate
all of them and you will have a problem with identifiability. The number of parameters for
a binary tree in the local clock model is (n – 1) plus the number of extra rate parameters for
branches. In the above tree of 4 species, you have only one extra rate parameter r1, and so
the local clock model has (n – 1) + 1 = n = 4 parameters. The no-clock model has 5
parameters while the global clock has 3 parameters for that tree.

The option clock = 3 is for combined analysis of multiple-gene or multiple-partition data,
allowing the branch rates to vary in different ways among the data partitions (Yang and
Yoder 2003). To account for differences in the evolutionary process among data partitions,
you have to use the option G in the sequence file as well as the control variable Mgene in
the control file (baseml.ctl or codeml.ctl). Read Yang and Yoder (2003) and the readme file
in the examples/MouseLemurs/ folder to duplicate the analysis of that paper. Also the
variable (= 5 or 6) is used to implement the ad hoc rate smoothing procedure of Yang
(2004). See the file readme2.txt for instructions and the paper for details of the model.

For clock = 1 or 2, a rooted tree should be used. If fossil calibration information is specified
in the tree file using the symbol @ or =, the absolute rate will be calculated. Multiple
calibration points can be specified this way, but only point calibrations (where a node age is
assumed to be known without error) are accepted and bounds are not accepted. See
instructions about the mcmctree program, which accepts bounds or other distributions as
calibrations.

TipDate is used to estimate ages of node ages on the rooted tree when the sequences at the tips
having sampling dates, as in the case of sequentially sampled viral sequences. The sample
dates are the the last field in the sequence name. The time unit is specified by the user on
this line. Look at README.txt in examples/TipDate/.

fix_kappa specifies whether in K80, F84, or HKY85 is given at a fixed value or is to be
estimated by iteration from the data. If fix_kappa = 1, the value of another variable,
kappa, is the given value, and otherwise the value of kappa is used as the initial estimate
for iteration. The variables fix_kappa and kappa have no effect with JC69 or F81 which
does not involve such a parameter, or with TN93 and REV which have two and five rate
parameters respectively, when all of them are estimated from the data.

fix_alpha and alpha work in a similar way, where alpha refers to the shape parameter of the
gamma distribution for variable substitution rates across sites (Yang 1994a). The model of a
single rate for all sites is specified as fix_alpha = 1 and alpha = 0 (0 means infinity),
while the (discrete-) gamma model is specified by a positive value for alpha, and ncatG is
then the number of categories for the discrete-gamma model (baseml). Values such as 5, 4,

 P A M L M A N U A L 2 2

8, or 10 are reasonable. Note that the discrete gamma model has one parameter (), like the
continuous gamma model, and the number of categories is not a parameter.

The mdel of invariable sites is not implemented in PAML programs. I don’t like the model
as it generates a strong correlation between the proportion of invariable sites and the gamma
shape parameter. It is implemented in PAUP and MrBayes, for example.

To infer rates at individual sites, use RateAncestor = 1. See below. Using a large number
of categories (say, ncatG = 40) may be helpful if you are interested in calculating such rates.

For detailed descriptions of those models, see Yang (1996b), Chapter 1 of Yang (2006) and
chapters 13 and 16 of Felsenstein (2004).

fix_rho and rho work in a similar way and concern independence or correlation of rates at
adjacent sites, where (rho) is the correlation parameter of the auto-discrete-gamma model
(Yang 1995). The model of independent rates for sites is specified as fix_rho = 1 and rho
= 0; choosing alpha = 0 further means a constant rate for all sites. The auto-discrete-
gamma model is specified by positive values for both alpha and rho. The model of a
constant rate for sites is a special case of the (discrete) gamma model with = (alpha =
0), and the model of independent rates for sites is a special case of the auto-discrete-gamma
model with = 0 (rho = 0).

nparK specifies nonparametric models for variable and Markov-dependent rates across sites: nparK
= 1 or 2 means several (ncatG) categories of independent rates for sites, while nparK = 3
or 4 means the rates are Markov-dependent at adjacent sites; nparK = 1 and 3 have the
restriction that each rate category has equal probability while nparK = 2 and 4 do not have
this restriction (Yang 1995). The variable nparK takes precedence over alpha or rho.

nhomo is for baseml only, and concerns the frequency parameters in some of the substitution
models. The option nhomo = 1 fits a homogeneous model, but estimates the frequency
parameters (T, C and A; G is not a free parameter as the frequencies sum to 1) by
maximum likelihood iteration. This applies to F81, F84, HKY85, T92 (in which case only
GC is a parameter), TN93, or REV models. With nhomo = 0, these are estimated by the
averages of the observed frequencies. For both nhomo = 0 and 1, you should count 3 (or 1
for T92) free parameters for the base frequencies.

Options nhomo = 3, 4, and 5 work with F84, HKY85, or T92 (see note below about GTR).
They fit the nonhomogeneous models of Yang and Roberts (1995) and Galtier and Gouy
(1998). The nucleotide substitution is specified by the variable model and is one of F84,
HKY85 or T92, but with different frequency parameters used in the rate matrix for different
branches in the tree, to allow for unequal base frequencies in different sequences. The
position of the root then makes a difference to the likelihood, and rooted trees are used.
Because of the parameter richness, the model may only be used with small trees except that
you have extremely long sequences. Yang and Roberts (1995) used the HKY85 or F84
models, and so three independent frequency parameters are used to describe the substitution
pattern, while Galtier and Gouy (1998) used the T92 substitution model and uses the GC
content GC only, with the base frequencies give as T = A = (1 – GC)/2 and C = G =
GC/2. The option nhomo = 4 assigns one set of frequency parameters for the root, which
are the initial base frequencies at the root, and one set for each branch in the tree. This is
model N2 in Yang and Roberts (1995) if the substitution model is F84 or HKY85 or the
model of Galtier and Gouy (1998) if the substitution model is T92. Option nhomo = 3 uses

 P A M L M A N U A L 2 3

one set of base frequencies for each tip branch, one set for all internal branches in the tree,
and one set for the root. This specifies model N1 in Yang and Roberts (1995).

The option nhomo = 5 lets the user specify how many sets of frequency parameters should
be used and which node (branch) should use which set. The set for the root specifies the
initial base frequencies at the root while the set for any other node is for parameters in the
substitution matrix along the branch leading to the node. You use branch (node) labels in
the tree file (see the subsection “Tree file and representations of tree topology” above) to tell
the program which set each branch should use. There is no need to specify the default set
(0). So for example nhomo = 5 and the following tree in the tree file species sets 1, 2, 3, 4,
and 5 for the tip branches, set 6 for the root, while all the internal branches (nodes) will have
the default set 0. This is equivalent to nhomo = 3.

((((1 #1, 2: #2), 3 #3), 4 #4), 5 #5) #6;

The output for nhomo = 3, 4, 5 is under the heading “base frequency parameters (4 sets) for
branches, and frequencies at nodes”. Two sets of frequencies are listed for each node. The
first set are the parameters (used in the substitution rate matrix for the branch leading to the
node), and the second set are the expected base frequencies at the node, calculated from the
model ((Yang and Roberts 1995); page 456 column top). If the node is the root, the same
set of frequencies are printed twice.

Note that the use of the variable fix_kappa here with nhomo = 3, 4 or 5 is unusual.
fix_kappa = 1 means one common is assumed and estimated for all branches, while
fix_kappa = 0 means one is estimated for each branch.

nhomo = 2 uses one transition/transversion rate ratio () for each branch in the tree for the
K80, F84, and HKY85 models (Yang 1994b; Yang and Yoder 1999).

Note about GTR+nhomo. The GTR model is implemented for nhomo=4 as well. I think
one set of rate parameters a, b, c, d, e are estimated whether fix_kappa = 0 or 1.

getSE = 0, 1, or 2 tells whether we want estimates of the standard errors of estimated parameters.
These are crude estimates, calculated by the curvature method, i.e., by inverting the matrix
of second derivatives of the log-likelihood with respect to parameters. The second
derivatives are calculated by the difference method, and are not always reliable. Even if this
approximation is reliable, tests relying on the SE's should be taken with caution, as such
tests rely on the normal approximation to the maximum likelihood estimates. The likelihood
ratio test should always be preferred. The option is not available and choose getSE = 0
when tree-search is performed.

RateAncestor = 0 or 1. Usually use 0. The value 1 forces the program to do two additional
analyses, which you can ignore if you don’t need the results. First under a model of variable
rates across sites such as the gamma, RateAncestor = 1 forces the program to calculate
rates for individual sites along the sequence (output in the file rates), using the empirical
Bayes procedure (Yang and Wang 1995).

Second RateAncestor = 1 forces the program to perform the empirical Bayesian
reconstruction of ancestral sequences (Yang et al. 1995a; Koshi and Goldstein 1996; Yang
2006 pages 119-124). Ancestral state reconstruction by parsimony (Fitch 1971; Hartigan
1973) is well known (implemented in the program pamp in PAML). It can also be achieved
using the likelihood/empirical Bayes approach. Often the two approaches produce similar
results, but the likelihood-based reconstruction has two advantages over parsimony: it uses

 P A M L M A N U A L 2 4

information from the branch lengths and the relative substitution rates between characters
(nucleotides), and it provides a measure of uncertainties in the form of posterior
probabilities for reconstructed ancestral states.

The outputs are listed, by site, in the file rst. You can also use the variable verbose to
control the amount of output. If verbose = 0, only the best nucleotide (the one with the
highest posterior proobability) at each node at each site is listed, while with verbose = 1
(try 2 if 1 does not work), the full posterior probability distribution from the marginal
reconstruction is listed. If the model is homogenous (nhomo = 0, 1) and assumes one rate
for all sites, both the joint and marginal ancestral reconstructions will be calculated. If the
model assumes variable rates among sites like the gamma model, only the marginal
reconstructions are calculated.

Marginal and joint reconstructions. Marginal reconstruction considers character
assignments to one single interior node and the character with the highest posterior
probability is the best reconstruction (eq. 4 in Yang et al. 1995a; or Eq. 4.15 in Yang 2006).
The algorithm for marginal reconstruction implemented in PAML works under both the
model of a constant rate for all sites and the gamma model of rates at sites. Joint
reconstruction considers all ancestral nodes at the same time and the reconstruction (the set
of characters at a site assigned to all interior nodes) with the highest posterior probability is
the best reconstruction (eq. 2 in Yang et al. 1995a; or Eq. 4.16 in Yang 2006). The
algorithm for joint reconstruction implemented in PAML is based on that of Pupko et al.
(2000), which gives the best reconstruction at each site and its posterior probability. This
works under the model of one rate for all sites only. (It works under the partition models.)
The marginal and joint approaches use slightly different criteria, and expected to produce
consistent results; that is, the most probable joint reconstruction for a site should almost
always consist of characters that are also the best in the marginal reconstruction. Conflicts
may arise in borderline cases where two or more reconstructions have similar posterior
probabilities.

A good use of ancestral sequence reconstruction is to synthesize the inferred ancestral
proteins and measure their biochemical properties in the lab (Pauling and Zuckerkandl 1963;
Chang and Donoghue 2000; Thornton 2004). It is also very popular to use reconstructed
ancestral sequences as if they were real observed data to perform further analysis. You
should resist this irresistible temptation and use full likelihood methods if they are available
(e.g., Yang 2002). See section 4.4.4 in Yang (2006) for a discussion of systematic biases in
ancestral reconstruction.

For nucleotide based (baseml) analysis of protein coding DNA sequences (option GC in
the sequence data file), the program also calculates the posterior probabilities of ancestral
amino acids. In this analysis, branch lengths and other parameters are estimated under a
nucleotide substitution model, but the reconstructed nucleotide triplets are treated as a codon
to infer the most likely amino acid encoded. Posterior probabilities for stop codons are
small and reset to zero to scale the posterior probabilities for amino acids. To use this
option, you should add the control variable icode in the control file baseml.ctl. This is
not listed in the above. The variable icode can take a value out of 0, 1, ..., 11,
corresponding to the 12 genetic codes included in PAML (See the control file codeml.ctl
for the definition of different genetic codes). A nucleotide substitution model that is very
close to a codon-substitution model can be specified as follows. You add the option
characters GC at the end of the first line in the data file and choose model = 4 (HKY85) and
Mgene = 4. The model then assumes different substitution rates, different base frequencies,
and different transition/transversion rate ratio (kappa) for the three codon positions.

 P A M L M A N U A L 2 5

Ancestral reconstruction from such a nucleotide substitution should be very similar to
codon-based reconstruction.

Ancestral reconstruction under nonhomogeneous models. I have added the option of joint
ancestral reconstruction under the nonhomogeneous models. The option variables are
nhomo = 3 (N1 in YR1995), 4 (N2 in YR1995), and 5 (user-specified branch types) and
model = 3 , 4, 5, 6, 7 (3:F84, 4:HKY85, 5:T92, 6:TN93, 7:REV). This works only for the
model of one rate for all sites, and does not work for the model of gamma rates for sites or
the partition models (option G). Only joint reconstruction is availale as the algorithm I used
for marginal reconstruction does not work for nonhomogeneous models.

Small_Diff is a small value used in the difference approximation of derivatives. Use a value
between 1e-8 and 1e-5 and check that the results are not sensitive to the value used.

cleandata = 1 means sites involving ambiguity characters (undetermined nucleotides such as N,
?, W, R, Y, etc. anything other than the four nucleotides) or alignment gaps are removed
from all sequences. This leads to faster calculation. cleaddata = 0 (default) uses those sites.

method: This variable controls the iteration algorithm for estimating branch lengths under a model
of no clock. method = 0 implements the old algorithm in PAML, which updates all
parameters including branch lengths simultaneously. method = 1 specifies an algorithm
newly implemented in PAML, which updates branch lengths one by one. method = 1 does
not work under the clock models (clock = 1, 2, 3).

icode: This specifies the genetic code to be used for ancestral reconstruction of protein-coding
DNA sequences. This is implemented to compare results of ancestral reconstruction with
codon-based analysis. For example the F34 codon model of Goldman and Yang (1994) is
very similar to the nucleotide model HKY85 with different substitution rates and base
frequencies for the three codon positions. The latter is implemented by using use options
GC in the sequence data file and model = 4 and Mgene = 4. To use the option icode,
you have to choose RateAncestor = 1.

fix_blength: This tells the program what to do if the tree has branch lengths. Use 0 if you want
to ignore the branch lengths. Use –1 if you want the program to start from random starting
points. This might be useful if there are multiple local optima. Use 1 if you want to use the
branch lengths as initial values for the ML iteration. Try to avoid using the “branch
lengths” from a parsimony analysis from PAUP, as those are numbers of changes for the
entire sequence (rather than per site) and are very poor initial values. Use 2 if you want the
branch lengths to be fixed at those given in the tree file (rather than estimating them by
ML). In this case, you should make sure that the branch lengths are sensible; for example, if
two sequences in the data file are different, but the branch lengths connecting the two
sequences in the tree are all zero, the data and tree will be in conflict and the program will
crash.

Output: The output should be self-explanatory. Descriptive statistics are always listed. The
observed site patterns and their frequencies are listed, together with the proportions of constant
patterns. Nucleotide frequencies for each species (and for each gene in case of multiple gene data)
are counted and listed. lmax = ln(Lmax) is the upper limit of the log likelihood and may be
compared with the likelihood for the best (or true) tree under the substitution model to test the
model's goodness of fit to data (Goldman 1993; Yang et al. 1995b). You can ignore it if you don’t
know what it means. The pairwise sequence distances are included in the output as well, and also in
a separate file called 2base.t. This is a lower-diagonal distance matrice, readable by the
NEIGHBOR program in Felesenstein's PHYLIP package (Felsenstein 2005). For models JC69, K80,

 P A M L M A N U A L 2 6

F81, F84, the appropriate distance formulas are used, while for more complex models, the TN93
formula is used. baseml is mainly a maximum likelihood program, and the distance matrix is
printed out for convenience and really has nothing to do with the later likelihood calculation.

With getSE = 1, the S.E.s are calculated as the square roots of the large sample variances and listed
exactly below the parameter estimates. Zeros on this line mean errors, either caused by divergence
of the algorithm or zero branch lengths. The S.Es of the common parameters measure the reliability
of the estimates. For example, (1)/SE(), when is estimated under K80, can be compared with
a normal distribution to see whether there is real difference between K80 and JC69. The test can be
more reliably performed by comparing the log-likelihood values under the two models, using the
likelihood ratio test. It has to be stressed that the S.E.’s of the estimated branch lengths should not be
misinterpreted as an evaluation of the reliability of the estimated tree topology (Yang 1994c).

If the tree file has more than one tree, the programs baseml and codeml will calculate the
bootstrap proportions using the RELL method (Kishino and Hasegawa 1989), as well as the method
of Shimodaira and Hasegawa (1999) with a correction for multiple comparison. The bootstrap
resampling accounts for possible data partitions (option G in the sequence data file).

 P A M L M A N U A L 2 7

5 basemlg

basemlg uses the same control file baseml.ctl, as baseml. Tree-search or the assumption of a
molecular clock are not allowed and so choose runmode = 0 and clock = 0. Substitution models
available for basemlg are JC69, F81, K80, F84 and HKY85, and a continuous gamma is always
assumed for rates at sites. The variables ncatG, given_rho, rho, nhomo have no effect. The
S.E.'s of parameter estimates are always printed out because they are calculated during the iteration,
and so getSE has no effect.

Because of the intensive computation required by basemlg, the discrete-gamma model
implemented in baseml is recommended for data analysis. If you choose to use basemlg, you
should run baseml first, and then run basemlg. This allows baseml to collect initial values into a
file named in.basemlg, for use by basemlg. Note that basemlg implements only a subset of
models in baseml.

 P A M L M A N U A L 2 8

6 codeml (codonml and aaml)

Codon substitution models

There is now a large collection of codon substitution models. See Yang and Bielawski (2000), Yang
(2002) and Yang (2006: Chapter 8) for detailed discussions.

The basic model in common use is a simplified version of the model of Goldman and Yang (1994)
and specifies the substitution rate from codon i to codon j as

0, if the two codons differ at more than one position,

, for synonymous transversion,

, for synonymous transition,

, for nonsynonymous transversion,

, for nonsynonymous transition,

j

ij j

j

j

q

(Yang et al. 1998). The equilibrium frequency of codon j (j) can be considered a free parameter,
but can also be calculated from the nucleotide frequencies at the three codon positions (control
variable CodonFreq). Under this model, the relationship holds that = dN/dS, the ratio of
nonsynonymous/synonymous substitution rates. This basic model is fitted by specifying model = 0
NSsites = 0, in the control file codeml.ctl.

The ratio is a measure of natural selection acting on the protein. Simplistically, values of < 1, =
1, and > 1 means negative purifying selection, neutral evolution, and positive selection. However,
the ratio averaged over all sites and all lineages is almost never > 1, since positive selection is
unlikely to affect all sites over prolonged time. Thus interest has been focused on detecting positive
selection that affects only some lineages or some sites.

The branch models allow the ratio to vary among branches in the phylogeny and are useful for
detecting positive selection acting on particular lineages (Yang 1998; Yang and Nielsen 1998).
They are specified using the variable model. model = 1 fits the so-called free-ratios model, which
assumes an independent ratio for each branch. This model is very parameter-rich and its use is
discouraged. model = 2 allows you to have several ratios. You have to specify how many ratios
and which branches should have which rates in the tree file by using branch labels. See “Branch or
node labels” in the section “Tree file format” in Chapter 4. The lysozyme example data files are
included in the examples/lysozyme/ folder; check the readme file.

 P A M L M A N U A L 2 9

Table 2. Parameters in the site models

Model NSsites #p Parameters Note
M0 (one ratio) 0 1 (Goldman and Yang 1994;

Yang and Nielsen 1998)
M1a (neutral) 1 2 p0 (p1 = 1 – p0),

0 < 1, 1 = 1
(Nielsen and Yang 1998;
Yang et al. 2005)

M2a (selection) 2 4 p0, p1 (p2 = 1 – p0 – p1),
0 < 1, 1 = 1, 2 > 1

(Nielsen and Yang 1998;
Yang et al. 2005)

M2a_ref 22 4 p0, p1 (p2 = 1 – p0 – p1),
0 < 1, 1 = 1, 2 > 0

2 > 0, for use as null for
testing the clade model
(Weadick and Chang 2012)

M3 (discrete) 3 5 p0, p1 (p2 = 1 – p0 – p1)

0, 1, 2
(Yang et al. 2000b)

M7 (beta) 7 2 p, q (Yang et al. 2000b)
M8 (beta&) 8 4 p0 (p1 = 1 – p0),

p, q, s > 1
(Yang et al. 2000b)

NOTE. #p is the number of free parameters in the distribution. Parameters in parentheses are
not free and should not be counted: for example, in M1a, p1 is not a free parameter as p1 = 1 – p0. In
both likelihood ratio tests comparing M1a against M2a and M7 against M8, df = 2. The site models
are specified using NSsites.

The site models allow the ratio to vary among sites (among codons or amino acids in the protein)
(Nielsen and Yang 1998; Yang et al. 2000b). A number of such models are implemented in
codeml using the variable Nssites (and model = 0). You can run several Nssites models in one
go, by specifying several values for NSsites. For example, NSsites = 0 1 2 7 8 will fit 5 models to
the same data in one go. The site models have been used in real data analyses and evaluated in
computer simulation studies (Anisimova et al. 2001; Anisimova et al. 2002; Anisimova et al. 2003;
Wong et al. 2004). Two pairs of models appear to be particularly useful, forming two likelihood
ratio tests of positive selection. The first compares M1a (NearlyNeutral) and M2a
(PositiveSelection), while the second compares M7 (beta) and M8 (beta&). M1a (NearlyNeutral)
and M2a (PositiveSelection) are slight modifications of models M1 (neutral) and M2 (selection) in
(Nielsen and Yang 1998). In both test, df = 2 should be used. The M1a-M2a comparison appears to
be more robust (or less powerful) than the M7-M8 comparison. See the table below. The old
models M1 and M2 fix 0 = 1 and 1 = 1, and are unrealistic as they do not account for sites with 0
< < 1. In the new models M1a and M2a, described in Wong et al. (2004) and Yang et al. (2005)
and implemented since version 3.14 (2004), 0 < 0 < 1 is estimated from the data while 1 = 1 is
fixed. Also the BEB procedure for identifying positively selected sites is implemented since version
3.14.

A third test compares the null hypothesis M8a (beta&s =1) and M8 (Swanson et al. 2003; Wong et
al. 2004). M8a is specified using NSsites = 8, fix_omega = 1, omega = 1. The null distribution is the

50:50 mixture of point mass 0 and (Self and Liang 1987). The critical values are 2.71 at 5% and

5.41 at 1% (as opposed to 3.84 for 5% and 6.63 for 1% for). Note that the p value for a 50:50

mixture of and is just the average of the two p values from the two distributions, in the case

of M8a-M8 comparison, you get the p value from and then half it to get the p value for the

mixture distribution. You can also use (Wong et al. 2004).

2
1

2
1

2
j

2
k

2
1

2
1

 P A M L M A N U A L 3 0

We suggest that The M0-M3 comparison should be used as a test of variable among sites rather
than a test of positive selection. However, the model of a single for all sites is probably wrong in
every functional protein, so there is little point of testing.

The naïve empirical Bayes (NEB) (Nielsen and Yang 1998; Yang et al. 2000b) and the Bayes
empirical Bayes (BEB) (Yang et al. 2005) are available for calculating the posterior probabilities for
site classes, and can be used to identify sites under positive selection if the likelihood ratio test is
significant. NEB uses the MLEs of parameters (such as the proportions and ratios) but do not
account for their sampling errors, while BEB deals with the sampling errors by applying a Bayesian
prior. BEB is implemented under models M2a and M8 only. We suggest that you ignore the NEB
output and use the BEB results only.

The BEB output has the following format:

Prob(w>1) mean w

135 K 0.983* 4.615 +- 1.329

Interpretation: 4.615 is the approximate mean of the posterior distribution for w, and 1.329 is the square root
of the variance in the posterior distribution for w. The program prints out an * if the posterior probability is
>95%, and ** if the probability is > 99%.

Suzuki and Gojobori’s (1999) method for detecting sites under positive selection. In the
terminology used here, The SG99 method tests whether the ratio for each site is >1 or <1. It uses
parsimony to reconstruct ancestral sequences, and then for each site, counts the numbers of
synonymous and nonsynonymous differences and the numbers of synonymous and nonsynonymous
sits. It then test whether the ratio at the site is significantly different from 1. Errors in the
ancestral sequence reconstruction are ignored. Suzuki has a program called AdaptSite that
implements the test. This is an intuitive test, and is known to lack power.

In codeml, a test of this kind is implemented as a by-product of ancestral sequence reconstruction in
codeml and baseml, which use ML to reconstruct ancestral sequences. Use RateAncestor = 1. The
choice of baseml versus codeml and also the choice of substitution model for each program affects
ancestral sequence reconstruction only. The later steps are the same, and follow Suzuki & Gojobori
(1999). For codeml, you can use M0 (NSsites = 0 and model = 0). If you want, you can try some
other models, such as NSsites = 2 or 8. The models for ancestral reconstruction typically make little
difference. For baseml, you should have "GC" on the first line of the sequence data file to indicate
that the sequences are protein coding. Use icode (= 0 for the universal code and 1 for vertebrate
mitochondrial code) in the control file to specify the genetic code, as in codeml. The following
“multiple-gene” model is close to M0: model = 4 Mgene = 4 (see (Yang 1996a) and the section
titled “Models for combined analysis of partitioned data”).

NSsites = 22 now specifies the site model M2a_rel of Weadick & Chang (2012). This is the same as
M2a except that 2 > 0, while model M2a (NSsites = 2) has 2 > 1. M2a_rel is the null model for
the likelihood ratio test based on clade model C (Weadick and Chang 2012).

The branch-site models allow to vary both among sites in the protein and across branches on the
tree and aim to detect positive selection affecting a few sites along particular lineages (called
foreground branches). Initially Yang and Nielsen (2002) implemented model A (model = 2 NSsites
= 2) and model B (model = 2 NSsites = 3). The tests did not work well in simulations (Zhang
2004), so a change was introduced to model A (table 3) (Yang et al. 2005; Zhang et al. 2005), with
two tests constructed. Test 2, also known the branch-site test of positive selection, is the
recommended test. This compares the modified model A with the corresponding null model with 2
= 1 fixed (fix_omega = 1 and omega = 1). The null distribution is the 50:50 mixture of point mass 0

and , with critical values 2.71 at 5% and 5.41 at 1%. To calculate the p value based on this 2
1

 P A M L M A N U A L 3 1

mixture distribution, you calculate the p value using , and then divide it by 2. Suppose your 2

= 2.71, you will get 0.10 from , the the p value for the mixture is 0.10/2 = 5%. We recommend

that you use (with critical values 3.84 and 5.99) instead of the mixture to guide against
violations of model assumptions.

2
1

2
1

2
1

Similarly both the NEB and BEB methods for calculating posterior probabilities for site classes are
implemented for the modified branch-site model A (not for model B). You should use model A in
combination with the BEB procedure and ignore the NEB output.

Table 3. Parameters in the branch-site models

Site Old model A (np = 3) New model A (np = 4)
class Proportion Background Foreground Background Foreground
0 p0 0 = 0 0 = 0 0 < 0 < 1 0 < 0 < 1
1 p1 1 = 1 1 = 1 1 = 1 1 = 1
2a (1 – p0 – p1) p0/(p0 + p1) 0 = 0 2 1 0 < 0 < 1 2 1
2b (1 – p0 – p1) p1/(p0 + p1) 1 = 1 2 1 1 = 1 2 1

NOTE. Branch-site model A is specified using model = 2 NSsites = 2. This is the alternative
model in the branch-site test of positive selection. The null model fixes 2 = 1. The likelihood
ratio test has df = 1 (see text).

Clade model C is specified by model = 3 Nssites = 2 while clade model D is specified by model = 3
NSsites = 3 using ncatG to specify the number of site classes (Bielawski and Yang 2004; see also
Forsberg and Christiansen 2003). Clade model C is changed, in a similar way to branch-site model
A. The new model C replaces 0 = 0 by 0 < 0 < 1 and has 5 parameters in the distribution: p0,
p1, 0, 2, and 3. The new model C can be compared with the new M1a (NearlyNeutral), which
has 2 parameters, with d.f. 3.

Table 4. Parameters in clade model C (old vs. new)

 Old model C (np = 4) New model C (np = 5)
Site class Proportion Clade 1 Clade 2 Clade 1 Clade 2
0 p0 0 = 0 0 = 0 0 < 0 < 1 0 < 0 < 1
1 p1 1 = 1 1 = 1 1 = 1 1 = 1
2 p2 = 1 – p0 – p1 2 3 2 3

Clade model D can work with ncatG = 3 or 2. The option variable ncatG is ignored when you
specify branch-site models A and B, and clade model C, since the number of categories is fixed in
the model.

The BEB procedure is implemented for clade model C but not for model D. You should use model
C in combination with the BEB procedure. Ignore the NEB output.

An extension has been made to clade models C and D to allow for more than two clades or branch
types. The branch types are specified using labels in the tree file. If you have four branch types
(labelled using #0, #1, #2, #3), the clade model will look like the following. Here 2, 3, 4, 5 are
independent parameters, optimized in the range (0,). The BEB calculation under clade model C is
very expensive (with each additional branch type increasing the computation by 10 folds), so that
the model should be used with just a few branch types. I think right now you can run clade model C
to get the MLEs and lnL for as many as 10 or 12 branch types, but the BEB calculation works only
if you have nore more than 5 branch types.

 P A M L M A N U A L 3 2

Table 5. Parameters in clade models C or D, with more than two branch types

Site class Proportion Clade 1 Clade 2 Clade 3 Clade 4
0 p0 0 < 0 < 1 0 < 0 < 1 0 < 0 < 1 0 < 0 < 1
1 p1 1 1 1 1
2 p2 = 1 – p0 – p1 2 3 4 5
In clade model C, 1 = 1 is fixed, while in clade model D, 1 is estimated as a free parameter.

The mutation-selection models of Yang and Nielsen (2008) are implemented using the control
variables

 CodonFreq = 7 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table
 * 4:F1x4MG, 5:F3x4MG, 6:FMutSel0, 7:FMutSel
 estFreq = 0 * 0: use observed freqs; 1: estimate freqs by ML

where CodonFreq = 6 specifies FMutSel0 and 7 specifies FmutSel. If estFreq = 1, the
frequency/fitness parameters are estimated by ML from the data, while if estFreq = 0, they are
calculated using the observed frequencies in the data. See Yang and Nielsen (2008) for details of
the model. Look at the README file in the examples/mtCDNAape/ folder, to see how to duplicate
results of table 1 in that paper.

Amino acid substitution models

I made a distinction between empirical and mechanistic models of amino acid substitution (Yang et
al. 1998; 2006: Chapter 2). Empirical models implemented in codeml include Dayhoff (Dayhoff et
al. 1978), JTT (Jones et al. 1992), WAG (Whelan and Goldman 2001), mtMam (Yang et al. 1998),
mtREV (Adachi and Hasegawa 1996a), etc. These are estimates of substitution rate parameters
under the general time reversible model from real datasets.

Mechanistic models are formulated by considering the mutational distance between the amino acids
as determined by the locations of their encoding codons in the genetic code, and the filtering of
mutations by natural seletion operating on the protein level (Yang et al. 1998). The program aaml
implements a few such models, specified by the variable aaDist.

The control file

Since the codon based analysis and the amino acid based analysis use different models, and some of
the control variables have different meanings, it may be a good idea to use different control files for
codon and amino acid sequences. The default control file for codeml is codeml.ctl, as shown
below.

 seqfile = stewart.aa * sequence data file name
 outfile = mlc * main result file name
 treefile = stewart.trees * tree structure file name

 noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
 verbose = 0 * 1: detailed output, 0: concise output
 runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
 * 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise

 seqtype = 2 * 1:codons; 2:AAs; 3:codons-->AAs
 CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table
* ndata = 10
 clock = 0 * 0:no clock, 1:clock; 2:local clock

 aaDist = 0 * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a
 * 7:AAClasses
 aaRatefile = wag.dat * only used for aa seqs with model=empirical(_F)
 * dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own

 model = 2

 P A M L M A N U A L 3 3

 * models for codons:
 * 0:one, 1:b, 2:2 or more dN/dS ratios for branches
 * models for AAs or codon-translated AAs:
 * 0:poisson, 1:proportional,2:Empirical,3:Empirical+F
 * 6:FromCodon, 8:REVaa_0, 9:REVaa(nr=189)

 NSsites = 0 * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;
 * 5:gamma;6:2gamma;7:beta;8:beta&w;9:betaγ
 * 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
 * 13:3normal>0

 icode = 0 * 0:universal code; 1:mammalian mt; 2-11:see below
 Mgene = 0 * 0:rates, 1:separate;

 fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated
 kappa = 2 * initial or fixed kappa
 fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate
 omega = .4 * initial or fixed omega, for codons or codon-based AAs

 fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha
 alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
 Malpha = 0 * different alphas for genes
 ncatG = 3 * # of categories in dG of NSsites models

 fix_rho = 1 * 0: estimate rho; 1: fix it at rho
 rho = 0. * initial or fixed rho, 0:no correlation

 getSE = 0 * 0: don't want them, 1: want S.E.s of estimates
 RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)

 Small_Diff = .5e-6
* cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
* fix_blength = 0 * 0: ignore, -1: random, 1: initial, 2: fixed
 method = 0 * 0: simultaneous; 1: one branch at a time

The variables seqfile, outfile, treefile, noisy, Mgene, fix_alpha, alpha, Malpha,
fix_rho, rho, clock, getSE, RateAncestor, Small_Diff, cleandata, ndata,
fix_blength, and method are used in the same way as in baseml.ctl and are described in the
previous section. The variable seqtype specifies the type of sequences in the data; seqtype = 1
means codon sequences (the program is then codonml); 2 means amino acid sequences (the
program is then aaml); and 3 means codon sequences which are to be translated into proteins for
analysis.

Codon sequences (seqtype = 1)

CodonFreq specifies the equilibrium codon frequencies in codon substitution model. These
frequencies can be assumed to be equal (1/61 each for the standard genetic code,
CodonFreq = 0), calculated from the average nucleotide frequencies (CodonFreq = 1),
from the average nucleotide frequencies at the three codon positions (CodonFreq = 2), or
used as free parameters (CodonFreq = 3). The number of parameters involved in those
models of codon frequencies is 0, 3, 9, and 60 (for the universal code), for CodonFreq = 0,
1, 2, and 3 respectively.

clock See the notes for the baseml control file.

aaDist specifies whether equal amino acid distances are assumed (= 0) or Grantham's matrix is
used (= 1) (Yang et al. 1998). The example mitochondrial data set analyzed in that paper is
included in the example/mtdna folder in the package. aaDist = 7 (AAClasses), which is
implemented for both codon and amino acid sequences, allow you to have several types of
amino acid substitutions and let the program estimate their different rates. The model was
implemented in Yang et al. (1998). The number of substitution types and which pair of
amino acid changes belong which type is specified in a file called OmegaAA.dat. You can
use the model to fit different ratios for “conserved” and “charged” amino acid
substitutions. The folder examples/mtCDNA contain example files for this model; check
the readme file in that folder.

 P A M L M A N U A L 3 4

runmode = -2 performs ML estimation of dS and dN in pairwise comparisons of protein-coding
sequences (seqtype = 1). The program will collect estimates of dS and dN into the files
2ML.dS and 2ML.dN. Since many users seem interested in looking at dN/dS ratios among
lineages, examination of the tree shapes indicated by branch lengths calculated from the two
rates may be interesting although the analysis is ad hoc. If your species names have no
more than 10 characters, you can use the output distance matrices as input to Phylip
programs such as neighbor without any change. Otherwise you need to edit the files to
cut the names short. For amino acid sequences (seqtype = 2), option runmode = -2 lets the
program calculate ML distances under the substitution model by numerical iteration, either
under the model of one rate for all sites (alpha = 0) or under the gamma model of rates for
sites (alpha ≠ 0). In the latter case, the continuous gamma is used and the variable ncatG is
ignored. (With runmode = 0, the discrete gamma is used.)
runmode = -3 implements a Bayesian method for estimating distance t and dN/dS ratio
 in pairwise comparisons (Angelis et al. 2014). The default gamma priors are t ~ G(1.1,
1.1) and ~ G(1.1, 2.2). To change the gamma parameters use

 runmode = -3 1.1 1.1 1.1 2.2 * -3: pairwise Bayesian

 The four numbers are t, t, , .

model specifies the branch models (Yang 1998; Yang and Nielsen 1998). model = 0 means one
ratio for all branches; 1 means one ratio for each branch (the free-ratio model); and 2 means
an arbitrary number of ratios (such as the 2-ratios or 3-ratios models). When model = 2,
you have to group branches on the tree into branch groups using the symbols # or $ in the
tree. See the section above about specifying branch/node labels.

With model = 2, the variable fix_omega fixes the last ratio (k 1 if you have k ratios in
total) at the value of omega specified in the file. This option is used to test whether the ratio
for the foreground branch is significantly greater than one. See the
examples/lysozyme/ folder to duplicate the results of Yang (1998).

NSsites specifies the site models, with NSsites = m corresponds to model Mm in Yang et al.
(2000b). The variable ncatG is used to specify the number of categories in the
distribution under some models. In Yang et al. (2000b), this is 3 for M3 (discrete), 5 for M4
(freq), 10 for the continuous distributions (M5: gamma, M6: 2gamma, M7: beta,
M8:beta&w, M9:beta&gamma, M10: beta&gamma+1, M11:beta&normal>1, and
M12:0&2normal>1, M13:3normal>0). For example, M8 has 11 site classes (10 from the
beta distribution plus 1 additional class for positive selection with s 1). See the section
Codon substittion models above about the changes to M1 and M2 introduced in PAML
version 3.14.

You can run several Nssites models in one batch, as follows, in which case the default
values of ncatG, as in Yang et al. (2000b), are used.

 NSsites = 0 1 2 3 7 8

The posterior probabilities for site classes as well as the expected values for sites are
listed in the file rst, which may be useful to identify sites under positive selection.

Look at the examples/hivNSsites/ and examples/lysine/ folders for example of analysis
under the site models.

 P A M L M A N U A L 3 5

The branch-site model A (see the section Codon substitution models above) is specified by
using both variables model and NSsites.

Model A: model = 2, NSsites = 2, fix_omega = 0

This is the alternative model for the branch-site test of positive selection. The null model is
also the branch-site model A but with 2 = 1 fixed, specified by

Model A1: model = 2, NSsites = 2, fix_omega = 1, omega = 1

Here are some notes about two old tests that we do not recommend. The old branch-site
model B (Yang and Nielsen 2002) is specified by

Model B: model = 2, NSsites = 3

The null model for the old test B is the NSsites model 3 (discrete) with 2 site classes:

Site model 3: model = 0, NSsites = 3, ncatG = 2

Use d.f. = 2. The large lysozyme data set analyzed by Yang and Nielesn (2002) is in the
examples/lysozyme folder.

Also branch-site test 1 described by Yang et al. (2005) and Zhang et al. (2005) uses the
modified branch-site model A as the alternative hypothesis, while the null hypothesis is the
new site model M1a (NearlyNeutral), with d.f. = 2. This test can be significant when the
foreground branches are either under relaxed selective constraint or under positive selection.
The advice is that you use test 2 instead, which is also known as the branch-site test of
positive selection.

The clade models C and D of Bielawski and Yang (2004) are specified by

Model C: model = 3, NSsites = 2
Model D: model = 3, NSsites = 3 ncatG = 2

See that paper for details. Similarly model C is modified and the BEB procedure is
implemented for model C only; see above.

icode specifies the genetic code. Eleven genetic code tables are implemented using icode = 0 to
10 corresponding to transl_table 1 to 11 in GenBank. These are 0 for the universal code; 1
for the mammalian mitochondrial code; 3 for mold mt., 4 for invertebrate mt.; 5 for ciliate
nuclear code; 6 for echinoderm mt.; 7 for euplotid mt.; 8 for alternative yeast nuclear; 9 for
ascidian mt.; and 10 for blepharisma nuclear. There is also an additional code, called
Yang’s regularized code, specified by icode = 11. In this code, there are 16 amino acids,
all differences at the first and second codon positions are nonsynonymous and all
differences at the third codon positions are synonymous; that is, all codons are 4-fold
degenerate. There is yet no report of any organisms using this code.

Mgene, in combination with option G in the sequence data file, specifies partition models (Yang and
Swanson 2002), as summarized in table 6. The lysin data set used in that paper is included
in the examples/ folder of the package. The analysis separates the buried and exposed
amino acids in the lysin into two partitions (“genes”), and heterogeneity between the
partitions are accounted for in the analysis. You can read the readme file and try to
duplicate the results in table 6 of Yang & Swanson (2002).

Table 6. Setups of partition models of codon substitution

 P A M L M A N U A L 3 6

Sequence file Control file Parameters across genes
No G Mgene = 0 everything equal
Option G Mgene = 0 the same (,)and , but different cs

(proportional branch lengths)
Option G Mgene = 2 the same (,), but different s and cs
Option G Mgene = 3 the same , but different (,) and cs
Option G Mgene = 4 different (,), s, and cs
Option G Mgene = 1 separate analysis

fix_alpha, alpha: For codon models, the pair fix_alpha and alpha specify the model of gamma rates
for sites, in which the relative rate for a site varies among codons according to the gamma
distribution, but the ratio stays the same over all sites. This is a lazy extension of the
gamma model of rates for nucleotides and amino acids. I don’t like this model and suggest
that you use the NSsites models instead (which is specified using the NSsites variable, with
fix_alpha = 1, alpha = 0). The program should abort if you specify both NSsites and alpha.

RateAncestor: See descriptions for the baseml control file.

Output for codon sequences (seqtype = 1): The codon frequencies in each sequence are counted
and listed in a genetic code table, together with their sums across species. Each table contains six or
fewer species. For data of multiple genes (option G in the sequence file), codon frequencies in each
gene (summed over species) are also listed. The nucleotide distributions at the three codon positions
are also listed. The method of Nei and Gojobori (1986) is used to calculate the number of
synonymous substitutions per synonymous site (dS) and the number of nonsynonymous substitutions
per nonsynonymous site (dN) and their ratio (dN/dS). These are used to construct initial estimates of
branch lengths for the likelihood analysis but are not MLEs themselves.

Results of ancestral reconstructions (RateAncestor = 1) are collected in the file rst. Under
models of variable dN/dS ratios among sites (NSsites models), the posterior probabilities for site
classes as well as positively selected sites are listed in rst.

Amino acid sequences (seqtype = 2)

model specifies the model of amino acid substitution: 0 for the Poisson model assuming equal rates
for any amino acid substitutions (Bishop and Friday 1987); 1 for the proportional model in
which the rate of change to an amino acid is proportional to the frequency of that amino
acid. Model = 2 specifies a class of empirical models, and the empirical amino acid
substitution rate matrix is given in the file specified by aaRatefile. Files included in the
package are for the empirical models of Dayhoff (dayhoff.dat), JTT, WAG (wag.dat),
mtMAM (mtmam.dat), mtREV24 (mtREV24.dat), etc.

If you want to specify your own substitution rate matrix, have a look at one of those files,
which has notes about the file structure. Other options for amino acid substitution models
should be ignored. To summarize, the variables model, aaDist, CodonFreq,
NSsites, and icode are used for codon sequences (seqtype = 1), while model,
alpha, and aaRatefile are used for amino acid sequences.

Mgene, in combination with option G in the sequence data file, specifies partition models (Yang
and Swanson 2002), as summarized in table 6. The lysin data set used in that paper is
included in the examples/ folder of the package. The analysis separates the buried and
exposed amino acids in the lysin into two partitions (“genes”), and heterogeneity between
the partitions are accounted for in the analysis. You can read the readme file and try to
duplicate the results in table 6 of Yang & Swanson (2002).

 P A M L M A N U A L 3 7

Table 7. Setups of partition models of amino acid substitution
Sequence file Control file Parameters across genes
No G Mgene = 0 everything equal
Option G Mgene = 0 the same , but different cs (proportional branch

lengths)
Option G Mgene = 2 different s and cs
Option G Mgene = 1 separate analysis

runmode also works in the same way as in baseml.ctl. Specifying runmode = 2 will forces the
program to calculate the ML distances in pairwise comparisons. You can change the
following variables in the control file codeml.ctl: aaRatefile, model, and alpha.

If you do pairwise ML comparison (runmode = -2) and the data contain ambiguity
characters or alignment gaps, the program will remove all sites which have such characters
from all sequences before the pairwise comparison if cleandata = 1. This is known as
"complete deletion". It will remove alignment gaps and ambiguity characters in each
pairwise comparsion ("pairwise" deletion) if cleandata = 0. [[This does not seem to be
true. The program currently removes all sites with any ambiguities if runmode = -2. Need
checking. Note by Ziheng 31/08/04.]] Note that in a likelihood analysis of multiple
sequences on a phylogeny, alignment gaps are treated as ambiguity characters if
cleandata = 0, and both alignment gaps and ambiguity characters are deleted if
cleandata = 1. Note that removing alignment gaps and treating them as ambiguity
characters both underestimate sequence divergences. Ambiguity characters in the data
(cleandata = 0) make the likelihood calculation slower.

Output for amino acid sequences (seqtype = 2): The output file is self-explanatory and very
similar to the result files for the nucleotide- and codon-based analyses. The empirical models of
amino acid substitution (specified by dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or mtREV24.dat)
do not involve any parameters in the substitution rate matrix. When RateAncestor = 1, results
for ancestral reconstruction are in the file rst. Calculated substitution rates for sites under models
of variable rates for sites are in rates.

 P A M L M A N U A L 3 8

7 evolver

This program generates a naïve menu, like the following.

 (1) Get random UNROOTED trees?
 (2) Get random ROOTED trees?
 (3) List all UNROOTED trees into file trees?
 (4) List all ROOTED trees into file trees?
 (5) Simulate nucleotide data sets (use MCbase.dat)?
 (6) Simulate codon data sets (use MCcodon.dat)?
 (7) Simulate amino acid data sets (use MCaa.dat)?
 (8) Calculate identical bi-partitions between trees?
 (9) Calculate clade support values (read 2 treefiles)?
 (0) Quit?

Options 1, 2, 3, 4. The program can be used to generate a random tree, either unrooted or rooted,
either with or without branch lengths. It can also list all the trees for a fixed number of species. Of
course, you should do this for a small number of species only as otherwise your hard drive will be
filled by useless trees. Option 8 is for reading many trees from a tree file and then calculating bi-
partition distances either between the first and all the remaining trees or between every pair.

Option 9 (Clade support values) can be used to summarize bootstrap or Bayesian analyses. This
reads two tree files. The first file should include one tree, say, the maximum likelihood tree. You
should have the number of species and the number of tree (should be 1) at the beginning of this file.
The second tree file should include a collection of trees, such as 1000 maximum likelihood trees
estimated from 1000 bootstrap pseudo-samples. This option will then calculate the bootstrap
support value for each clade on the ML tree in the first tree file, that is, the proportion of trees in the
second file that contain the node or clade in the tree in the first file. The second tree file does not
have to have the numbers of species and trees on the first line. If you run MrBayes, you can move
the maximum likelihood tree or maximum a posteriori tree into the first file, and the second tree file
can be the .t file generated by MrBayes, with no change necessary. Right now species are
represented by numbers only in the tree files, I think. You can choose this option by running
evolver, then option 9. The program will then ask you to input two file names. An alternative way,
which bypasses the naïve menu, is to put the option and two file names at the command line:
 evolver 9 <MasterTreeFile> <TreesFile>

Options 5, 6, 7 (Simulations). The program evolver simulates nucleotide, codon, and amino acid
sequences with user-specified tree topology and branch lengths. The user specifies the substitution
model and parameters in a control file; see below. The program generates multiple data sets in one
file in either PAML (output mc.paml) or PAUP* (output mc.paup) format. If you choose the
PAUP* format, the program will look for files with the following names: paupstart (which the
program copies to the start of the data file), paupblock (which the program copies to the end of
each simulated data set), and paupend (which the program incorporates at the end of the file).
This makes it possible to use PAUP* to analyze all data sets in one run. Parameters for simulation
are specified in three files: MCbase.dat, MCcodon.dat, and MCaa.dat for simulating
nucleotide, codon, and amino acid sequences, respectively. Run the default options while watching
out for screen output. Then have a look at the appropriate .dat files. As an example, the
MCbase.dat file is reproduced below. Note that the first block of the file has the inputs for
evolver, while the rest are notes. The tree length is the expected number of substitutions per site
along all branches in the phylogeny, calculated as the sum of the branch lengths. This variable was
introduced when I was doing simulations to evaluate the effect of sequence divergence while
keeping the shape of the tree fixed. evolver will scale the tree so that the branch lengths sum up to
the specified tree length. If you use –1 for the tree length, the program will use the branch lengths

 P A M L M A N U A L 3 9

given in the tree without the re-scaling. Also note that the base frequencies have to be in a fixed
order; this is the same for the amino acid and codon frequencies in MCaa.dat and MCcodon.dat.

0 * 0: paml format (mc.paml); 1:paup format (mc.nex)
367891 * random number seed (odd number)
5 1000000 1 * <# seqs> <# nucleotide sites> <# replicates>
-1 * <tree length, use -1 if tree has absolute branch lengths>
(((A :0.1, B :0.2) :0.12, C :0.3) :0.123, D :0.4, E :0.5) ;

3 * model: 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:T92, 6:TN93, 7:REV
5 * kappa or rate parameters in model
0 0 * <alpha> <#categories for discrete gamma>

0.1 0.2 0.3 0.4 * base frequencies
 T C A G

The simulation options (5, 6, 7) of evolver can be run using a command line format, bypassing the
naïve menu. So here are all the possible ways of running evolver:

 evolver
 evolver 5 MyMCbaseFile
 evolver 6 MyMCcodonFile
 evolver 7 MyMCaaFile

Simulation under codon models (option 6). You specify the frequencies for all 64 codons. Unlike
codeml, there is no variable for genetic code here: you simply specify 0 for the stop codons. Also
unlike codeml, there is no CodonFreq variable. You can specify the same frequency for all (sense)
codons to specify the Fequal model. For models such as F1x4 and F3x4, you can calculate the
resulting frequencies for the sense codons and specify them in MCcodon.dat. If you choose verbose
= 1 when you run codeml under F1x4 or F3x4 models, the program will print out the codon
frequencies expected under those models, calculated using the observed nucleotide frequencies in
the dataset. Look in the result file for “Codon frequencies under model, for use in evolver”.

Also the model of codon substitution used here assumes the same ratio for all branches in the
phylogeny and for all sites in the gene. This is known as model M0 (one-ratio). To simulate under
the site models with variable ’s among sites, or the branch models with different s among
branches, or the branch-site models with varying both among sites and among branches, please
read the file CodonSimulation.txt in the paml/Technical/Simulation/Codon/ folder.

The first variable controls the sequence data format to be used: with 0 meaning the paml/phylip
format, 1 site pattern counts and 2 the nexus format. The site pattern counts may be read by baseml
or codeml later, and is useful if you have large data sets with many (>106) sites. (See the section on
sequence data file format above.)

evolver also can simulate data using a random tree with random branch lengths for each simulated
data set. You will have to change the source code and recompile. Open evolver.c and find fixtree=1
in the routine Simulate() and change the value 1 into 0. Then recompile and name the program as
evolverRandomTree, say.

 cc -o evolverRandomTree -O2 evolver.c tools.c –lm
 evolver 5 MCbaseRandomTree.dat

The control data file such as MCbase.dat has to be changed as well. An example file named
MCbaseRandomTree.dat is included in the package. This has the lines for “tree length” and tree
topology replaced by a line for the birth rate , death rate , sampling fraction , and the tree height
(the expected number of substitutions per site from the root to the tips). The trees are generated
using the birth-death process with species sampling (Yang and Rannala 1997). The clock is
assumed. You will have to change the source code to relax the clock. If you choose 0 (paml) for the
file format, the random trees are printed out in the file ancestral.txt (?); this you can read from within
Rod Page’s TreeView. If you choose 2 (nexus) for file format, the program prints out the tree in a
tree block in the sequence data file.

 P A M L M A N U A L 4 0

The evolver program also has a few options for listing all trees for a specified small number of
species, and for generating random trees from a model of cladogenesis, the birth-death process with
species sampling (Yang and Rannala 1997). It also has an option for calculating the partition
distance between tree topologies.

Monte Carlo simulation algorithm used in evolver. You can read about more details in the section
“Models and Analyses”. See also Chapter 9 in Yang (2006). Here are some brief notes. Evolver
simulates data sets by “evolving” sequences along the tree. First, a sequence is generated for the
root using the equilibrium nucleotide, amino acid, or codon frequencies specified by the model
and/or the data file (MCbase.dat, MCcodon.dat, and MCaa.dat, respectively). Then each
site evolves along the branches of the tree according to the branch lengths, parameters in the
substitution model etc. When the sites in the sequence evolve according to the same process, the
transition probability matrix is calculated only once for all sites for each branch. For so called site-
class models (such as the gamma, and the NSsites codon models), different sites might have
different transition probability matrices. Given the character at the start of the branch, the character
at the end of the branch is sampled from a multinomial distribution specified by the transition
probabilities from the source character. Sequences at the ancestral nodes are generated during the
simulation and printed out in the file ancestral.txt.

Some people wanted to specify the sequence at the root rather than letting the program generate a
random sequence. This can be achieved by putting a sequence in the file RootSeq.txt. The sequence
cannot have ambiguities or gaps or stop codons. In almost all simulations, it is simply wrong to fix
the root sequence, so you should resist the temptation of making the mistake. If you want the
simulation to reflect your particular gene, you may estimate parameters under a model from that
gene and then simulate data sets using the parameter estimates.

 P A M L M A N U A L 4 1

8 yn00

The program yn00 implements the method of Yang and Nielsen (2000) for estimating synonymous
and nonsynonymous substitution rates between two sequences (dS and dN). The method of Nei and
Gojobori (1986) is also included. The ad hoc method implemented in the program accounts for the
transition/transversion rate bias and codon usage bias, and is an approximation to the ML method
accounting for the transition/transversion rate ratio and assuming the F3x4 codon frequency model.
We recommend that you use the ML method (runmode= -2, CodonFreq = 2 in codeml.ctl)
as much as possible even for pairwise sequence comparison.

 seqfile = abglobin.nuc * sequence data file name
 outfile = yn * main result file
 verbose = 0 * 1: detailed output (list sequences), 0: concise output

 icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
 weighting = 0 * weighting pathways between codons (0/1)?
 commonf3x4 = 0 * use one set of codon freqs for all pairs (0/1)?

The control file yn00.ctl, an example of which is shown above, specifies the sequence data file
name (seqfile), output file name (outfile), and the genetic code (icode). Sites (codons)
involving alignment gaps or ambiguity nucleotides in any sequence are removed from all sequences.
The variable weighting decides whether equal weighting or unequal weighting will be used when
counting differences between codons. The two approaches will be different for divergent sequences,
and unequal weighting is much slower computationally. The transition/transversion rate ratio is
estimated for all sequences in the data file and used in subsequent pairwise comparisons.
commonf3x4 specifies whether codon frequencies (based on the F3x4 model of codonml) should
be estimated for each pair or for all sequences in the data. Besides the main result file, the program
also generates three distance matrices: 2YN.dS for synonymous rates, 2YN.dN for nonsynonymous
rates, 2YN.t for the combined codon rate (t is measured as the number of nucleotide substitutions
per codon). Those are lower-diagonal distance matrices and are directly readable by some distance
programs such as NEIGHBOR in Felesenstein's PHYLIP package.

 P A M L M A N U A L 4 2

9 mcmctree

Overview

The program mcmctree may be the first Bayesian phylogenetic program (Yang and Rannala 1997;
Rannala and Yang 1996) , but was very slow and decommissioned since the release of MrBayes
(Huelsenbeck and Ronquist 2001).

Since PAML version 3.15 (2005), mcmctree implements the MCMC algorithms of Yang and
Rannala (2006) and then of Rannala and Yang (2007) for estimating species divergence times on a
given rooted tree using multiple fossil calibrations. This is similar to the multidivtime program of
Jeff Thorne and Hiro Kishino. The differences between the two programs are discussed by Yang
and Rannala (2006) and Yang (2006, Section 7.4); see also below.

Please refer to any book on Bayesian computation, for example, Chapter 5 in Yang (2006) for the
basics of MCMC algorithms.

Here are some notes about the program.

 Before starting the program, resize the window to have 100 columns instead of 80. (On
Windows XP/Vista, right-click the command prompt window title bar and change Properties -
Layout - Window Size - Width.)

 The tree, supplied in the tree file, must be a rooted binary tree: every internal node should have
exactly two daughter nodes. You should not use a consensus tree with polytomies for
divergence time estimation using MCMCTREE. Instead you should use a bifurcating ML tree or
NJ tree or traditional morphology tree. Note that a binary tree has a chance of being correct,
while a polytomy tree has none.

 The tree must not have branch lengths. For example, ((a:0.1, b:0.2):0.12, c:0.3) '>0.8<1.0'; does
not work, while ((a, b), c) '>0.8<1.0'; is fine.

 Under the relaxed-clock models (clock = 2 or 3) and if there is no calibration on the root, a loose
upper bound (maximal age constraint) must be specified in the control file (RootAge). (There
should be no need to use RootAge if clock = 1, but the program insists that you have it. I will
try to fix this.)

 Choice of time unit. The time unit should be chosen such that the node ages are about 0.01-10.
If the divergence times are around 100-1000MY, then 100MY may be one time unit. The priors
on times and on rates and the fossil calibrations should all be specified based on your choice of
the time scale. For example, if one time unit is 10MY, the following

 rgene_gamma = 2 20 2 * gammaDir prior for overall rates for genes
 sigma2_gamma = 10 100 2 * gammaDir prior for sigma^2 (for clock=2 or 3)

means an overall average rate of 2/20 = 0.1 substitutions per site per 10MY or 10–8 substitutions
per site per year, which is reasonable for mammalian mitochondrial genes. The gamma-
Dirichlet prior, gammaDir(, ,), is described in ref. The average rate over loci is assigned
a gamma distribution gamma(,), and given the average, the total is partitioned into rates for
loci according to a Dirichlet distribution with concentration parameter . If you change the
time unit, you should keep the shape parameter fixed and change the scale parameter to have
the correct mean. In other words, to use one time unit to represent 100MY, the above should
become

 P A M L M A N U A L 4 3

 rgene_gamma = 2 2 2 * gammaDir prior for overall rates for genes
 sigma2_gamma = 10 100 2 * gammaDir prior for sigma^2 (for clock=2 or 3)

Note that under the independent-rates model (clock=2), the change of the time unit should not
lead to a change to the prior for 2, because 2 is the variance of the log rate: the variance of the
logarithm of the rate does not change when you rescale the rate by a constant. However, for the
correlated-rates model (clock=3), the change of the time unit should also lead to a change to 2:
under that model, the variance of the log-normal distribution is t2, where t is the time gap
separating the midpoints of the branches.
When you change the time unit, the fossil calibrations in the tree file should be changed
accordingly. While ideally one would want the biological results to be unchanged when one
changes the time unit, we know that two components of the model are not invariant to the time
scale: the log normal distribution for rates and the birth-death model for times. Nevertheless,
tests by Mathieu Groussin did suggest that the choice of time scale has very minimal effects on
the posterior time and rate estimates.

 Specifying the prior on rates. Choose for rgene_gamma () based on how confident you are
about the overall rate. For example, = 1, 1.5, or 2 mean quite diffuse (uninformative) priors.
Then adjust so that the mean / is reasonable. To get a rough mean for the overall rate,
you can use a few point calibrations to run the ML program baseml or codeml under a strict
clock (clock = 1). For example, if a node has the calibration B(0.06, 0.08), you can fix the node
age at 0.07 when you run baseml/codeml. If you are analyzing multiple loci/partitions, which
have quite different rates, you can use an intermediate value, or the mean or median among the
locus rates. The program uses the same prior for for all loci.

 It is important that you run the same analysis at least twice to confirm that the different runs
produced very similar (although not identical) results. It is critical that you ensure that the
acceptance proportions are neither too high nor too low. See below about the variable finetune.

 It is important that you run the program without sequence data (usedata = 0) first to examine the
means and CIs of divergence times specified in the prior. In theory, the joint prior distribution
of all times should be specified by the user. Nevertheless it is nearly impossible to specify such
a complex high-dimensional distribution. Instead the program generates the joint prior by using
the calibration distributions and the constaint on the root as well as the birth-death process
model to generate the joint prior. This the prior used by the program in the dating analysis.
You have to examine it to make sure it is sensible, judged by your knowledge of the species and
the relevant fossil record. If necessary, you may have to change the fossil calibrations so that
the prior look reasonable.

 The program right now does a simple summary of the MCMC samples, calculating the mean,
median and the 95% CIs for the parameters. If you want more sophisticated summaries such as
1-D and 2-D density estimates, you can run a small program ds at the end of the mcmctree run,
by typing ds mcmc.out.

 To use hard bounds, you can specify the tail probabilities as 10–300 instead of the default 0.025.
See table 8 below.

 P A M L M A N U A L 4 4

The control file

You can use the files in the folder examples/SoftBound/ to duplicate the results of Yang and
Rannala (2006: table 3) and Rannala and Yang (2007: table 2). Below is a copy of the control file
mcmctree.ctl.

 seed = -1234567
 seqfile = mtCDNApri123.txt
 treefile = mtCDNApri.trees
 outfile = out

 ndata = 3
 usedata = 1 * 0: no data; 1:seq like; 2:use in.BV; 3: out.BV
 clock = 1 * 1: global clock; 2: independent rates; 3: correlated rates
* TipDate = 1 100 * TipDate (1) & time unit

 RootAge = '>0.8<1.2'

 model = 0 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
 alpha = 0 * alpha for gamma rates at sites
 ncatG = 5 * No. categories in discrete gamma

 cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
 BlengthMethod = 0 * 0: arithmetic; 1: geometric; 2: Brownian

 BDparas = 1 1 0 * birth, death, sampling
 kappa_gamma = 6 2 * gamma prior for kappa
 alpha_gamma = 1 1 * gamma prior for alpha

 rgene_gamma = 2 2 * gamma prior for rate for genes
 sigma2_gamma = 1 1 * gamma prior for sigma^2 (for clock=2 or 3)

 finetune = 1: .01 .2 .1 .1 .2 .1 * auto (0 or 1): times, musigma2, rates, mixing, paras, FossilErr

 print = 1 (print = 2 to print rates for branches with clock=2 or 3)
 burnin = 4000
 sampfreq = 2
 nsample = 10000

seed should be assigned a negative or positive integer. A negative integer (such as –1) means that
the random number seed is determined from the current clock time. Different runs will start from
different places and generate different results due to the stochastic nature of the MCMC algorithm.
You should use this option and run the program at least twice, to confirm that the results are very
similar between runs (identical to 1MY or 0.1MY, depending on the desired precision). If you
obtain intolerably different results from different runs, you obviously won’t have any confidence in
the results. This lack of consistency between runs can be due to many reasons: including slow
convergence, poor mixing, insufficient samples taken, or errors in the program. Thus you can check
to make sure (i) that the chain is at reasonably good place when it reached 0% (the end of burn-in),
indicating that the chain may have converged; (ii) that the acceptance proportion of all proposals
used by the algorithm are neither too high nor too low (see below about finetune) indicating that the
chain is mixing well; (iii) that you have taken enough samples (see nsample and burnin below).
If you give seed a positive number, that number will be used as the real seed. Then running the
program multiple times will produce exactly the same results. This is useful for debugging the
program and should not be the default option for real data analysis.

ndata is the number of loci (or site partitions) in a combined analysis. The program allows some
species to be missing at some loci. The mt primate data included protein-coding genes, and the
three codon positions are treated as three different partitions. In the combined analysis of multiple
gene loci, the same substitution model is used, but different parameters are assigned and estimated
for each partition.

usedata. 0 means that the sequence data will not be used in the MCMC, with the likelihood set to 1,
so that the MCMC approximates the prior distribution. This option is useful for testing and
debugging the program, and is also useful for generating the prior distribution of the divergence

 P A M L M A N U A L 4 5

times. The fossil calibrations and the constraints on the root you specify are not the real prior that is
implemented in the program; for example, they may not even satisfy the requirement that ancestors
should be older than descendents. The prior that is used by the program can be generated by
running the chain without data. usedata = 1 means that the sequence data will be used in the
MCMC, with the likelihood calculated using the pruning algorithm of Felsenstein (1981), which is
exact but very slow except for very small species trees. This option is available for nucleotide
sequences only, and the most complex model available is HKY85+. usedata = 2 and 3 implement
a method of approximate likelihood calculation (dos Reis and Yang 2011). They can be used to
analyze nucleotide, amino acid, and codon sequences, using nucleotide, amino acid, and codon
substitution models, respectively.

usedata = 2 inBVfilename specifies the approximate likelihood calculation, with the input (gradient
& Hessian matrix etc.) in the file.

clock. The clock variable is used to implement three models concerning the molecular clock: 1
means global molecular clock, so that the rate is constant across all lineages on the tree (even though
the rate may vary among multiple genes); 2 means the independent-rates model, and 3 the auto-
correlated rates model. See Rannala and Yang (2007) and Section §7.4 in Yang (2006) for details.

TipDate. This option is used to estimate ages of internal nodes on the given rooted tree when the
sequences at the tips having sampling dates, as in the case of sequentially sampled viral sequences.
The sample dates are the the last field in the sequence name. The time unit is specified by the user
on this line. Look at the section Dating viral divergnces and README.txt in examples/TipDate/.

RootAge. The RootAge variable is used to specify a loose constaint on the age of the root, to
constrain the root age from above. It is used if no such constraint is available through a fossil
calibration on the root. Note that fossil calibrations are specified in the tree file. Two formats are
accepted, specifying either a maximum bound (e.g., RootAge = '<1.2') or a pair of minimum and
maximum bounds (e.g., RootAge = '>0.8<1.2'). The RootAge variable is ignored if a fossil
calibration on the root is specified in the tree file in the form of a maximum bound, a pair of
minimum and maximum bounds, or a gamma distribution. If the fossil calibration in the tree file is
a minimum bound on the root (e.g. '>0.9'), and you specify RootAge = '<1.2', then the program
implements the pair of bounds, equivalent to specifying the calibration '>0.9<1.2' on the root.

model, alpha, ncatG are used to specify the nucleotide substitution model. These are the same
variables as used in baseml.ctl. If alpha ≠ 0, the program will assume a gamma-rates model, while
alpha = 0 means that the model of one rate for all sites will be used. Those variables have no effect
when usedata = 2.

cleandata = 0 means that alignment gaps and ambiguity characters will be treated as missing data in
the likelihood calculation (see pages 107-108 in Yang 2006). = 1 means that any sites at which at
least one sequence has an alignment gap or ambiguity character will be deleted before analysis.
This variable is used for usedata = 1 and 3 and has no effect if usedata = 2.

BDparas = 2 2 .1 specifies the three parameters (birth rate , death rate and sampling fraction)
in the birth-death process with species sampling (Yang and Rannala 1997), which is used to specify
the prior of divergence times (Yang and Rannala 2006). The node times are order statistics from a
kernel density, which is specified by those parameters. A few kernel densities are shown in figure 2
of Yang and Rannala (1997) or figure 7.12 in Yang (2006). The Mathematica code for plotting the
density for given parameters , and is posted at the web site
http://abacus.gene.ucl.ac.uk/ziheng/data.html. By adjusting parameters , and to generate
different tree shapes, one can assess the impact of the prior on posterior divergence time estimation.
Intuitively, the node ages and thus the shape of the tree are determined by the parameters as follows.

 P A M L M A N U A L 4 6

There are s – 1 internal nodes and thus s – 1 node ages in the rooted tree of s species. The age of the
root is fixed, so the s – 2 node ages are relative to the root age (they are all between 0 and 1). We
draw s – 2 independent random variables from the kernel density and order them. Those ordered
variables will then be the node ages. Thus if the kernel density has the L shape, all internal nodes
tend to be young (relative to the root), and the tree will have long internal branches and short tip
branches. In contrast, if the kernel density has the reverse L shape, the node ages are large and the
nodes close to the root, then the tree will be bush-like. See pages 250-251 in Yang (2006). (Strictly
speaking the above description is accurate if fossil calibration is available for the root only but not
for any other nodes. Otherwise the kernel density specifies the distribution of the ages of non-
calibration nodes only, and the impact of the kernel on the joint distribution of all node ages may be
complex, depending on the locations of the calibration nodes.)

kappa_gamma = 6 2 specifies the shape and scale parameters (and) in the gamma prior for
parameter (the transition/transversion rate ratio) in models such as K80 and HKY85. This has no
effect in models such as JC69, which does not have the parameter. Note that the gamma distribution
with parameters and has the mean / and variance /2. Those variables are used only when
usedata = 1 and have no effect when usedata = 2 or 3.

alpha_gamma = 1 1 specifies the shape and scale parameters (and) in the gamma prior for the
shape parameter for gamma rates among sites in models such as JC69+, K80+ etc. The gamma
model of rate variation is assumed only if the variable alpha is assigned a positive value. This prior
is used only when usedata = 1 and has no effect when usedata = 2 or 3.

rgene_gamma = 2 2 specifies the shape and scale parameters (and) in the gamma-Dirichlet
prior for the overall rate parameter for each locus. Under the global-clock model (clock=1), the
independent-rates model (clock = 2), and also the correlated-rates model (clock = 3), is the overall
rate on the tree specified by the prior. In the example, has the prior mean 2/2 = 1, that is, one
change per site per time unit. If one time unit is 100MY, this means an overall average rate of 10–8
substitutions per site per year. The variance (2/22 = 0.5 in the example) of this gamma prior
specifies how confident you are about the overall rate, or how variable the overall rates are among
loci. It is not about how variable the rates are among branches or how wrong the clock is.

You need to adjust this prior to suit your data and the chosen time scale. Don’t use the default. A
pragmatic way of deriving a rough rate estimate (for use as the prior mean) may be to use baseml or
codeml under the global clock model (clock = 1), with point calibrations (as in Yoder and Yang
2000). If the same species are included in every locus, it is quite easy to do this. Otherwise it is a
bit more complex, and here is a possible procedure. First run mcmctree with usedata = 3, so that the
program generates tmp1.txt, tmp1.ctl, and tmp1.trees. The tree is unrooted. Edit the tree to make it
rooted by adding a pair of parentheses. Edit the tree to add one or two point calibrations. If a node
has fossil bounds ‘>0.6<0.8’, you can use ‘=0.7’. Edit tmp1.ctl to add a line clock = 1, and change
the value of getSE from 2 to 0. Then run baseml tmp1.ctl and look at the result file out to get the
rate. Do the same thing for another locus. This way you will get an idea about the overall rates
among loci and how variable they are among loci, information useful for specifying the prior.

The gamma-Dirichlet priors for the overall rates and the variance parameter 2 for loci are
described by dos Reis et al. (2014).

sigma2_gamma = 1 1 specifies the shape and scale parameters (and) in the gamma-Dirichlet
prior for parameter 2, which specifies how variable the rates are across branches. This prior is used
for the two variable-rates models (clock = 2 or 3), with a larger 2 indicating more variable rates
(Rannala and Yang 2007). If clock = 1, this prior has no effect.

 P A M L M A N U A L 4 7

In the independent-rates model (clock = 2), rates for branches are independent variables from a log-
normal distribution (Rannala and Yang 2007: equation 9).

 22

22 21 1 1
222

(| ,) exp log , 0
r

f r r r

 . (1)

Here 2 is the variance in the logarithm of the rates. The rate r has mean and variance
2 2(e 1) .

The correlated-rates model (clock = 3) specifies the density of the current rate r, given that the
ancestral rate time t ago is rA, as

 22

2 21 1 1
222

(| ,) exp{ (log) }, 0A Atr t
f r r t r r t r

 2 (2)

(Rannala and Yang 2007: equation 2). Parameter 2 here is equivalent to in Kishino et al. (2001).

Thus r has mean rA and variance .
2 2(e 1)t

Ar

Note that 2 (clock = 2) or t2 (clock = 3) is not the variance of the rate; it is the variance of the
logarithm of the rate.

The log normal distribution is not scale-invariant. When one changes the time unit from 10MY to
100MY (so that the rate, per time unit, is 10 times as large), and changes the priors on times and
rates accordingly, one may hope that the posterior estimates stay the same. This is not the case. The
log normal may look reasonable on one time scale and not on the other. It is advisable to plot the
log-normal density using the prior mean for 2 and make sure it is not unreasonable.

finetune. The following line in the control file

 finetune = 0: 0.04 0.2 0.3 0.1 0.3 * auto (0 or 1) : times, musigma2, rates, mixing, paras,

 finetune = 1: .05 .05 .05 .05 .05 .05 * auto (0 or 1) : times, musigma2, rates, mixing, paras,

is about the step lengths used in the proposals in the MCMC algorithm. The first value, before the
colon, is a switch, with 0 meaning no automatic adjustments by the program and 1 meaning
automatic adjustments by the program. Following the colon are the step lengths for the proposals
used in the program. The proposals are as follows: (a) to change the divergence times, (b) to change
 (and 2 in the relaxed rates models), (c) to change the rate for loci for the relaxed clock models,
(d) to perform the mixing step (page 225 in Yang and Rannala 2006), and (e) to change parameters
in the substitution model (such as and in HKY+). If you choose to let the program adjust the
step lengths, burnin has to be >200, and then the step lengths specified here will be the initial step
lengths, and the program will try to adjust them using the information collected during the burnin
step. It does this twice, once at half of the burnin and another time at the end of the burnin. The
option of automatic adjustment is not well tested.

The following notes are for manually adjusting the step lengths. You can use them to generate good
initial step lengths as well for the option of automatic step length adjustment.

-20% 0.33 0.01 0.25 0.00 0.00 1.022 0.752 0.252 0.458 0.133 0.843 - 0.074 0.787 -95294.7
-15% 0.33 0.01 0.25 0.00 0.00 1.021 0.751 0.253 0.457 0.130 0.841 - 0.067 0.783 -95295.4
-10% 0.33 0.00 0.26 0.00 0.00 1.022 0.752 0.254 0.458 0.129 0.842 - 0.065 0.781 -95294.6
 -5% 0.33 0.00 0.25 0.00 0.00 1.022 0.751 0.254 0.457 0.128 0.841 - 0.063 0.780 -95292.4
 0% 0.32 0.00 0.25 0.00 0.00 1.022 0.751 0.254 0.457 0.128 0.841 - 0.063 0.780 -95290.2
 2% 0.32 0.00 0.27 0.00 0.00 1.014 0.746 0.253 0.453 0.126 0.833 - 0.059 0.784 -95290.4

 P A M L M A N U A L 4 8

A few seconds or minutes (hopefully not hours) after you start the program, the screen output will
look like the above. The output here is generated from a run under the JC model and global clock
(clock = 1). The percentage % indicates the progress of the run, with negative values for the burn-
in. Then the five proportions (e.g., 0.33 0.01 0.25 0.00 0.00 on the first line) are the acceptance
proportions (Pjump) for the corresponding proposals. The optimal acceptance proportions are around
0.3, and you should try to make them fall in the interval (0.2, 0.4) or at least (0.15, 0.7). If the
acceptance proportion is too small (say, <0.10), you decrease the corresponding finetune parameter.
If the acceptance proportion is too large (say, >0.80), you increase the corresponding finetune
parameter. In the example here, the second acceptance proportion, at 0.01 or 0.00, is too small, so
you should stop the program (Ctrl-C) and modify the control file to decrease the corresponding
finetune parameter (change 0.2 into 0.02, for example). Then run the program again (use the up
and down arrow keys to retrieve past commands), observe it for a few seconds or minutes and
then kill it again if the proportions are still not good. Repeat this process a few times until every
acceptance proportion is reasonable. This is not quite so tedious as it may sound.

The finetune parameters in the control file are in a fixed order and always read by the program even
if the concerned proposal is not used (in which case the corresponding finetune parameter has no
effect). In the above example, JC does not involve any substitution parameters, so that the 4th
finetune parameter has no effect, and the corresponding acceptance proportion is always 0. This
proportion is always 0 also when the approximate likelihood calculation is used (usedata = 2)
because in that case the likelihood is calculated by fitting the branch lengths to a normal density,
ignoring all substitution parameters like , etc. If clock = 1, there are no parameters in the rate-
drift model, so that the 5th acceptance proportion is always 0.

Note that the impact of the finetune parameters is on the efficiency of the algorithm, or on how
precise the results are when the chain is run for a fixed length. Even if the acceptance proportions
are too high or too low, reliable results will be obtained in theory if the chain is run sufficiently long.
This effect is different from the effect of the prior, which affects the posterior estimates.

print = 1 means that samples will be taken in the MCMC and written to disk and the posterior
results will be summarized. 0 means that the posterior means will be printed on the monitor but
nothing else: this is mainly useful for testing the program. The relaxed-clock models (clock=2 or 3)
generates a lot of output with rates for branches for each locus (partition), so those rates are printed
out only if you choose print = 2.

burnin = 2000, sampfreq = 5, nsample = 10000. In the example here, the program will discard the
first 2000 iterations as burn-in, and then run the MCMC for 5 × 10000 iterations, sampling (writing
to disk) every 5 iterations. The 10000 samples will then be read in and summarized. I think you
should take at least 2000 samples.

Fossil calibration

Fossil calibration information, in the form of statistical distributions of divergence times (or ages of
nodes in the species tree), is specified in the tree file. See table 8 for a summary. Here “fossil”
means any kind of external calibration data, including geological events. For a sensible analysis,
one should have at least one lower bound and at least one upper bound on the tree, even though they
may not be on the same node. The gamma, skew normal, and skew t distributions can act as both
bounds, so one such calibration is enough to anchor the tree to enable a sensible analysis.

 P A M L M A N U A L 4 9

Table 8. Calibration distributions

Calibration #p Specification Density
L
(lower or minimum
bound)

4 '>0.06' or
'L(0.06)' or
'L(0.06, 0.2)' or
'L(0.06, 0.1, 0.5)' or
'L(0.06, 0.1, 0.5, 0.025)'

L(tL, p, c, pL) specifies the minimum-age
bound tL, with offset p, and scale
parameter c, and left tail probability pL.
The default values are p = 0.1, c = 1, and
pL = 0.025, so >0.06 or L(0.06) means
L(0.06, 0.1, 1, 0.025), and L(0.06, 0.2)
means L(0.06, 0.2, 1, 0.025). If you
would like the minimum bound to be
hard, use pL = 1e-300, but do not use pL =
0. In other words, use L(0.06, 0.2, 1, 1e-
300), not L(0.06, 0.2, 1, 0).

U
(upper or maximum
bound)

2 '<0.08' or
'U(0.08)' or
'U(0.08, 0.025)'

Eq. 16 & fig. 2b in YR06.
U(tU, pR) specifies the maximum-age
bound tU, with right tail probability pR.
The default value is pU = 0.025, so <0.08
or U(0.08) means U(0.08, 0.025). For
example U(0.08, 0.1) means that there is
10% probability that the maximum
bound 8MY is violated (i.e., the true age
is older than 8MY).

B
(lower & upper bounds
or minimum &
maximum bounds)

4 '>0.06<0.08' or
'B(0.06, 0.08)' or
'B(0.06, 0.08, 0.025, 0.025)'

Eq. 17 & fig. 2c in YR06
B(tL, tU, pL, pU) specifies a pair bound, so
that the true age is between tL and tU,
with the left and right tail probabilities to
be pL and pU, respectively. The default
values are pL = pU = 0.025.

G (Gamma) 2 'G(alpha, beta)' Eq. 18 & fig. 2d in YR06
SN (skew normal) 3 'SN(location, scale, shape)' Eq. 2 & plots below
ST (skew t) 4 'ST(location, scale, shape,

df)'
Eq. 4 & plots below

S2N (skew 2 normals) 7 'SN2(p1, loc1, scale1, shape1,
loc2, scale2, shape2)'

p1: 1 – p1 mixture of two skew normals.

Note . #p is the number of parameters in the distribution, to be supplied by the user. Figure 2 in
YR06 (Yang and Rannala 2006) is figure 7.11 in Yang (2006).

(1) Lower bound (minimal age) is specified as '>0.06' or 'L(0.06)', meaning that the node age is at
least 6MY. Here we assume that one time unit is 100 million years. In PAML version 4.2, the
implementation of the minimum bound has changed. Instead of the improper soft flat density of
Figure 2a in Yang and Rannala (2006) or figure 7.11a in Yang (2006), a heavy-tailed density based
on a truncated Cauchy distribution is now used (Inoue et al. 2010). The Cauchy distribution with
location parameter tL(1 + p) and scale parameter ctL is truncated at tL, and then made soft by adding
L = 2.5% of density mass left of tL. The resulting distribution has mode at tL(1 + p). The L =
2.5% limit is of course at tL and the 97.5% limit is at

t97.5% = 1[1 cot()]R

L

A
Lt p c

 ,

where R = 1 – 0.975 and A = 11 1
2 tan p

c
 . This is slightly more general than the formula in the

paragraph below equation (26) in (Inoue et al. 2010), in that L and R are arbitrary: to get the 99%

 P A M L M A N U A L 5 0

limit when tL is a hard minimum bound, use L = 0 and R = 0.01 so that t99% = tL[1 + p + c
cot(0.01A)].

If the minimum bound tL is based on good fossil data, the true time of divergence may be close to
the minimum bound, so that a small p and small c should be used. It is noted that c has a greater
impact thatn p on posterior time estimation. The program uses the default values p = 0.1 and c = 1.
However, you are advised to use different values of p and c for each minimum bound, based on a
careful assessment of the fossil data on which the bound is based. Below are a few plots of this
density. The minimum bound is fixed at tL = 1, but one time unit can mean anything like 100Myr or
1000Myr. For each value of p (0.1 and 0.5), the four curves correspond to c = 0.2, 0.5, 1, 2 (from
top to bottom nearthe peak). The 2.5% limit is at 1, while the 97.5% limits for those values of c are
4.93, 12.12, 24.43, 49.20, respectively, when p = 0.1, and are 4.32, 9.77, 20.65, 44.43 when p = 0.5.
(Note that those values were incorrectly calculated in Inoue et al. 2010)

0.8 1.2 1.4 1.6 1.8 2

0.5

1

1.5

2

2.5

0.8 1.2 1.4 1.6 1.8 2

0.5

1

1.5

2

(a) p = 0.1 (b) p = 0.5

c = 2

c = 0.2
c = 0.2

c = 2

 (2) Upper bound (maximal age) is specified as '<0.08' or 'U(0.08)', meaning that the node age is at
most 8MY.

(3) Both lower and upper bounds on the same node are specified as '>0.06<0.08' or 'B(0.06, 0.08)',
meaning that the node age is between 6MY and 8MY.
Note that in all the above three calibrations (L, U, B), the bounds are soft, in that there is a 2.5%
probability that the age is beyond the bound (see figure 2 in Yang and Rannala 2006; or figure 7.11
in Yang 2006).

(4) The gamma distribution. 'G(188, 2690)' specifies the gamma distribution with shape
parameter = 188 and rate parameter = 2690. This has the mean / = 0.07 and the 2.5 and 97.5
percentiles at ### and ###. In earlier versions (3.15, 4a & 4b), the gamma was specified as
‘>.06=0.0693<.08’, but this format is not used anymore.

((((human, (chimpanzee, bonobo)) 'G(188, 2690)', gorilla), (orangutan, sumatran))
'>.12<.16', gibbon);

In the tree above, the human-chimp divergence time has a gamma distribution G(188, 2690), while
the orang-utan divergence time has soft bounds between 12MY and 16MY.

The above tree can be read in TreeView, with the calibration information in quotation marks treated
as node labels.

You can use the MS Excel function GAMMADIST(X, alpha, beta, 0) to calculate and plot the
density function (pdf) of the gamma distribution, and the function GAMMAINV(0.025, alpha, beta)
to calculate the 2.5% percentile. However, note that beta in Excel is 1/ in MCMCTREE (and other
PAML programs). In other words, the mean is / in MCMCTREE and in Excel.

 P A M L M A N U A L 5 1

(5) Skew normal distribution SN(location, scale, shape) or SN(, ,) (Azzalini and Genton
2008). The basic form of the skew normal distribution has density

 f(z;) = 2(z)(z), (1)

where () and () are the PDF and CDF of the standard normal distribution respectively. Then x =
 + z, has the skew normal distribution SN(, ,) with location parameter , scale parameter ,
and shape parameter . The density is

 fSN(x; , ,) =

2
2

2
2

()

22 1 1
e e

2 2

x
u

x

u

 d . (2)

for – < < , 0 < < , – < < . Let = 21 . The mean and variance are

 22 2

() 2 ,

Var() 1 .

E x

x

 (3)

(6) Skew t distribution, ST(location, scale, shape, df) or ST(, , ,) (Azzalini and Genton
2008), with location parameter , scale parameter , shape parameter , and degree of freedom ,
has density

 2
ST

2
(; , , ,) (;) (1) (); 1f x t z T z z

 , (4)

where z = (x –)/, t and T are the PDF and CDF of the standard t distribution, respectively. These
are defined as follows.

 2

(1) 221
2

1
2

1 1 1
2 2 2()

(1)
(;) 1 ,

, , if 0,
(;)

1 (;), if 0

z

z
t z

I z
T z

T z z

.

 (5)

where () is the gamma function, and

 1 1

0

1
(,) (1) d

(,)

p a b
pI a b u u u

B a b
 (6)

is the incomplete beta function ratio, or the CDF of the beta(a, b) distribution, while

1 1 1

0

() ()
(,) (1) d

()
a b a b

B a b u u u
a b

 (7)

is the beta function.

 P A M L M A N U A L 5 2

0

0.1

0.2

0.3

0.4

0.5

0 5 10

0

0.1

0.2

0.3

0.4

0.5

0 5 10

SN(2, 1.5, 6)
ST(2, 1.5, 6, 2.2)

0

0.1

0.2

0.3

0.4

0.5

-10 -5 0 5

0

0.1

0.2

0.3

0.4

0.5

-10 -5 0 5

SN(2, 1.5, –6)
ST(2, 1.5, –6, 2.2)

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

SN(2, 1.5, 10)
ST(2, 1.5, 10, 3)

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

SN(2, 1.5, 50)
ST(2, 1.5, 50, 1)

Figure 1. Density functions for skew normal (blue) and skew t (red) distributions.
Skew t has heavier tails than skew normal.

Here are a few notes about the skew normal and skew t distributions.

 When the shape parameter = 0, the distributions become the standard (symmetrical)
normal and t distributions.

 Changing to – flips the density at x = (the location parameter). Fossil calibrations

should have long right tails, which means > 0.

 A larger || means more skewed distributions. When || = , the distribution is called

folded normal or folded t distribution, that is, the normal or t distribution truncated at from

the left (=) or from the right (= –).

 When the degree of freedom = , the t or skew t distribution becomes the normal or skew

normal distribution. The smaller is, the heavier the tails are. A small (1-4 , say) with a

large shape parameter in the skew t distribution represents virtually hard minimal bound

and very uncertain maximal bound. When = 1, the t distribution is known as Cauchy

distribution, which does not have mean or variance.

 Both skew normal and skew t distributions go from – to . In MCMCTREE, negative

 P A M L M A N U A L 5 3

values are automatically truncated, so only the positive part is used. If feasible, try to

construct the distribution so that the probability for negative values is small (<0.1%, say).

 Please visit the web site http://azzalini.stat.unipd.it/SN/ to plot skew normal and skew t
distributions. R routines are also available for such plots. The equations above are for my
testing and debugging. I think I should remove them later on.

Dating viral divergences

This option is specified by the following line in the control file:

 TipDate = 1 100 * TipDate (1) & time unit

The example data file is in the examples/TipDate/. When you run the default analysis, you will see
the following printout on the monitor.

TipDate model
Date range: (1994.00, 1956.00) => (0, 0.38). TimeUnit = 100.00.

The end of each sequence name has the sampling year, which goes from 1994 to 1956. The program
then sets the most recent sequence date (1994) to time 0, and then the oldest sequence has age 0.38,
as 1956 is 38 years earlier than 1994 and one time unit is specified to be 100 years.

Other control variables work in the same way as in the case of dating species divergence using fossil
calibrations. The prior on the age of the root is believed to be important. Please use the sample
dates and time unit to speciy the boungs on the rate age. For the example dataset mentioned above,
the following specifies a soft uniform for the root age in the interval (1914, 1874), with tail
probability 10–10 on both the left and right tails. This uniform prior is soft but quite sharp.

 RootAge = B(0.8, 1.2, 1e-10, 1e-10) * root age constraints, used if no fossil for root

Ideally you should use whatever biological information available to specify the prior. Also you
should change this prior to assess its impact on the posterior time estimates.

Similarly, the prior on mutation rate (rgene_gamma) may be important as well. The relaxed clock
models are species using clock = 2 or 3, while clock = 1 is the strict clock.

The newly implemented prior of times is based on Tanja Stadler’s birth-death-sampling model. You
should use rho = 0, and psi > 0, for dating viral divergences. You can change the parameters
lambda, mu, and psi to assess the impact of the prior.

 BDparas = 2 1 0 0.8 * lambda, mu, rho, psi for birth-death-sampling model

Approximate likelihood calculation

Thorne et al. (1998) suggested the use of the multivariate normal distribution of MLEs of branch
lengths to approximate the likelihood function. To implement this approximation, one has to obtain
the MLEs of the branch lengths and calculate their variance-covariance matrix or equivalently the
matrix of second derivatives of the log likelihood with respect to the branch lengths (this matrix is
also called the Hessian matrix). In Thorne’s multidivtime package, this is achieved using the
program estbranches.

 P A M L M A N U A L 5 4

I have implemented this approximation using the option usedata = 3. With this option, mcmctree
will prepare three temporary files for each locus and then invoke baseml or codeml to calculate the
MLEs of branch lengths and the Hessian matrix. These results are generated in the file rst1 and
copied into the file out.BV by mcmctree. The three temporary files for each locus are the control
file tmp#.ctl, the sequence alignment tmp#.txt, and the tree file tmp#.trees, where # means the index
for the locus. The tree for the locus is generated by mcmctree by pruning the master tree of all
species so that only those species present at the locus remain, and by de-rooting the resulting tree.
You should not edit this tree file. You can edit the control file tmp#.ctl to use another model
implemented in baseml or codeml, and this option should allow you to use amino acid or codon
substitution models. The calculation of the Hessian matrix may be sensitive to the step length used
in the difference approximation, and it is advisable that you change the variable Small_Diff in the
control file tmp#.ctl to see whether the results are stable.

The output file out.BV from usedata = 3 should then be renamed in.BV. This file has one block of
results for each locus. If you manually edit the control file tmp#.ctl and then invoke baseml or
codeml from the command line (for example, by typing codeml tmp2.ctl), you will have to
manually copy the content of rst1 into in.BV.

With usedata = 2, mcmctree will read the MLEs and Hessian matrix from in.BV and apply the
approximate method for calculating the likelihood in the MCMC.

In effect, mcmctree/usedata = 3 performs the function of estbranches and you can manually perform
this step by running baseml or codeml externally after the tree file tmp#.ctl is generated. Similarly
mcmctree/usedata = 2 performs the function of mlutidivtime.

Models of amino acid or codon substitution are not implemented in the mcmctree program for the
exact likelihood calculation. The only way to use those models is through the approximate method
(usedata = 3 and 2). If is advisable that you edit the intermediate control file tmp#.ctl to choose the
appropriate model of amino acid or codon substitution in the codeml analysis, and then copy the
results into the in.BV file. Also have a look at the estimated branch lengths in the tree. If many of
them are near 0, you should be concerned as perhaps you have too little data or the tree is wrong for
the locus. Finally run mcmctree/usedata = 2.

In the description here, a gene or locus means a site partition. For example, since the three codon
positions typically have very different rates, different base compositions, etc., you may treat them as
separate partitions.

The theory is described in detail in dos Reis and Yang (2011). The default transformation used in
the program is the JC transformation.

Infinitesites program

You can compile infinitesites as follows.

 cc -o infinitesites -DINFINITESITES -O3 mcmctree.c tools.c -lm

This generates the limiting posterior distribution when the number of sites in the sequence alignment
approaches infinity {Yang, 2006 #2730; Rannala, 2007 #2957}. Instead of reading and analyzing
sequence alignments, the program use the estimated branch lengths as the data, considering them to
be without errors. For the clock model (clock = 1), the input file is called FixedDsClock1.txt, while
for clock = 2 or 3, the file is called FixedDsClock23.txt. There is an example in the
examples/DatingSoftBound/ folder, and the mcmctree tutorial explains how to run this program.

 P A M L M A N U A L 5 5

10 Miscelaneous notes

Also see the FAQ page, but please note that document is not up to date.

Analysing large data sets and iteration algorithms

The maximum likelihood method estimates parameters by maximizing the likelihood function. This
is multi-dimensional optimisation problem that has to be solved numerically (see Yang 2000a for an
exception). PAML implements two iteration algorithms. The first one (method = 0) is a general-
purpose minimization algorithm that deals with upper and lower bounds for parameters but not
general equality or inequality constraints. The algorithm requires first derivatives, which are
calculated using the difference approximation, and accumulates information about the curvature
(second derivatives) during the iteration using the BFGS updating scheme. At each iteration step, it
calculates a search direction, and does a one-dimensional search along that direction to determine
how far to go. At the new point, the process is repeated, until there is no improvement in the log-
likelihood value, and changes to the parameters are very small. The algorithm updates all
parameters including branch lengths simultaneously.

Another algorithm (method = 1) works if an independent rate is assumed for each branch (clock = 0)
(Yang 2000b). This algorithm cycles through two phases. Phase I estimates branch lengths with
substitution parameters (such as the transition/transversion rate ratio and the gamma shape
parameter) fixed. Phase II estimates substitution parameters using the BFGS algorithm,
mentioned above, with branch lengths fixed. The procedure is repeated until the algorithm
converges. In phase I of the algorithm, branch lengths are optimized one at a time. The advantage
of the algorithm is that when the likelihood is calculated for different values of one single branch
length, as is required when that branch length only is optimised, much of likelihood calculations on
the phylogeny is the same and can be avoided by storing intermediate results in the computer
memory. A cycle is completed after all branch lengths are optimized. As estimates of branch
lengths are correlated, several cycles are needed to achieve convergence of all branch lengths in the
tree, that is, to complete phase I of the algorithm.

If branch lengths are the only parameters to be estimated, that is, if substitution parameters are fixed,
the second algorithm (method = 1) is much more efficient. Thus to perform heuristic tree search
using stepwise addition, for example, you are advised to fix substitution parameters (such as and
). The second algorithm is also more efficient if the data contain many sequences so that the tree
has many branch lengths.

Tip: To get good initial values for large data sets of protein coding DNA sequences, you can use
baseml. Add the options characters “GC” at the end of the first line in the sequence data file. Then
run the data with baseml. In the result file generated by baseml (say mlb), look for “branch lengths
for codon models” and copy the tree with branch lengths into the tree file. Then run codeml and
choose “1: initial values” when asked about what to do with the branch lengths in the tree.

Tree search algorithms

One heuristic tree search algorithm implemented in baseml, codonml and aaml is a divisive
algorithm, called "star-decomposition" by Adachi and Hasegawa (1996b). The algorithm starts from
either the star tree (runmode = 2) or a multifurcating tree read from the tree structure file
(runmode = 1). The algorithm joins two taxa to achieve the greatest increase in log-likelihood over
the star-like tree. This will reduce the number of OTUs by one. The process is repeated to reduce the
number of OTUs by one at each stage, until no multifurcation exists in the tree. This algorithm
works either with or without the clock assumption. The stepwise addition algorithm is implemented

 P A M L M A N U A L 5 6

with the option runmode = 3. Options runmode = 4 or 5 are used for nearest neighbor
interchanges , with the intial tree determined with stepwise addition under the parsimony criterion
(runmode = 4) or read from the tree structure file (runmode = 5). The results are self-explanatory.

Besides the fact that ML calculations are slow, my implementations of these algorithms are crude.
If the data set is small (say, with <20 or 30 species), the stepwise addition algorithm (runmode = 3)
appears usable. Choose clock = 0, and method = 1 to use the algorithm that updates one branch
at a time, and fix substitution parameters in the model (such as and) so that only branch lengths
are optimized. Parameters and can be fixed in the tree search using fix_kappa and
fix_alpha in the control files. Other parameters (such as substitution rates for genes or codon
positions or site partitions) cannot be fixed this way; they can instead be specified in the file of
initial values (in.baseml or in.codeml). Suppose you use a candidate tree to estimate branch
lengths and substitution parameters with runmode = 0. You can then move the substitution
parameters (but not the branch lengths) into the file of initial values. You then change the following
variables for tree search: runmode = 3, method = 1. The program will use the substitution
parameters as fixed in the tree search, and optimizes branch lengths only. It is important that the
substitution parameters are in the right order in the file; so copy-and-paste from PAML output is
probably the safest. It is also important that you do not change the parameter specifications in the
control file; the control file should indicate that you want to estimate the substitution parameters, but
when the program detects the file of initial values, fixed parameter values are used instead.

Generating bootstrap data sets

To generate bootstrap pseudo-samples from your original data, use the control variable bootstrap
in the control files baseml.ctl or codeml.ctl, as follows

bootstrap = 1000 * generate 1000 bootstrap datasets

The resulting file is named boot.txt. You may want to rename it. Use baseml to generate samples
for nucleotide-based analysis and codeml for amino acid and codon-based analysis. If the data are
partitioned (using option G), the programs use stratified sampling to generate bootstrap samples,
preserving the number of sites in each partition.

To analyze the bootstrap samples using baseml or codeml, you can set ndata = 1000.

The rub file recording the progress of iteration

If you use a large value for the variable noisy (say >2), the programs baseml and codeml will log
output to the screen, indicating the progress of the iteration process, i.e., the minimization of the
negative log-likelihood. They will also print in the rub file, the size (norm) of the gradient or search
direction (h), the negative log likelihood, and the current values of parameters for each round of
iteration. A healthy iteration is indicated by the decrease of both h and the negative log likelihood,
and h is particularly sensitive. If you run a complicated model hard to converge or analyzing a large
data set with hundreds or thousands of sequences, you may switch on the output. You can check this
file to see whether the algorithm has converged. A typical symptom of failure of the algorithm is
that estimates of parameters are at the preset boundaries, with values like 2.00000, 5.00000. When
method = 1, the output in the rub file lists the log likelihood and parameter estimates only.

 P A M L M A N U A L 5 7

Specifying initial values

You may change values of parameters in the control file such as kappa, alpha, omega, etc. to start
the iteration from different initial values. Initial values for the second and later trees are determined
by the program, and so you do not have much control in this way.

You can collect initial values into a file called in.baseml if you are running baseml or
in.codeml if you are running codeml. This file should contain as many numbers, separated by
white spaces, as the number of parameters that are being optimized by the program. So if the
program is estimating 56 parameters (say 51 branch lengths, 1 kappa, and 5 other parameters from
the distribution), you should put 56 numbers in the file. The parameters are ordered internally in
the program and you have no control of the ordering. Nevertheless, the order is the same as in the
main output (below the lnL line for each tree). One way of generating the in.codeml or in.baseml
files is to run a data set, and then copy initial values from the rub file or from the main output file.
The rub file records the iteration process and has one line for each round of iteration. Each line lists
the current parameter values after the symbol x; you can copy those numbers (not the symbol x) into
the file of initial values, and if you like, change one or a few of the parameter values too. When you
run the program, look at lnL0 printed out on the screen and check that it is the same as recorded in
rub.

When the program runs, it checks to see whether a file of initial values exists, and it does, the
program will read initial values from it. This may be useful if the iteration is somehow aborted, and
then you can collect current values of parameters from the file rub into this file of initial values, so
that the new iteration can have a better start and may converge faster. The file of initial values may
also be useful if you experience problems with convergence. If you have already obtained
parameter estimates before and do not want the program to re-estimate them and only want to do
some analysis based on those estimates such as reconstructing ancestral sequences, insert -1 before
the initial values.

Warning: A complication is that in some models a transformation is applied during the iteration
while the printout uses the original variables. Examples of this are the frequency/proportion
parameters for base frequencies (nhomo = 1 in baseml), proportions of site classes in the NSsites
models (except for models always having only two classes in which case no transformation is
applied), and times or node ages in clock models (clock = 1, 2, 3, 5, 6, but not 0). For those models,
you can see that the line of output in the main output file looks different from the last line of rub
after the iteration finishes. In the file of initial values, if you use -1 at the start, the program assumes
the original variables, while if you don’t, the program assumes transformed variables.

Fine-tuning the iteration algorithm

The iteration algorithm uses the difference approximation to calculate derivatives. This method
changes the variable (x) slightly, say by a small number e, and see how the function value changes.
One such formula is df/dx = [f(x + e) f(x)]/e. The small number e should be small to allow accurate
approximation but should not be too small to avoid rounding errors. You can change this value by
adding a line in the control files baseml.ctl or codeml.ctl

Small_Diff = 1e-6

The iteration is rather sensitive to the value of this variable. This variable also affects the
calculation of the SE's for parameters, which are much more difficult to approximate than the first
derivatives. If the calculated SE's are sensitive to slight change in this variable, they are not reliable.

 P A M L M A N U A L 5 8

If you compile the source codes, you can also change the lower and upper bounds for parameters. I
have not put these variables into the control files (See below).

Adjustable variables in the source codes

This section is relevant only if you compile the source codes yourself. The maximum values of
certain variables are listed as constants in uppercase at the beginning of the main programs
(baseml.c, basemlg.c, codeml.c). These values can be raised without increasing the
memory requirement by too much.

NS: maximum number of sequences (species)
LSPNAME: maximum number of characters in a species name
NGENE: maximum number of "genes" in data of multiple genes (option G)
NCATG: maximum number of rate categories in the (auto-) discrete-gamma model (baseml.c, codeml.c)

You can change the value of LSPNAME. Other variables that may be changed include the bounds
for parameters, specified at the beginning of the function testx or SetxBound in the main
programs (baseml.c and codeml.c). For example, these variables are defined in the function
SetxBound in codeml.c:

 double tb[]=.0001,9, rgeneb[]=0.1,99, rateb[]=1e-4,999;

 double alphab[]=0.005,99, rhob[]=0.01,0.99, omegab[]=.001,99;

The pairs of variables specify lower and upper bounds for variables (tb for branch lengths,
rgeneb for relative rates of genes used in multiple gene analysis, alphab for the gamma shape
parameter, rhob for the correlation parameter in the auto-discrete-gamma model, and omegab for
the dN/dS ratio in codon based analysis.

Using PAML with other phylogenetic programs

PHYLIP

Sequence data file. There are some incompatibilities between the PHYLIP format used by PAML
programs and the PHYLIP format used by the current version of Joe Felsenstein’s PHYLIP package.
First, in Phylip, the sequence name can have at most 10 characters, while PAML uses 30 characters.
This difference exists all the time and is due to my need to use longer names sometimes ago. If you
want the sequence data file to be readable by both PHYLIP and PAML, you should limit the number
of characters in the name to 10 and also separate the name from the sequence by at least two spaces.
Having two spaces at the end of the name will inform PAML programs that the name has finished.
Second, the “interleaved” format is specified by toggling the menu in PHYLIP programs while by a
letter I on the first line inside the sequence data file. The latter was the option used by earlier
versions of PHYLIP. I have not followed the change since in general PAML does not use
command-line menus as PHYLIP programs do. If you use the sequential format, the same file can
be read by both programs. You can even use sequential format with the whole sequence on one line.

Tree file. Many PHYLIP programs output the estimated trees in a file called treefile. This uses the
parenthesis notation and the file should be directly useable in PAML. Or you can copy the trees into
a file and add the number of trees at the beginning of the file for use in baseml, codeml, or pamp.

Distance matrices and neighbour. baseml and codeml produce distance matrices. They are
printed into separate files with names like 2ML.t, 2ML.dS, 2NG.dS, etc. Those files use the lower-
diagonal format and are directly readable by the neighbour program in PHYLIP, so you can use the
program to make a neighbour-joining tree (Saitou and Nei 1987). You can rename the file as infile

 P A M L M A N U A L 5 9

or type in the file name when prompted by neighbour. Then type L to tell the program that the
matrix if lower-diagonal.

PAUP, MacClade, and MrBayes

Sequence data file. PAUP, MacClade and MrBayes use the so-called NEXUS file format. PAML
programs (mainly baseml and codeml) have some limited support for this format and can read the
sequence alignment in that format. Only the sequence alignment is read and the command blocks
are ignored. Also PAML does not recognise comments inside the sequence data block, so please
avoid them.

The program evolver in the paml package can generate data sets both in the PAML/PHYLIP format
and in the PAUP/MrBayes nexus format. You can also modify the file paupblock to add blocks of
paup or MrBayes command at the end of each simulated data set. See the descriptions for the
evolver program in Chapter

Tree file. PAML programs have only limited support with the tree file generated by PAUP or
MacClade. First the “[&U]” notation for specifying an unrooted tree is not recognised. For a tree to
be accepted as an unrooted tree by PAML, you have to manually modify the tree file and delete a
pair of parenthesis so that there is a trifurcation at the root; that is, the outmost pair of parentheses
groups together three taxa rather than two, so the tree should be in the format (A, B, C). Thus
changing “(((1,2),3),4)” into “((1,2),3,4)” will deroot the tree. Perhaps I should let the program to do
this automatically. Second, the “Translate” keyword is ignored by PAML, and it is assumed that the
ordering of the sequences in the tree file is exactly the same as the ordering of the sequences in the
sequence data file. This seems normally the case if the trees are reconstructed from the same
sequence file using paup.

Clustal

 Sequence data file. When you save the clustal alignment in the PHYLIP format with extension
.phy, clustal output the alignment using the “interleaved” phylip format, truncating sequence names
to 10 characters. This file is typically not readable by PAML programs. You need to make two
changes. First add the letter I at the end of the first line, after the number of sequences and the
number of sites in the sequence. Second, add spaces between the sequence name and the sequence
and make sure there are at least two spaces separating the name and the sequence.

MEGA

Sequence data file. The MEGA sequence data format (Kumar et al. 1994) is different and not
directly readable by PAML programs. Need to find out about the format and write something here.

MOLPHY

Sequence data file. It is possible to prepare the same file to be readable by both MOLPHY
programs (nucml and protml) and PAML programs. Need to find out about the format and write
something here.

The tree file produced by MOLPHY also uses the parenthesis notation and is readable by PAML
programs.

FigTree

Andrew Rambaut’s FigTree can be used to view trees produced using paml programs.

 P A M L M A N U A L 6 0

TreeView

The trees with branch lengths calculated from PAML programs should be directly readable by
TreeView (Page 1996). You can copy the tree onto the clipboard and paste into TreeView, or save
the tree in a file and read the file from within TreeView. Some of the models implemented in
baseml and codeml require the user to label branches or nodes on the tree, and I found TreeView
particularly useful for this purpose when the tree is large. TreeView shows those labels as node
labels. For example, the free-ratios model in codonml (model = 1) estimates one ratio for each
branch. In the output, codeml prints out a tree with the estimated ratio as node/branch labels, with
some notes like “Tree for Rod Page’s TreeView”. I can copy this tree into tree view. Similarly the
global and local clock models in baseml and codeml estimate an age for each node, and the output
tree from those two programs can be copied into TreeView directly.

Andrew Rambaut’s TreeEdit, which runs on MACs, has similar functionalities. However, I don’t
have MAC and have no experience with the program.

Windows notes

Turn on file extensions in Windows Explorer. Windows Explorer by default hides file extensions
for known file types. You should go to "Windows Explorer - Tools - Folder options - View" and
un-tick "Hide extensions for known file types", so that you can see the full file names from
Windows Explorer.

Using Task Manger to change job priority. Start Task Manger (for example, right click on task bar
and choose Task Manager). Click on Processes button. Locate the big job, say, codeml. Right click
and Set Priority to Low. Note that the process running the Command Prompt is cmd. If you change
the priority of cmd to low, all jobs started from that window will run at low priority. You can
change View – Update Speed to Low and change View – Select Columns. Change Options –
Minimize on Use. Then you can minimize rather than close Task Manger.

All input and output files are plain text files. In the Command Prompt box (Start - Programs –
Accessaries – Command Prompt), you can use type or more to view a text file. If you see strange
characters on the screen and perhaps also hear beeps, the file is not a plain text file. You can also
use a text editor to view and edit a plain text file. If you use Microsoft Word or Wordpad to save a
file, make sure that the files are saved as a plain text file. Use File – Save As and change the file
type. When you do, Word or other programs might automatically add the file extension .txt, and
you will have to rename the file if you don’t want the .txt.

How to change your search path to include paml programs. You can create a folder called bin
under your account. The folder name should be shown when you move (cd) to that folder. Let’s
say this is D:\bin. Copy or move the executable files from the paml/bin/ folder into this folder.

Now change the environment variable path. On Windows Vista or XP, open Control Panel –
System – Advanced System Settings – Environment variables. Under “User variables for Ziheng”,
find path, and Edit. Add the folder name (D:\bin in my example) to the end or beginning of the
string. The fields are separated by semi-colons. Note that Windows/Dos is case-insensitive, so
D:\bin is the same as D:\BIN or d:\bin.

UNIX/Linux/Mac OSX notes

How to change your search path to include paml programs. You can create a folder bin in your
root directory and copy paml executables into that folder, and then include the folder in your search
path. This way you can run the program no matter where you are. If you have several versions of

 P A M L M A N U A L 6 1

the paml, you may even name the executables baseml3.15, baseml4, etc., to distinguish them.
Similarly you can copy other programs such as mb, dnadist, etc. into that folder.

Type cd to move to your root directory. Create a bin/ folder in your root directory.

 mkdir bin

Copy executables such as codeml, baseml, and mcmctree into the bin/ folder.

Then modify your path environment variable to include the bin/ folder in the initialization file
for the shell. You can use more /etc/passwd to see which shell you run. Below are notes for the C
shell and bash shell. There are other shells, but these two are commonly used.

1) If you see /bin/csh for your account in the /etc/passwd file, you are running the C shell, and
the intialization file is .cshrc in your root folder. You can use more .cshrc to see its
content if it is present. Use a text editor (such as emacs, vi, SimpleText, etc.) to edit the file,
and insert the following line

 set path = ($path . ~/bin)

The different fields are separated by spaces. Here . means the current folder, and ~/ means
your root folder, and ~/bin means the bin folder you created, and $path is whatever folders
are already in the path.
If the file .cshrc does not exist, you create one, and insert the line above.

2) If you see /bin/bash in the file /etc/passwd for your account, you are running the bash shell,
and the initialization file is .bashrc. Use a text editor to open .bashrc and insert the
following line

 PATH=$PATH:./:~/bin/

This changes the environment variable PATH. The different fields are separated by colon :
and not space. If the file does not exist, create one.

After you have changed and saved the initialization file, every time you start a shell, the path is
automatically set for you.

Note that UNIX is case-sensitive.

 P A M L M A N U A L 6 2

11 References

Adachi, J., and M. Hasegawa. 1996a. Model of amino acid substitution in proteins encoded by
mitochondrial DNA. Journal of Molecular Evolution 42:459-468.

Adachi, J., and M. Hasegawa. 1996b. MolPhy Version 2.3: Programs for molecular phylogenetics
based on maximum likelihood. Computer Science Monographs 28:1-150.

Angelis, K., M. dos Reis, and Z. Yang. 2014. Bayesian estimation of nonsynonymous/synonymous
rate ratios for pairwise sequence comparisons. Molecular Biology and Evolution.

Anisimova, M., J. P. Bielawski, and Z. Yang. 2001. The accuracy and power of likelihood ratio tests
to detect positive selection at amino acid sites. Molecular Biology and Evolution 18:1585-
1592.

Anisimova, M., J. P. Bielawski, and Z. Yang. 2002. Accuracy and power of Bayes prediction of
amino acid sites under positive selection. Molecular Biology and Evolution 19:950-958.

Anisimova, M., R. Nielsen, and Z. Yang. 2003. Effect of recombination on the accuracy of the
likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229-
1236.

Azzalini, A., and M. G. Genton. 2008. Robust likelihood methods based on the skew-t and related
distributions. Int. Statist. Rev. 76:106-129.

Bielawski, J. P., and Z. Yang. 2004. A maximum likelihood method for detecting functional
divergence at individual codon sites, with application to gene family evolution. Journal of
Molecular Evolution 59:121-132.

Bishop, M. J., and A. E. Friday. 1987. Tetropad relationships: the molecular evidence. Pp. 123-139
in C. Patterson, ed. Molecules and Morphology in Evolution: Conflict or Compromise?
Cambridge University Press, Cambridge, England.

Brown, W. M., E. M. Prager, A. Wang, and A. C. Wilson. 1982. Mitochondrial DNA sequences of
primates: tempo and mode of evolution. Journal of Molecular Evolution 18:225-239.

Chang, B. S., and M. J. Donoghue. 2000. Recreating ancestral proteins. Trends Ecol. Evol. 15:109-
114.

Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in
proteins. Pp. 345-352. Atlas of protein sequence and structure, Vol 5, Suppl. 3. National
Biomedical Research Foundation, Washington D. C.

DeBry, R. W. 1992. The consistency of several phylogeny-inference methods under varying
evolutionary rates. Molecular Biology and Evolution 9:537-551.

dos Reis, M., and Z. Yang. 2011. Approximate likelihood calculation for Bayesian estimation of
divergence times. Molecular Biology and Evolution 28:2161–2172.

dos Reis, M., T. Zhu, and Z. Yang. 2014. The impact of the rate prior on Bayesian estimation of
divergence times with multiple loci. Systematic Biology.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution 17:368-376.

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts.

Felsenstein, J. 2005. Phylip: Phylogenetic Inference Program, Version 3.6. University of
Washington:Seattle.

Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree
topology. Systematic Zoology 20:406-416.

 P A M L M A N U A L 6 3

Forsberg, R., and F. B. Christiansen. 2003. A codon-based model of host-specific selection in
parasites, with an application to the influenza A virus. Molecular Biology and Evolution
20:1252-1259.

Galtier, N., and M. Gouy. 1998. Inferring pattern and process: maximum-likelihood implementation
of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis.
Molecular Biology and Evolution 15:871-879.

Goldman, N. 1993. Statistical tests of models of DNA substitution. Journal of Molecular Evolution
36:182-198.

Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-
coding DNA sequences. Molecular Biology and Evolution 11:725-736.

Hartigan, J. A. 1973. Minimum evolution fits to a given tree. Biometrics 29:53-65.

Hasegawa, M., T. Yano, and H. Kishino. 1984. A new molecular clock of mitochondrial DNA and
the evolution of Hominoids. Proc. Japan Acad. B. 60:95-98.

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating the human-ape splitting by a molecular clock
of mitochondrial DNA. Journal of Molecular Evolution 22:160-174.

Hayasaka, K., T. Gojobori, and S. Horai. 1988. Hayasaka, K., T. Gojobori, and S. Horai. 1988.
Molecular phylogeny and evolution of primate mitochondrial DNA. Molecular Biology and
Evolution 5:626-644. Molecular Biology and Evolution 5:626-644.

Huelsenbeck, J. P., and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogenetic trees.
Bioinformatics 17:754-755.

Inoue, J., P. C. H. Donoghue, and Z. Yang. 2010. The impact of the representation of fossil
calibrations on Bayesian estimation of species divergence times. Systematic Biology 59:74-
89.

Jones, D. T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data
matrices from protein sequences. CABIOS 8:275-282.

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pp. 21-123 in H. N. Munro,
ed. Mammalian Protein Metabolism. Academic Press, New York.

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through
comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the
evolutionary tree topologies from DNA sequence data, and the branching order in
hominoidea. Journal of Molecular Evolution 29:170-179.

Kishino, H., J. L. Thorne, and W. J. Bruno. 2001. Performance of a divergence time estimation
method under a probabilistic model of rate evolution. Molecular Biology and Evolution
18:352-361.

Koshi, J. M., and R. A. Goldstein. 1996. Probabilistic reconstruction of ancestral protein sequences.
Journal of Molecular Evolution 42:313-320.

Kumar, S., K. Tamura, and M. Nei. 1994. MEGA: Molecular Evolutionary Genetics Analysis
software for microcomputers. Comput Appl Biosci 10:189-191.

Lemey, P., O. G. Pybus, B. Wang et al. 2003. Tracing the origin and history of the HIV-2 epidemic.
Proceedings of National Academy of Sciences USA 100:6588-6592.

McCullagh, P., and J. A. Nelder. 1989. Generalized linear models. Chapman and Hall, London.

Messier, W., and C.-B. Stewart. 1997. Episodic adaptive evolution of primate lysozymes. Nature
385:151-154.

 P A M L M A N U A L 6 4

Nei, M., and T. Gojobori. 1986. Simple methods for estimating the numbers of synonymous and
nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418-426.

Nielsen, R., and Z. Yang. 1998. Likelihood models for detecting positively selected amino acid sites
and applications to the HIV-1 envelope gene. Genetics 148:929-936.

Page, R. D. M. 1996. TreeView: An application to display phylogenetic trees on personal
computers. Comput. Appl. Biosci. 12:357-358.

Pauling, L., and E. Zuckerkandl. 1963. Chemical paleogenetics: molecular "restoration studies" of
extinct forms of life. Acta Chem. Scand. 17:S9-S16.

Pupko, T., I. Pe'er, R. Shamir, and D. Graur. 2000. A fast algorithm for joint reconstruction of
ancestral amino acid sequences. Molecular Biology and Evolution 17:890-896.

Rannala, B., and Z. Yang. 1996. Probability distribution of molecular evolutionary trees: a new
method of phylogenetic inference. Journal of Molecular Evolution 43:304-311.

Rannala, B., and Z. Yang. 2007. Inferring speciation times under an episodic molecular clock.
Systematic Biology 56:453-466.

Robinson, D. F., and L. R. Foulds. 1981. Comparison of phylogenetic trees. Math. Biosci. 53:131-
147.

Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4:406-425.

Self, S. G., and K.-Y. Liang. 1987. Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82:605-610.

Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications
to phylogenetic inference. Molecular Biology and Evolution 16:1114-1116.

Stadler, T., and Z. Yang. 2012. Dating phylogenies with sequentially sampled tips. Syst. Biol.

Stewart, C.-B., J. W. Schilling, and A. C. Wilson. 1987. Adaptive evolution in the stomach
lysozymes of foregut fermenters. Nature 330:401-404.

Suzuki, Y., and T. Gojobori. 1999. A method for detecting positive selection at single amino acid
sites. Molecular Biology and Evolution 16:1315-1328.

Swanson, W. J., R. Nielsen, and Q. Yang. 2003. Pervasive adaptive evolution in mammalian
fertilization proteins. Molecular Biology and Evolution 20:18-20.

Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong
transition-transversion and G+C content biases. Molecular Biology and Evolution 9:678-
687.

Tamura, K., and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control
region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and
Evolution 10:512-526.

Thorne, J. L., H. Kishino, and I. S. Painter. 1998. Estimating the rate of evolution of the rate of
molecular evolution. Molecular Biology and Evolution 15:1647-1657.

Thornton, J. 2004. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev.
Genet. 5:366-375.

Weadick, C. J., and B. S. Chang. 2012. An improved likelihood ratio test for detecting site-specific
functional divergence among clades of protein-coding genes. Molecular Biology and
Evolution 29:1297-1300.

 P A M L M A N U A L 6 5

Whelan, S., and N. Goldman. 2001. A general empirical model of protein evolution derived from
multiple protein families using a maximum likelihood approach. Molecular Biology and
Evolution 18:691-699.

Whelan, S., P. Liò, and N. Goldman. 2001. Molecular phylogenetics: state of the art methods for
looking into the past. Trends Genet. 17:262-272.

Wong, W. S. W., Z. Yang, N. Goldman, and R. Nielsen. 2004. Accuracy and power of statistical
methods for detecting adaptive evolution in protein coding sequences and for identifying
positively selected sites. Genetics 168:1041-1051.

Yang, Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when
substitution rates differ over sites. Molecular Biology and Evolution 10:1396-1401.

Yang, Z. 1994a. Maximum likelihood phylogenetic estimation from DNA sequences with variable
rates over sites: approximate methods. Journal of Molecular Evolution 39:306-314.

Yang, Z. 1994b. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution
39:105-111.

Yang, Z. 1994c. Statistical properties of the maximum likelihood method of phylogenetic estimation
and comparison with distance matrix methods. Systematic Biology 43:329-342.

Yang, Z. 1995. A space-time process model for the evolution of DNA sequences. Genetics 139:993-
1005.

Yang, Z. 1996a. Maximum-likelihood models for combined analyses of multiple sequence data.
Journal of Molecular Evolution 42:587-596.

Yang, Z. 1996b. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol.
Evol. 11:367-372.

Yang, Z. 1998. Likelihood ratio tests for detecting positive selection and application to primate
lysozyme evolution. Molecular Biology and Evolution 15:568-573.

Yang, Z. 2000a. Complexity of the simplest phylogenetic estimation problem. Proc. R. Soc. B: Biol.
Sci. 267:109-116.

Yang, Z. 2000b. Maximum likelihood estimation on large phylogenies and analysis of adaptive
evolution in human influenza virus A. Journal of Molecular Evolution 51:423-432.

Yang, Z. 2002. Inference of selection from multiple species alignments. Curr. Opinion Genet.
Devel. 12:688-694.

Yang, Z. 2004. A heuristic rate smoothing procedure for maximum likelihood estimation of species
divergence times. Acta Zoologica Sinica 50:645-656.

Yang, Z. 2006. Computational Molecular Evolution. Oxford University Press, Oxford, UK.

Yang, Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and
Evolution 24:1586-1591.

Yang, Z., and D. Roberts. 1995. On the use of nucleic acid sequences to infer early branchings in the
tree of life. Molecular Biology and Evolution 12:451-458.

Yang, Z., and T. Wang. 1995. Mixed model analysis of DNA sequence evolution. Biometrics
51:552-561.

Yang, Z., and S. Kumar. 1996. Approximate methods for estimating the pattern of nucleotide
substitution and the variation of substitution rates among sites. Molecular Biology and
Evolution 13:650-659.

 P A M L M A N U A L 6 6

Yang, Z., and B. Rannala. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov
chain Monte Carlo Method. Molecular Biology and Evolution 14:717-724.

Yang, Z., and R. Nielsen. 1998. Synonymous and nonsynonymous rate variation in nuclear genes of
mammals. Journal of Molecular Evolution 46:409-418.

Yang, Z., and A. D. Yoder. 1999. Estimation of the transition/transversion rate bias and species
sampling. Journal of Molecular Evolution 48:274-283.

Yang, Z., and R. Nielsen. 2000. Estimating synonymous and nonsynonymous substitution rates
under realistic evolutionary models. Molecular Biology and Evolution 17:32-43.

Yang, Z., and J. P. Bielawski. 2000. Statistical methods for detecting molecular adaptation. Trends
Ecol. Evol. 15:496-503.

Yang, Z., and W. J. Swanson. 2002. Codon-substitution models to detect adaptive evolution that
account for heterogeneous selective pressures among site classes. Molecular Biology and
Evolution 19:49-57.

Yang, Z., and R. Nielsen. 2002. Codon-substitution models for detecting molecular adaptation at
individual sites along specific lineages. Molecular Biology and Evolution 19:908-917.

Yang, Z., and A. D. Yoder. 2003. Comparison of likelihood and Bayesian methods for estimating
divergence times using multiple gene loci and calibration points, with application to a
radiation of cute-looking mouse lemur species. Systematic Biology 52:705-716.

Yang, Z., and B. Rannala. 2006. Bayesian estimation of species divergence times under a molecular
clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution
23:212-226.

Yang, Z., and R. Nielsen. 2008. Mutation-selection models of codon substitution and their use to
estimate selective strengths on codon usage. Molecular Biology and Evolution 25:568-579.

Yang, Z., N. Goldman, and A. Friday. 1994. Comparison of models for nucleotide substitution used
in maximum- likelihood phylogenetic estimation. Molecular Biology and Evolution 11:316-
324.

Yang, Z., S. Kumar, and M. Nei. 1995a. A new method of inference of ancestral nucleotide and
amino acid sequences. Genetics 141:1641-1650.

Yang, Z., N. Goldman, and A. E. Friday. 1995b. Maximum likelihood trees from DNA sequences: a
peculiar statistical estimation problem. Systematic Biology 44:384-399.

Yang, Z., R. Nielsen, and M. Hasegawa. 1998. Models of amino acid substitution and applications
to mitochondrial protein evolution. Molecular Biology and Evolution 15:1600-1611.

Yang, Z., W. J. Swanson, and V. D. Vacquier. 2000a. Maximum likelihood analysis of molecular
adaptation in abalone sperm lysin reveals variable selective pressures among lineages and
sites. Molecular Biology and Evolution 17:1446-1455.

Yang, Z., W. S. W. Wong, and R. Nielsen. 2005. Bayes empirical Bayes inference of amino acid
sites under positive selection. Molecular Biology and Evolution 22:1107-1118.

Yang, Z., R. Nielsen, N. Goldman, and A.-M. K. Pedersen. 2000b. Codon-substitution models for
heterogeneous selection pressure at amino acid sites. Genetics 155:431-449.

Yoder, A. D., and Z. Yang. 2000. Estimation of primate speciation dates using local molecular
clocks. Molecular Biology and Evolution 17:1081-1090.

Zhang, J. 2004. Frequent false detection of positive selection by the likelihood method with branch-
site models. Molecular Biology and Evolution 21:1332-1339.

 P A M L M A N U A L 6 7

Zhang, J., R. Nielsen, and Z. Yang. 2005. Evaluation of an improved branch-site likelihood method
for detecting positive selection at the molecular level. Molecular Biology and Evolution
22:2472-2479.

Zharkikh, A. 1994. Estimation of evolutionary distances between nucleotide sequences. Journal of
Molecular Evolution 39:315-329.

 P A M L M A N U A L 6 8

Index

aaDist ..35
alignment ...5
alignment gap ..12
alpha ...22
ambiguity characters..12
ancestral reconstruction

joint ...25
marginal ..25

ancestral reconstruction4, 10, 24, 25
BEB ...31
BFGS...57
BioEdit ..5
birth-death process...40, 46
bootstrap ..58
branch label...16, 29
clade label ...16
cleandata..12, 26
clock .. 9, 15, 21, 26, 28, 34
CLUSTAL ...5, 61
codon model

branch model...9, 29, 35
branch-site model ..31, 36
clade model ...32
site model ..9, 30, 35

codon position 12, 13, 21, 25, 29, 34
CodonFreq ...34
convergence...57, 59
evolver ..39
examples..10
fix_alpha ...22
fix_blength..26
fix_kappa ..22
fix_rho ..23
fossil ..17, 21, 34
GenDoc..5
gene prediction ..6
genetic code...25
getSE ...24
icode ..26, 36, 37
in.baseml..59
in.codeml ...59
initial values ..26, 58, 59
likelihood ratio test ..5, 24
LRT ... See likelihood ratio test

lysozyme ...9
MacClade ..61
MCaa.dat..39
MCbase.dat...39
MCcodon.dat ..39
MEGA...61
method..26, 57
Mgene.. 11, 19, 20, 21, 25
missing data...12
model .. 20, 35, 37
MOLPHY..61
Monte Carlo simulation...41
mouse lemurs ..9
MrBayes ..61
ncatG ..22
ndata...21
NEB...31
nhomo ...23
noisy..20
nonhomogeneous models ..23
nparK ...23
NSsites ..9, 35
OmegaAA.dat ..35
optimization...57
Option G...........11, 12, 13, 20, 21, 22, 25, 27, 37, 58, 60
outfile..20
PAUP ..61
PHYLIP...60
RateAncestor ... 24, 31, 37, 38
rho...23
runmode ...20, 35
seqfile..20
Small_Diff ..25, 59
tree

parenthesis notation ..15
rooted ..15
unrooted ..15

tree search.. 6, 20, 57
TreeAlign ..5
treefile...20
TreeView...16, 62
verbose..20

	0B1 HOverview
	12BPAML documentation
	13BWhat PAML programs can do
	14BWhat PAML programs cannot do

	1B2 Compiling and punning PAML programs
	15BWindows
	16BUNIX
	17BMac OS X
	18BRunning a program
	19BExample data sets

	2B3 Data file formats
	3B4 baseml
	20BThe control file

	4B5 basemlg
	5B6 codeml (codonml and aaml)
	21BThe control file
	27BCodon sequences (seqtype = 1)
	28BAmino acid sequences (seqtype = 2)

	6B7 evolver
	7B8 yn00
	8B9 mcmctree
	Overview
	The control file
	Fossil calibration
	Dating viral divergences
	Approximate likelihood calculation
	Infinitesites program

	9B10 Miscelaneous notes
	29BPHYLIP
	30BPAUP, MacClade, and MrBayes
	31BClustal
	32BMEGA
	33BMOLPHY
	FigTree
	34BTreeView
	26BWindows notes

	10B11 HReferences
	11BIndex

