New $\left(\mathrm{N}^{7}\right)$ Formelherstellung (9/6/09)

(change from the previous versions: from version N^{3} to N^{4} only the preexponential terms in $\mathrm{k}+$ and k - of charge; from N^{4} to N^{5} the packing parameters ("curvature") of the lipids. From N^{5} to N^{6} only $\mathrm{k}+(\mathrm{CHOL})$ is made as $3.7 \times 10^{7}-\times 10$ of most other lipids; from N^{6} to N^{7} CHOL $k+$ is changed to 5 $\times 10^{7}$, from $k+$ for ergosterol from Estronca07)

The state equation stays the same:
$\frac{d C_{i v}^{j}}{d t}=k_{f i} k_{\text {fadj }}\left[C_{i m}^{j}\right] S_{v}-k_{b i} \cdot k_{b a d j} \cdot C_{i v}^{j}$

forward:

Unsaturation forward:
$u n_{f}=2^{\operatorname{stdev}\left(u n_{v}\right)}$
Charge Forward
$c h_{f}=60^{-\left(\overline{c h_{V}} \cdot c h_{m}\right)}$
Curvature Forward
$c U_{f}=10^{\text {stdev }\left(\log \left(c u_{v}\right)\right)}$

Doron the Lancer Commander of New GARD

Raphael bin Musa Commander of Z GARD

Charge backward:
$c h_{f}=60^{-\left(\overline{c h_{V}} \cdot c h_{m}\right)}$
Curvature backward
$c u b=4^{\left\|\log \left(c u_{v}\right)|-| \log \left(c u_{m}\right)\right\|}$
Length backward
$l_{b}=3.2^{\left|\bar{T}_{c}-l_{n}\right|}$
Complex Formation 1 (CF1) backward

$$
C F 1_{b}=1.5^{\left(C F 11_{v} \cdot C F 1_{m}-C F 1_{v} \cdot C F 1_{m} \mid\right)}
$$

$k b a d j=u n b \cdot c h b \cdot C u b \cdot l_{b} \cdot C F 1 b$

The starting parameters $\left(k_{f}=M^{-1} s^{-1} ; k_{b}=s^{-1}\right)$

PC:	$\mathrm{k}_{\mathrm{f}}=3.7 \times 10^{6} ;$	$\mathrm{k}_{\mathrm{b}}=2 \times 10^{-5}$
PE:	$\mathrm{k}_{\mathrm{f}}=2.3 \times 10^{6} ;$	$\mathrm{k}_{\mathrm{b}}=1 \times 10^{-5}$
PS:	$\mathrm{k}_{\mathrm{f}}=3.7 \times 10^{6} ;$	$\mathrm{k}_{\mathrm{b}}=1.25 \times 10^{-5}$
SM:	$\mathrm{k}_{\mathrm{f}}=3.7 \times 10^{6} ;$	$\mathrm{k}_{\mathrm{b}}=3.1 \times 10^{-3} \mathrm{~s}^{-1}$
CHOL:	$\mathrm{k}_{\mathrm{f}}=5.1 \times 10^{7} ;$	$\mathrm{k}_{\mathrm{b}}=2.8 \times 10^{-4}$

$\mathrm{k}_{\mathrm{f}}(\mathrm{PC})$ taken from Nichols85; weakness: NBD-PC; no unlabeled $\mathrm{k}+$ found
$\mathrm{k}_{\mathrm{f}}(\mathrm{PE})$ taken from Abreu04; NBD-PE
$k_{f}(P S)$ and $k_{f}(S M)$ assumed same as $k_{f}(P C)$
$\mathrm{k}_{\mathrm{f}}(\mathrm{CHOL})$ is taken from Estronca07, equal to that of dehydroergosterol.
$\mathrm{k}_{\mathrm{b}}(\mathrm{PC})$ is taken from Wimley 90 - radioactive label; LUV, $30^{\circ} \mathrm{C}$.
Then, Nichols82 with C6-NBD-PC and other headgroups was used to determine ratios of $k_{b}(\mathrm{PC})$ with other headgroups, and k_{b} for other headgroups assigned accordingly. $k_{b}(P S)$ was assumed to be the same as $k_{b}(P G)$ given by Nichols 82 (also ratio from $k_{b}(P C)$).
$\mathrm{k}_{\mathrm{b}}(\mathrm{SM})$ is taken from $\mathrm{k}_{\mathrm{b}}(\mathrm{PC})$ of Wimley 90 (radioactive), and then a ratio of $\mathrm{k}_{\mathrm{b}}(\mathrm{PC}) / \mathrm{k}_{\mathrm{b}}(\mathrm{SM})$ taken from Bai97: $=34 / 2.2=15.45 ; 2.0 \times 10^{-4} \times 15.45=3.1 \mathrm{x}$ $10^{-3} \mathrm{~s}^{-1}$.
$\mathrm{k}_{\mathrm{b}}(\mathrm{CHOL})$ taken from Jones90 (radioactive; POPC LUV; 37°).

Curvature:

$\mathrm{PE}=1.33 \quad$ (Kumar91)
$\mathrm{CHOL}=1.21 \quad$ (Kumar91)
$\mathrm{PC}=0.8 \quad$ (Kumar91)
$\mathrm{SM}=0.8 \quad$ (assumed by rz same as PC)

From Wuool

PS=1 (no refs so far; should be close to unity; rz)
Charge:
$P S=-1$

CF1
$S M=3 ; P C=2 ; C H O L=-1$
Initial concentrations:
$1 \times 10^{-10} \mathrm{M}$; gamma distributed with stdev $=10^{-10}$

