]> git.donarmstrong.com Git - mothur.git/blob - tree.cpp
changed random forest output filename
[mothur.git] / tree.cpp
1 /*
2  *  tree.cpp
3  *  Mothur
4  *
5  *  Created by Sarah Westcott on 1/22/09.
6  *  Copyright 2009 Schloss Lab UMASS Amherst. All rights reserved.
7  *
8  */
9
10 #include "tree.h"
11
12 /*****************************************************************/
13 Tree::Tree(int num, CountTable* t) : ct(t) {
14         try {
15                 m = MothurOut::getInstance();
16                 
17                 numLeaves = num;  
18                 numNodes = 2*numLeaves - 1;
19         
20                 tree.resize(numNodes);
21         }
22         catch(exception& e) {
23                 m->errorOut(e, "Tree", "Tree - numNodes");
24                 exit(1);
25         }
26 }
27 /*****************************************************************/
28 Tree::Tree(string g) { //do not use tree generated by this its just to extract the treenames, its a chicken before the egg thing that needs to be revisited.
29         try {
30                 m = MothurOut::getInstance();
31                 parseTreeFile();  m->runParse = false;  
32         }
33         catch(exception& e) {
34                 m->errorOut(e, "Tree", "Tree - just parse");
35                 exit(1);
36         }
37 }
38 /*****************************************************************/
39 Tree::Tree(CountTable* t) : ct(t) {
40         try {
41                 m = MothurOut::getInstance();
42                 
43                 if (m->runParse == true) {  parseTreeFile();  m->runParse = false;  }
44
45                 numLeaves = m->Treenames.size();
46                 numNodes = 2*numLeaves - 1;
47                 
48                 tree.resize(numNodes);
49                         
50                 //initialize groupNodeInfo
51         vector<string> namesOfGroups = ct->getNamesOfGroups();
52                 for (int i = 0; i < namesOfGroups.size(); i++) {  groupNodeInfo[namesOfGroups[i]].resize(0);  }
53                 
54                 //initialize tree with correct number of nodes, name and group info.
55                 for (int i = 0; i < numNodes; i++) {
56                         //initialize leaf nodes
57                         if (i <= (numLeaves-1)) {
58                                 tree[i].setName(m->Treenames[i]);
59                                 
60                                 //save group info
61                 int maxPars = 1;
62                                 vector<string> group;
63                 vector<int> counts = ct->getGroupCounts(m->Treenames[i]);
64                                 for (int j = 0; j < namesOfGroups.size(); j++) {  
65                     if (counts[j] != 0) { //you have seqs from this group
66                         groupNodeInfo[namesOfGroups[j]].push_back(i);
67                         group.push_back(namesOfGroups[j]);
68                         tree[i].pGroups[namesOfGroups[j]] = counts[j];
69                         tree[i].pcount[namesOfGroups[j]] = counts[j];
70                         //keep highest group
71                                                 if(counts[j] > maxPars){ maxPars = counts[j]; }
72                     }  
73                 }
74                                 tree[i].setGroup(group);
75                                 setIndex(m->Treenames[i], i);
76                 
77                 if (maxPars > 1) { //then we have some more dominant groups
78                                         //erase all the groups that are less than maxPars because you found a more dominant group.
79                                         for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();){
80                                                 if(it->second < maxPars){
81                                                         tree[i].pGroups.erase(it++);
82                                                 }else { it++; }
83                                         }
84                                         //set one remaining groups to 1
85                                         for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();it++){
86                                                 tree[i].pGroups[it->first] = 1;
87                                         }
88                                 }//end if
89                 
90                         //intialize non leaf nodes
91                         }else if (i > (numLeaves-1)) {
92                                 tree[i].setName("");
93                                 vector<string> tempGroups;
94                                 tree[i].setGroup(tempGroups);
95                         }
96                 }
97                 
98         }
99         catch(exception& e) {
100                 m->errorOut(e, "Tree", "Tree");
101                 exit(1);
102         }
103 }
104 /*****************************************************************/
105 Tree::Tree(CountTable* t, vector< vector<double> >& sims) : ct(t) {
106         try {
107                 m = MothurOut::getInstance();
108                 
109                 if (m->runParse == true) {  parseTreeFile();  m->runParse = false;  }
110                 numLeaves = m->Treenames.size();
111                 numNodes = 2*numLeaves - 1;
112                 
113                 tree.resize(numNodes);
114         
115                 //initialize groupNodeInfo
116         vector<string> namesOfGroups = ct->getNamesOfGroups();
117                 for (int i = 0; i < namesOfGroups.size(); i++) {  groupNodeInfo[namesOfGroups[i]].resize(0);  }
118                 
119                 //initialize tree with correct number of nodes, name and group info.
120                 for (int i = 0; i < numNodes; i++) {
121                         //initialize leaf nodes
122                         if (i <= (numLeaves-1)) {
123                                 tree[i].setName(m->Treenames[i]);
124                                 
125                                 //save group info
126                 int maxPars = 1;
127                                 vector<string> group;
128                 vector<int> counts = ct->getGroupCounts(m->Treenames[i]);
129                                 for (int j = 0; j < namesOfGroups.size(); j++) {  
130                     if (counts[j] != 0) { //you have seqs from this group
131                         groupNodeInfo[namesOfGroups[j]].push_back(i);
132                         group.push_back(namesOfGroups[j]);
133                         tree[i].pGroups[namesOfGroups[j]] = counts[j];
134                         tree[i].pcount[namesOfGroups[j]] = counts[j];
135                         //keep highest group
136                                                 if(counts[j] > maxPars){ maxPars = counts[j]; }
137                     }  
138                 }
139                                 tree[i].setGroup(group);
140                                 setIndex(m->Treenames[i], i);
141                 
142                 if (maxPars > 1) { //then we have some more dominant groups
143                                         //erase all the groups that are less than maxPars because you found a more dominant group.
144                                         for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();){
145                                                 if(it->second < maxPars){
146                                                         tree[i].pGroups.erase(it++);
147                                                 }else { it++; }
148                                         }
149                                         //set one remaining groups to 1
150                                         for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();it++){
151                                                 tree[i].pGroups[it->first] = 1;
152                                         }
153                                 }//end if
154                 
155                 //intialize non leaf nodes
156                         }else if (i > (numLeaves-1)) {
157                                 tree[i].setName("");
158                                 vector<string> tempGroups;
159                                 tree[i].setGroup(tempGroups);
160                         }
161                 }
162
163         
164         //build tree from matrix
165         //initialize indexes
166         map<int, int> thisIndexes;  //maps row in simMatrix to vector index in the tree
167         for (int g = 0; g < numLeaves; g++) {   thisIndexes[g] = g;     }
168                 
169                 //do merges and create tree structure by setting parents and children
170                 //there are numGroups - 1 merges to do
171                 for (int i = 0; i < (numLeaves - 1); i++) {
172                         float largest = -1000.0;
173                         
174                         if (m->control_pressed) { break; }
175                         
176                         int row, column;
177                         //find largest value in sims matrix by searching lower triangle
178                         for (int j = 1; j < sims.size(); j++) {
179                                 for (int k = 0; k < j; k++) {
180                                         if (sims[j][k] > largest) {  largest = sims[j][k]; row = j; column = k;  }
181                                 }
182                         }
183             
184                         //set non-leaf node info and update leaves to know their parents
185                         //non-leaf
186                         tree[numLeaves + i].setChildren(thisIndexes[row], thisIndexes[column]);
187                         
188                         //parents
189                         tree[thisIndexes[row]].setParent(numLeaves + i);
190                         tree[thisIndexes[column]].setParent(numLeaves + i);
191                         
192                         //blength = distance / 2;
193                         float blength = ((1.0 - largest) / 2);
194                         
195                         //branchlengths
196                         tree[thisIndexes[row]].setBranchLength(blength - tree[thisIndexes[row]].getLengthToLeaves());
197                         tree[thisIndexes[column]].setBranchLength(blength - tree[thisIndexes[column]].getLengthToLeaves());
198                         
199                         //set your length to leaves to your childs length plus branchlength
200                         tree[numLeaves + i].setLengthToLeaves(tree[thisIndexes[row]].getLengthToLeaves() + tree[thisIndexes[row]].getBranchLength());
201                         
202                         
203                         //update index 
204                         thisIndexes[row] = numLeaves+i;
205                         thisIndexes[column] = numLeaves+i;
206                         
207                         //remove highest value that caused the merge.
208                         sims[row][column] = -1000.0;
209                         sims[column][row] = -1000.0;
210                         
211                         //merge values in simsMatrix
212                         for (int n = 0; n < sims.size(); n++)   {
213                                 //row becomes merge of 2 groups
214                                 sims[row][n] = (sims[row][n] + sims[column][n]) / 2;
215                                 sims[n][row] = sims[row][n];
216                                 //delete column
217                                 sims[column][n] = -1000.0;
218                                 sims[n][column] = -1000.0;
219                         }
220                 }
221                 
222                 //adjust tree to make sure root to tip length is .5
223                 int root = findRoot();
224                 tree[root].setBranchLength((0.5 - tree[root].getLengthToLeaves()));
225         
226     }
227         catch(exception& e) {
228                 m->errorOut(e, "Tree", "Tree");
229                 exit(1);
230         }
231 }
232 /*****************************************************************/
233 Tree::~Tree() {}
234 /*****************************************************************
235 void Tree::addNamesToCounts(map<string, string> nameMap) {
236         try {
237                 //ex. seq1      seq2,seq3,se4
238                 //              seq1 = pasture
239                 //              seq2 = forest
240                 //              seq4 = pasture
241                 //              seq3 = ocean
242                 
243                 //before this function seq1.pcount = pasture -> 1
244                 //after                            seq1.pcount = pasture -> 2, forest -> 1, ocean -> 1
245                 
246                 //before this function seq1.pgroups = pasture -> 1
247                 //after                            seq1.pgroups = pasture -> 1 since that is the dominant group
248
249                                 
250                 //go through each leaf and update its pcounts and pgroups
251                 
252                 //float A = clock();
253
254                 for (int i = 0; i < numLeaves; i++) {
255
256                         string name = tree[i].getName();
257                 
258                         map<string, string>::iterator itNames = nameMap.find(name);
259                 
260                         if (itNames == nameMap.end()) { m->mothurOut(name + " is not in your name file, please correct."); m->mothurOutEndLine(); exit(1);  }
261                         else {
262                                 vector<string> dupNames;
263                                 m->splitAtComma(nameMap[name], dupNames);
264                                 
265                                 map<string, int>::iterator itCounts;
266                                 int maxPars = 1;
267                                 set<string> groupsAddedForThisNode;
268                                 for (int j = 0; j < dupNames.size(); j++) {
269                                         
270                                         string group = tmap->getGroup(dupNames[j]);
271                                         
272                                         if (dupNames[j] != name) {//you already added yourself in the constructor
273                                 
274                                                 if (groupsAddedForThisNode.count(group) == 0)  {  groupNodeInfo[group].push_back(i);  groupsAddedForThisNode.insert(group);  } //if you have not already added this node for this group, then add it
275                                                 
276                                                 //update pcounts
277                                                 itCounts = tree[i].pcount.find(group);
278                                                 if (itCounts == tree[i].pcount.end()) { //new group, add it
279                                                         tree[i].pcount[group] = 1;
280                                                 }else {
281                                                         tree[i].pcount[group]++;
282                                                 }
283                                                         
284                                                 //update pgroups
285                                                 itCounts = tree[i].pGroups.find(group);
286                                                 if (itCounts == tree[i].pGroups.end()) { //new group, add it
287                                                         tree[i].pGroups[group] = 1;
288                                                 }else{
289                                                         tree[i].pGroups[group]++;
290                                                 }
291                                                 
292                                                 //keep highest group
293                                                 if(tree[i].pGroups[group] > maxPars){
294                                                         maxPars = tree[i].pGroups[group];
295                                                 }
296                                         }else {  groupsAddedForThisNode.insert(group);  } //add it so you don't add it to groupNodeInfo again
297                                 }//end for
298                                 
299                                 if (maxPars > 1) { //then we have some more dominant groups
300                                         //erase all the groups that are less than maxPars because you found a more dominant group.
301                                         for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();){
302                                                 if(it->second < maxPars){
303                                                         tree[i].pGroups.erase(it++);
304                                                 }else { it++; }
305                                         }
306                                         //set one remaining groups to 1
307                                         for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();it++){
308                                                 tree[i].pGroups[it->first] = 1;
309                                         }
310                                 }//end if
311                                 
312                                 //update groups to reflect all the groups this node represents
313                                 vector<string> nodeGroups;
314                                 map<string, int>::iterator itGroups;
315                                 for (itGroups = tree[i].pcount.begin(); itGroups != tree[i].pcount.end(); itGroups++) {
316                                         nodeGroups.push_back(itGroups->first);
317                                 }
318                                 tree[i].setGroup(nodeGroups);
319                                 
320                         }//end else
321                 }//end for              
322                 
323                 //float B = clock();
324                 //cout << "addNamesToCounts\t" << (B - A) / CLOCKS_PER_SEC << endl;     
325
326         }
327         catch(exception& e) {
328                 m->errorOut(e, "Tree", "addNamesToCounts");
329                 exit(1);
330         }
331 }*/
332 /*****************************************************************/
333 int Tree::getIndex(string searchName) {
334         try {
335         map<string, int>::iterator itIndex = indexes.find(searchName);
336         if (itIndex != indexes.end()) {
337             return itIndex->second;
338         }
339                 return -1;
340         }
341         catch(exception& e) {
342                 m->errorOut(e, "Tree", "getIndex");
343                 exit(1);
344         }
345 }
346 /*****************************************************************/
347
348 void Tree::setIndex(string searchName, int index) {
349         try {
350                 map<string, int>::iterator itIndex = indexes.find(searchName);
351         if (itIndex == indexes.end()) {
352             indexes[searchName] = index;
353         }
354         }
355         catch(exception& e) {
356                 m->errorOut(e, "Tree", "setIndex");
357                 exit(1);
358         }
359 }
360 /*****************************************************************/
361 int Tree::assembleTree() {
362         try {           
363                 //build the pGroups in non leaf nodes to be used in the parsimony calcs.
364                 for (int i = numLeaves; i < numNodes; i++) {
365                         if (m->control_pressed) { return 1; }
366
367                         tree[i].pGroups = (mergeGroups(i));
368                         tree[i].pcount = (mergeGcounts(i));
369                 }
370                 
371                 return 0;
372         }
373         catch(exception& e) {
374                 m->errorOut(e, "Tree", "assembleTree");
375                 exit(1);
376         }
377 }
378 /*****************************************************************/
379 //assumes leaf node names are in groups and no names file - used by indicator command
380 void Tree::getSubTree(Tree* Ctree, vector<string> Groups) {
381         try {
382         
383         //copy Tree since we are going to destroy it
384         Tree* copy = new Tree(ct);
385         copy->getCopy(Ctree);
386         copy->assembleTree();
387         
388                 //we want to select some of the leaf nodes to create the output tree
389                 //go through the input Tree starting at parents of leaves
390         //initialize groupNodeInfo
391         vector<string> namesOfGroups = ct->getNamesOfGroups();
392                 for (int i = 0; i < namesOfGroups.size(); i++) {  groupNodeInfo[namesOfGroups[i]].resize(0);  }
393                 
394                 //initialize tree with correct number of nodes, name and group info.
395                 for (int i = 0; i < numNodes; i++) {
396                         //initialize leaf nodes
397                         if (i <= (numLeaves-1)) {
398                                 tree[i].setName(Groups[i]);
399                                 
400                                 //save group info
401                 int maxPars = 1;
402                                 vector<string> group;
403                 vector<int> counts = ct->getGroupCounts(Groups[i]);
404                                 for (int j = 0; j < namesOfGroups.size(); j++) {  
405                     if (counts[j] != 0) { //you have seqs from this group
406                         groupNodeInfo[namesOfGroups[j]].push_back(i);
407                         group.push_back(namesOfGroups[j]);
408                         tree[i].pGroups[namesOfGroups[j]] = counts[j];
409                         tree[i].pcount[namesOfGroups[j]] = counts[j];
410                         //keep highest group
411                                                 if(counts[j] > maxPars){ maxPars = counts[j]; }
412                     }  
413                 }
414                                 tree[i].setGroup(group);
415                                 setIndex(Groups[i], i);
416                 
417                 if (maxPars > 1) { //then we have some more dominant groups
418                                         //erase all the groups that are less than maxPars because you found a more dominant group.
419                                         for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();){
420                                                 if(it->second < maxPars){
421                                                         tree[i].pGroups.erase(it++);
422                                                 }else { it++; }
423                                         }
424                                         //set one remaining groups to 1
425                                         for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();it++){
426                                                 tree[i].pGroups[it->first] = 1;
427                                         }
428                                 }//end if
429                 
430                 //intialize non leaf nodes
431                         }else if (i > (numLeaves-1)) {
432                                 tree[i].setName("");
433                                 vector<string> tempGroups;
434                                 tree[i].setGroup(tempGroups);
435                         }
436                 }
437
438                 set<int> removedLeaves;
439                 for (int i = 0; i < copy->getNumLeaves(); i++) {
440                         
441                         if (removedLeaves.count(i) == 0) {
442                         
443                         //am I in the group
444                         int parent = copy->tree[i].getParent();
445                         
446                         if (parent != -1) {
447                                 
448                                 if (m->inUsersGroups(copy->tree[i].getName(), Groups)) {
449                                         //find my siblings name
450                                         int parentRC = copy->tree[parent].getRChild();
451                                         int parentLC = copy->tree[parent].getLChild();
452                                         
453                                         //if I am the right child, then my sib is the left child
454                                         int sibIndex = parentRC;
455                                         if (parentRC == i) { sibIndex = parentLC; }
456                                         
457                                         string sibsName = copy->tree[sibIndex].getName();
458                                         
459                                         //if yes, is my sibling
460                                         if ((m->inUsersGroups(sibsName, Groups)) || (sibsName == "")) {
461                                                 //we both are okay no trimming required
462                                         }else{
463                                                 //i am, my sib is not, so remove sib by setting my parent to my grandparent
464                                                 int grandparent = copy->tree[parent].getParent();
465                                                 int grandparentLC = copy->tree[grandparent].getLChild();
466                                                 int grandparentRC = copy->tree[grandparent].getRChild();
467                                                 
468                                                 //whichever of my granparents children was my parent now equals me
469                                                 if (grandparentLC == parent) { grandparentLC = i; }
470                                                 else { grandparentRC = i; }
471                                                 
472                                                 copy->tree[i].setParent(grandparent);
473                                                 copy->tree[i].setBranchLength((copy->tree[i].getBranchLength()+copy->tree[parent].getBranchLength()));
474                                                 if (grandparent != -1) {
475                                                         copy->tree[grandparent].setChildren(grandparentLC, grandparentRC);
476                                                 }
477                                                 removedLeaves.insert(sibIndex);
478                                         }
479                                 }else{
480                                         //find my siblings name
481                                         int parentRC = copy->tree[parent].getRChild();
482                                         int parentLC = copy->tree[parent].getLChild();
483                                         
484                                         //if I am the right child, then my sib is the left child
485                                         int sibIndex = parentRC;
486                                         if (parentRC == i) { sibIndex = parentLC; }
487                                         
488                                         string sibsName = copy->tree[sibIndex].getName();
489                                         
490                                         //if no is my sibling
491                                         if ((m->inUsersGroups(sibsName, Groups)) || (sibsName == "")) {
492                                                 //i am not, but my sib is
493                                                 int grandparent = copy->tree[parent].getParent();
494                                                 int grandparentLC = copy->tree[grandparent].getLChild();
495                                                 int grandparentRC = copy->tree[grandparent].getRChild();
496                                                 
497                                                 //whichever of my granparents children was my parent now equals my sib
498                                                 if (grandparentLC == parent) { grandparentLC = sibIndex; }
499                                                 else { grandparentRC = sibIndex; }
500                                                 
501                                                 copy->tree[sibIndex].setParent(grandparent);
502                                                 copy->tree[sibIndex].setBranchLength((copy->tree[sibIndex].getBranchLength()+copy->tree[parent].getBranchLength()));
503                                                 if (grandparent != -1) {
504                                                         copy->tree[grandparent].setChildren(grandparentLC, grandparentRC);
505                                                 }
506                                                 removedLeaves.insert(i);
507                                         }else{
508                                                 //neither of us are, so we want to eliminate ourselves and our parent
509                                                 //so set our parents sib to our great-grandparent
510                                                 int parent = copy->tree[i].getParent();
511                                                 int grandparent = copy->tree[parent].getParent();
512                                                 int parentsSibIndex;
513                                                 if (grandparent != -1) {
514                                                         int greatgrandparent = copy->tree[grandparent].getParent();
515                                                         int greatgrandparentLC, greatgrandparentRC;
516                                                         if (greatgrandparent != -1) {
517                                                                 greatgrandparentLC = copy->tree[greatgrandparent].getLChild();
518                                                                 greatgrandparentRC = copy->tree[greatgrandparent].getRChild();
519                                                         }
520                                                         
521                                                         int grandparentLC = copy->tree[grandparent].getLChild();
522                                                         int grandparentRC = copy->tree[grandparent].getRChild();
523                                                         
524                                                         parentsSibIndex = grandparentLC;
525                                                         if (grandparentLC == parent) { parentsSibIndex = grandparentRC; }
526
527                                                         //whichever of my greatgrandparents children was my grandparent
528                                                         if (greatgrandparentLC == grandparent) { greatgrandparentLC = parentsSibIndex; }
529                                                         else { greatgrandparentRC = parentsSibIndex; }
530                                                         
531                                                         copy->tree[parentsSibIndex].setParent(greatgrandparent);
532                                                         copy->tree[parentsSibIndex].setBranchLength((copy->tree[parentsSibIndex].getBranchLength()+copy->tree[grandparent].getBranchLength()));
533                                                         if (greatgrandparent != -1) {
534                                                                 copy->tree[greatgrandparent].setChildren(greatgrandparentLC, greatgrandparentRC);
535                                                         }
536                                                 }else{
537                                                         copy->tree[parent].setParent(-1);
538                                                         //cout << "issues with making subtree" << endl;
539                                                 }
540                                                 removedLeaves.insert(sibIndex);
541                                                 removedLeaves.insert(i);
542                                         }
543                                 }
544                         }
545                         }
546                 }
547                 
548                 int root = 0;
549                 for (int i = 0; i < copy->getNumNodes(); i++) {
550                         //you found the root
551                         if (copy->tree[i].getParent() == -1) { root = i; break; }
552                 }
553         
554                 int nextSpot = numLeaves;
555                 populateNewTree(copy->tree, root, nextSpot);
556         
557         delete copy;
558         }
559         catch(exception& e) {
560                 m->errorOut(e, "Tree", "getSubTree");
561                 exit(1);
562         }
563 }
564 /*****************************************************************
565 //assumes nameMap contains unique names as key or is empty. 
566 //assumes numLeaves defined in tree constructor equals size of seqsToInclude and seqsToInclude only contains unique seqs.
567 int Tree::getSubTree(Tree* copy, vector<string> seqsToInclude, map<string, string> nameMap) {
568         try {
569         
570         if (numLeaves != seqsToInclude.size()) { m->mothurOut("[ERROR]: numLeaves does not equal numUniques, cannot create subtree.\n"); m->control_pressed = true; return 0; }
571         
572         getSubTree(copy, seqsToInclude);
573         if (nameMap.size() != 0) {  addNamesToCounts(nameMap);  }
574         
575         //build the pGroups in non leaf nodes to be used in the parsimony calcs.
576                 for (int i = numLeaves; i < numNodes; i++) {
577                         if (m->control_pressed) { return 1; }
578             
579                         tree[i].pGroups = (mergeGroups(i));
580                         tree[i].pcount = (mergeGcounts(i));
581                 }
582         
583         return 0;
584     }
585         catch(exception& e) {
586                 m->errorOut(e, "Tree", "getSubTree");
587                 exit(1);
588         }
589 }
590 /*****************************************************************/
591 int Tree::populateNewTree(vector<Node>& oldtree, int node, int& index) {
592         try {
593                 
594                 if (oldtree[node].getLChild() != -1) {
595                         int rc = populateNewTree(oldtree, oldtree[node].getLChild(), index);
596                         int lc = populateNewTree(oldtree, oldtree[node].getRChild(), index);
597
598                         tree[index].setChildren(lc, rc);
599                         tree[rc].setParent(index);
600                         tree[lc].setParent(index);
601                         
602                         tree[index].setBranchLength(oldtree[node].getBranchLength());
603                         tree[rc].setBranchLength(oldtree[oldtree[node].getLChild()].getBranchLength());
604                         tree[lc].setBranchLength(oldtree[oldtree[node].getRChild()].getBranchLength());
605                         
606                         return (index++);
607                 }else { //you are a leaf
608                         int indexInNewTree = getIndex(oldtree[node].getName());
609                         return indexInNewTree;
610                 }
611         }
612         catch(exception& e) {
613                 m->errorOut(e, "Tree", "populateNewTree");
614                 exit(1);
615         }
616 }
617 /*****************************************************************/
618 void Tree::getCopy(Tree* copy, bool subsample) {
619         try {
620         
621                 //for each node in the tree copy its info
622                 for (int i = 0; i < numNodes; i++) {
623                         //copy branch length
624                         tree[i].setBranchLength(copy->tree[i].getBranchLength());
625             
626                         //copy parent
627                         tree[i].setParent(copy->tree[i].getParent());
628             
629                         //copy children
630                         tree[i].setChildren(copy->tree[i].getLChild(), copy->tree[i].getRChild());
631         }
632         
633         //build the pGroups in non leaf nodes to be used in the parsimony calcs.
634                 for (int i = numLeaves; i < numNodes; i++) {
635                         if (m->control_pressed) { break; }
636             
637                         tree[i].pGroups = (mergeGroups(i));
638                         tree[i].pcount = (mergeGcounts(i));
639                 }
640         }
641         catch(exception& e) {
642                 m->errorOut(e, "Tree", "getCopy");
643                 exit(1);
644         }
645 }
646 /*****************************************************************/
647 void Tree::getCopy(Tree* copy) {
648         try {
649         
650                 //for each node in the tree copy its info
651                 for (int i = 0; i < numNodes; i++) {
652                         //copy name
653                         tree[i].setName(copy->tree[i].getName());
654                 
655                         //copy group
656                         tree[i].setGroup(copy->tree[i].getGroup());
657                         
658                         //copy branch length
659                         tree[i].setBranchLength(copy->tree[i].getBranchLength());
660                 
661                         //copy parent
662                         tree[i].setParent(copy->tree[i].getParent());
663                 
664                         //copy children
665                         tree[i].setChildren(copy->tree[i].getLChild(), copy->tree[i].getRChild());
666                 
667                         //copy index in node and tmap
668             setIndex(copy->tree[i].getName(), getIndex(copy->tree[i].getName()));
669                         tree[i].setIndex(copy->tree[i].getIndex());
670                         
671                         //copy pGroups
672                         tree[i].pGroups = copy->tree[i].pGroups;
673                 
674                         //copy pcount
675                         tree[i].pcount = copy->tree[i].pcount;
676                 }
677                 
678                 groupNodeInfo = copy->groupNodeInfo;
679                 
680         }
681         catch(exception& e) {
682                 m->errorOut(e, "Tree", "getCopy");
683                 exit(1);
684         }
685 }
686 /*****************************************************************/
687 //returns a map with a groupname and the number of times that group was seen in the children
688 //for instance if your children are white and black then it would return a map with 2 entries
689 // p[white] = 1 and p[black] = 1.  Now go up a level and merge that with a node who has p[white] = 1
690 //and you get p[white] = 2, p[black] = 1, but you erase the p[black] because you have a p value higher than 1.
691
692 map<string, int> Tree::mergeGroups(int i) {
693         try {
694                 int lc = tree[i].getLChild();
695                 int rc = tree[i].getRChild();
696
697                 //set parsimony groups to left child
698                 map<string,int> parsimony = tree[lc].pGroups;
699                 
700                 int maxPars = 1;
701
702                 //look at right child groups and update maxPars if right child has something higher for that group.
703                 for(it=tree[rc].pGroups.begin();it!=tree[rc].pGroups.end();it++){
704                         it2 = parsimony.find(it->first);
705                         if (it2 != parsimony.end()) {
706                                 parsimony[it->first]++;
707                         }else {
708                                 parsimony[it->first] = 1;
709                         }
710                         
711                         if(parsimony[it->first] > maxPars){
712                                 maxPars = parsimony[it->first];
713                         }
714                 }
715         
716                 // this is true if right child had a greater parsimony for a certain group
717                 if(maxPars > 1){
718                         //erase all the groups that are only 1 because you found something with 2.
719                         for(it=parsimony.begin();it!=parsimony.end();){
720                                 if(it->second == 1){
721                                         parsimony.erase(it++);
722                                 }else { it++; }
723                         }
724                         //set one remaining groups to 1
725                         //so with our above example p[white] = 2 would be left and it would become p[white] = 1
726                         for(it=parsimony.begin();it!=parsimony.end();it++){
727                                 parsimony[it->first] = 1;
728                         }
729                 
730                 }
731         
732                 return parsimony;
733         }
734         catch(exception& e) {
735                 m->errorOut(e, "Tree", "mergeGroups");
736                 exit(1);
737         }
738 }
739 /*****************************************************************/
740 //returns a map with a groupname and the number of times that group was seen in the children
741 //for instance if your children are white and black then it would return a map with 2 entries
742 // p[white] = 1 and p[black] = 1.  Now go up a level and merge that with a node who has p[white] = 1
743 //and you get p[white] = 2, p[black] = 1, but you erase the p[black] because you have a p value higher than 1.
744
745 map<string, int> Tree::mergeUserGroups(int i, vector<string> g) {
746         try {
747         
748                 int lc = tree[i].getLChild();
749                 int rc = tree[i].getRChild();
750                 
751                 //loop through nodes groups removing the ones the user doesn't want
752                 for(it=tree[lc].pGroups.begin();it!=tree[lc].pGroups.end();){
753                                 if (m->inUsersGroups(it->first, g) != true) {
754                                         tree[lc].pGroups.erase(it++);
755                                 }else { it++; }
756                 }
757
758                 //loop through nodes groups removing the ones the user doesn't want
759                 for(it=tree[rc].pGroups.begin();it!=tree[rc].pGroups.end();){
760                                 if (m->inUsersGroups(it->first, g) != true) {
761                                         tree[rc].pGroups.erase(it++);
762                                 }else { it++; }
763                 }
764
765                 //set parsimony groups to left child
766                 map<string,int> parsimony = tree[lc].pGroups;
767                 
768                 int maxPars = 1;
769
770                 //look at right child groups and update maxPars if right child has something higher for that group.
771                 for(it=tree[rc].pGroups.begin();it!=tree[rc].pGroups.end();it++){
772                         it2 = parsimony.find(it->first);
773                         if (it2 != parsimony.end()) {
774                                 parsimony[it->first]++;
775                         }else {
776                                 parsimony[it->first] = 1;
777                         }
778                         
779                         if(parsimony[it->first] > maxPars){
780                                 maxPars = parsimony[it->first];
781                         }
782                 }
783                         
784                 // this is true if right child had a greater parsimony for a certain group
785                 if(maxPars > 1){
786                         //erase all the groups that are only 1 because you found something with 2.
787                         for(it=parsimony.begin();it!=parsimony.end();){
788                                 if(it->second == 1){
789                                         parsimony.erase(it++);
790                                 }else { it++; }
791                         }
792
793                         for(it=parsimony.begin();it!=parsimony.end();it++){
794                                 parsimony[it->first] = 1;
795                         }
796                 }               
797                 
798                 return parsimony;
799         }
800         catch(exception& e) {
801                 m->errorOut(e, "Tree", "mergeUserGroups");
802                 exit(1);
803         }
804 }
805
806
807 /**************************************************************************************************/
808
809 map<string,int> Tree::mergeGcounts(int position) {
810         try{
811                 map<string,int>::iterator pos;
812         
813                 int lc = tree[position].getLChild();
814                 int rc = tree[position].getRChild();
815         
816                 map<string,int> sum = tree[lc].pcount;
817     
818                 for(it=tree[rc].pcount.begin();it!=tree[rc].pcount.end();it++){
819                         sum[it->first] += it->second;
820                 }
821                 return sum;
822         }
823         catch(exception& e) {
824                 m->errorOut(e, "Tree", "mergeGcounts");
825                 exit(1);
826         }
827 }
828 /**************************************************************************************************/
829 void Tree::randomLabels(vector<string> g) {
830         try {
831         
832                 //initialize groupNodeInfo
833                 for (int i = 0; i < (ct->getNamesOfGroups()).size(); i++) {
834                         groupNodeInfo[(ct->getNamesOfGroups())[i]].resize(0);
835                 }
836                 
837                 for(int i = 0; i < numLeaves; i++){
838                         int z;
839                         //get random index to switch with
840                         z = int((float)(i+1) * (float)(rand()) / ((float)RAND_MAX+1.0));        
841                         
842                         //you only want to randomize the nodes that are from a group the user wants analyzed, so
843                         //if either of the leaf nodes you are about to switch are not in the users groups then you don't want to switch them.
844                         bool treez, treei;
845                 
846                         treez = m->inUsersGroups(tree[z].getGroup(), g);
847                         treei = m->inUsersGroups(tree[i].getGroup(), g);
848                         
849                         if ((treez == true) && (treei == true)) {
850                                 //switches node i and node z's info.
851                                 map<string,int> lib_hold = tree[z].pGroups;
852                                 tree[z].pGroups = (tree[i].pGroups);
853                                 tree[i].pGroups = (lib_hold);
854                                 
855                                 vector<string> zgroup = tree[z].getGroup();
856                                 tree[z].setGroup(tree[i].getGroup());
857                                 tree[i].setGroup(zgroup);
858                                 
859                                 string zname = tree[z].getName();
860                                 tree[z].setName(tree[i].getName());
861                                 tree[i].setName(zname);
862                                 
863                                 map<string,int> gcount_hold = tree[z].pcount;
864                                 tree[z].pcount = (tree[i].pcount);
865                                 tree[i].pcount = (gcount_hold);
866                         }
867                         
868                         for (int k = 0; k < (tree[i].getGroup()).size(); k++) {  groupNodeInfo[(tree[i].getGroup())[k]].push_back(i); }
869                         for (int k = 0; k < (tree[z].getGroup()).size(); k++) {  groupNodeInfo[(tree[z].getGroup())[k]].push_back(z); }
870                 }
871         }
872         catch(exception& e) {
873                 m->errorOut(e, "Tree", "randomLabels");
874                 exit(1);
875         }
876 }
877 /**************************************************************************************************/
878 void Tree::randomBlengths()  {
879         try {
880                 for(int i=numNodes-1;i>=0;i--){
881                         int z = int((float)(i+1) * (float)(rand()) / ((float)RAND_MAX+1.0));    
882                 
883                         float bl_hold = tree[z].getBranchLength();
884                         tree[z].setBranchLength(tree[i].getBranchLength());
885                         tree[i].setBranchLength(bl_hold);
886                 }
887         }
888         catch(exception& e) {
889                 m->errorOut(e, "Tree", "randomBlengths");
890                 exit(1);
891         }
892 }
893 /*************************************************************************************************/
894 void Tree::assembleRandomUnifracTree(vector<string> g) {
895         randomLabels(g);
896         assembleTree();
897 }
898 /*************************************************************************************************/
899 void Tree::assembleRandomUnifracTree(string groupA, string groupB) {
900         vector<string> temp; temp.push_back(groupA); temp.push_back(groupB);
901         randomLabels(temp);
902         assembleTree();
903 }
904
905 /*************************************************************************************************/
906 //for now it's just random topology but may become random labels as well later that why this is such a simple function now...
907 void Tree::assembleRandomTree() {
908         randomTopology();
909         assembleTree();
910 }
911 /**************************************************************************************************/
912
913 void Tree::randomTopology() {
914         try {
915                 for(int i=0;i<numNodes;i++){
916                         tree[i].setParent(-1);
917                 }
918                 for(int i=numLeaves;i<numNodes;i++){
919                         tree[i].setChildren(-1, -1); 
920                 }
921     
922                 for(int i=numLeaves;i<numNodes;i++){
923                         int escape =0;
924                         int rnd_index1, rnd_index2;
925                         while(escape == 0){
926                                 rnd_index1 = (int)(((double)rand() / (double) RAND_MAX)*i);
927                                 if(tree[rnd_index1].getParent() == -1){escape = 1;}
928                         }
929                 
930                         escape = 0;
931                         while(escape == 0){
932                                 rnd_index2 = (int)(((double)rand() / (double) RAND_MAX)*i);
933                                 if(rnd_index2 != rnd_index1 && tree[rnd_index2].getParent() == -1){
934                                         escape = 1;
935                                 }               
936                         }
937         
938                         tree[i].setChildren(rnd_index1,rnd_index2);
939                         tree[i].setParent(-1);
940                         tree[rnd_index1].setParent(i);
941                         tree[rnd_index2].setParent(i);
942                 }
943         }
944         catch(exception& e) {
945                 m->errorOut(e, "Tree", "randomTopology");
946                 exit(1);
947         }
948 }
949 /*****************************************************************/
950 void Tree::print(ostream& out) {
951         try {
952                 int root = findRoot();
953                 printBranch(root, out, "branch");
954                 out << ";" << endl;
955         }
956         catch(exception& e) {
957                 m->errorOut(e, "Tree", "print");
958                 exit(1);
959         }
960 }
961 /*****************************************************************/
962 void Tree::print(ostream& out, map<string, string> nameMap) {
963         try {
964                 int root = findRoot();
965                 printBranch(root, out, nameMap);
966                 out << ";" << endl;
967         }
968         catch(exception& e) {
969                 m->errorOut(e, "Tree", "print");
970                 exit(1);
971         }
972 }
973 /*****************************************************************/
974 void Tree::print(ostream& out, string mode) {
975         try {
976                 int root = findRoot();
977                 printBranch(root, out, mode);
978                 out << ";" << endl;
979         }
980         catch(exception& e) {
981                 m->errorOut(e, "Tree", "print");
982                 exit(1);
983         }
984 }
985 /*****************************************************************/
986 // This prints out the tree in Newick form.
987 void Tree::createNewickFile(string f) {
988         try {
989                 int root = findRoot();
990         
991                 filename = f;
992
993                 m->openOutputFile(filename, out);
994                 
995                 printBranch(root, out, "branch");
996                 
997                 // you are at the end of the tree
998                 out << ";" << endl;
999                 out.close();
1000         }
1001         catch(exception& e) {
1002                 m->errorOut(e, "Tree", "createNewickFile");
1003                 exit(1);
1004         }
1005 }
1006
1007 /*****************************************************************/
1008 //This function finds the index of the root node.
1009
1010 int Tree::findRoot() {
1011         try {
1012                 for (int i = 0; i < numNodes; i++) {
1013                         //you found the root
1014                         if (tree[i].getParent() == -1) { return i; }
1015                         //cout << "i = " << i << endl;
1016                         //cout << "i's parent = " << tree[i].getParent() << endl;  
1017                 }
1018                 return -1;
1019         }
1020         catch(exception& e) {
1021                 m->errorOut(e, "Tree", "findRoot");
1022                 exit(1);
1023         }
1024 }
1025 /*****************************************************************/
1026 void Tree::printBranch(int node, ostream& out, map<string, string> names) {
1027 try {
1028
1029 // you are not a leaf
1030                 if (tree[node].getLChild() != -1) {
1031                         out << "(";
1032                         printBranch(tree[node].getLChild(), out, names);
1033                         out << ",";
1034                         printBranch(tree[node].getRChild(), out, names);
1035                         out << ")";
1036                         
1037             //if there is a branch length then print it
1038             if (tree[node].getBranchLength() != -1) {
1039                 out << ":" << tree[node].getBranchLength();
1040             }
1041                         
1042                 }else { //you are a leaf
1043             map<string, string>::iterator itNames = names.find(tree[node].getName());
1044             
1045             string outputString = "";
1046             if (itNames != names.end()) { 
1047                 
1048                 vector<string> dupNames;
1049                 m->splitAtComma((itNames->second), dupNames);
1050                 
1051                 if (dupNames.size() == 1) {
1052                     outputString += tree[node].getName();
1053                     if (tree[node].getBranchLength() != -1) {
1054                         outputString += ":" + toString(tree[node].getBranchLength());
1055                     }
1056                 }else {
1057                     outputString += "(";
1058                     
1059                     for (int u = 0; u < dupNames.size()-1; u++) {
1060                         outputString += dupNames[u];
1061                         
1062                         if (tree[node].getBranchLength() != -1) {
1063                             outputString += ":" + toString(0.0);
1064                         }
1065                         outputString += ",";
1066                     }
1067                     
1068                     outputString += dupNames[dupNames.size()-1];
1069                     if (tree[node].getBranchLength() != -1) {
1070                         outputString += ":" + toString(0.0);
1071                     }
1072                     
1073                     outputString += ")";
1074                     if (tree[node].getBranchLength() != -1) {
1075                         outputString += ":" + toString(tree[node].getBranchLength());
1076                     }
1077                 }
1078             }else { 
1079                 outputString = tree[node].getName();
1080                 //if there is a branch length then print it
1081                 if (tree[node].getBranchLength() != -1) {
1082                     outputString += ":" + toString(tree[node].getBranchLength());
1083                 }
1084                 
1085                 m->mothurOut("[ERROR]: " + tree[node].getName() + " is not in your namefile, please correct."); m->mothurOutEndLine(); 
1086             }
1087                 
1088             out << outputString;
1089                 }
1090                 
1091         }
1092         catch(exception& e) {
1093                 m->errorOut(e, "Tree", "printBranch");
1094                 exit(1);
1095         }
1096 }
1097 /*****************************************************************/
1098 void Tree::printBranch(int node, ostream& out, string mode) {
1099     try {
1100         
1101         // you are not a leaf
1102                 if (tree[node].getLChild() != -1) {
1103                         out << "(";
1104                         printBranch(tree[node].getLChild(), out, mode);
1105                         out << ",";
1106                         printBranch(tree[node].getRChild(), out, mode);
1107                         out << ")";
1108                         if (mode == "branch") {
1109                                 //if there is a branch length then print it
1110                                 if (tree[node].getBranchLength() != -1) {
1111                                         out << ":" << tree[node].getBranchLength();
1112                                 }
1113                         }else if (mode == "boot") {
1114                                 //if there is a label then print it
1115                                 if (tree[node].getLabel() != -1) {
1116                                         out << tree[node].getLabel();
1117                                 }
1118                         }else if (mode == "both") {
1119                                 if (tree[node].getLabel() != -1) {
1120                                         out << tree[node].getLabel();
1121                                 }
1122                                 //if there is a branch length then print it
1123                                 if (tree[node].getBranchLength() != -1) {
1124                                         out << ":" << tree[node].getBranchLength();
1125                                 }
1126                         }
1127                 }else { //you are a leaf
1128                         vector<string> leafGroup = ct->getGroups(tree[node].getName());
1129                         
1130                         if (mode == "branch") {
1131                                 out << leafGroup[0]; 
1132                                 //if there is a branch length then print it
1133                                 if (tree[node].getBranchLength() != -1) {
1134                                         out << ":" << tree[node].getBranchLength();
1135                                 }
1136                         }else if (mode == "boot") {
1137                                 out << leafGroup[0]; 
1138                                 //if there is a label then print it
1139                                 if (tree[node].getLabel() != -1) {
1140                                         out << tree[node].getLabel();
1141                                 }
1142                         }else if (mode == "both") {
1143                                 out << tree[node].getName();
1144                                 if (tree[node].getLabel() != -1) {
1145                                         out << tree[node].getLabel();
1146                                 }
1147                                 //if there is a branch length then print it
1148                                 if (tree[node].getBranchLength() != -1) {
1149                                         out << ":" << tree[node].getBranchLength();
1150                                 }
1151                         }
1152                 }
1153                 
1154         }
1155         catch(exception& e) {
1156                 m->errorOut(e, "Tree", "printBranch");
1157                 exit(1);
1158         }
1159 }
1160 /*****************************************************************/
1161 void Tree::printBranch(int node, ostream& out, string mode, vector<Node>& theseNodes) {
1162         try {
1163                 
1164                 // you are not a leaf
1165                 if (theseNodes[node].getLChild() != -1) {
1166                         out << "(";
1167                         printBranch(theseNodes[node].getLChild(), out, mode);
1168                         out << ",";
1169                         printBranch(theseNodes[node].getRChild(), out, mode);
1170                         out << ")";
1171                         if (mode == "branch") {
1172                                 //if there is a branch length then print it
1173                                 if (theseNodes[node].getBranchLength() != -1) {
1174                                         out << ":" << theseNodes[node].getBranchLength();
1175                                 }
1176                         }else if (mode == "boot") {
1177                                 //if there is a label then print it
1178                                 if (theseNodes[node].getLabel() != -1) {
1179                                         out << theseNodes[node].getLabel();
1180                                 }
1181                         }else if (mode == "both") {
1182                                 if (theseNodes[node].getLabel() != -1) {
1183                                         out << theseNodes[node].getLabel();
1184                                 }
1185                                 //if there is a branch length then print it
1186                                 if (theseNodes[node].getBranchLength() != -1) {
1187                                         out << ":" << theseNodes[node].getBranchLength();
1188                                 }
1189                         }
1190                 }else { //you are a leaf
1191                         vector<string> leafGroup = ct->getGroups(theseNodes[node].getName());
1192                         
1193                         if (mode == "branch") {
1194                                 out << leafGroup[0]; 
1195                                 //if there is a branch length then print it
1196                                 if (theseNodes[node].getBranchLength() != -1) {
1197                                         out << ":" << theseNodes[node].getBranchLength();
1198                                 }
1199                         }else if (mode == "boot") {
1200                                 out << leafGroup[0]; 
1201                                 //if there is a label then print it
1202                                 if (theseNodes[node].getLabel() != -1) {
1203                                         out << theseNodes[node].getLabel();
1204                                 }
1205                         }else if (mode == "both") {
1206                                 out << theseNodes[node].getName();
1207                                 if (theseNodes[node].getLabel() != -1) {
1208                                         out << theseNodes[node].getLabel();
1209                                 }
1210                                 //if there is a branch length then print it
1211                                 if (theseNodes[node].getBranchLength() != -1) {
1212                                         out << ":" << theseNodes[node].getBranchLength();
1213                                 }
1214                         }
1215                 }
1216                 
1217         }
1218         catch(exception& e) {
1219                 m->errorOut(e, "Tree", "printBranch");
1220                 exit(1);
1221         }
1222 }
1223 /*****************************************************************/
1224
1225 void Tree::printTree() {
1226         
1227         for(int i=0;i<numNodes;i++){
1228                 cout << i << '\t';
1229                 tree[i].printNode();
1230         }
1231         
1232 }
1233
1234 /*****************************************************************/
1235 //this code is a mess and should be rethought...-slw
1236 int Tree::parseTreeFile() {
1237         
1238         //only takes names from the first tree and assumes that all trees use the same names.
1239         try {
1240                 string filename = m->getTreeFile();
1241                 ifstream filehandle;
1242                 m->openInputFile(filename, filehandle);
1243                 int c, comment;
1244                 comment = 0;
1245                 int done = 1;
1246                 
1247                 //ifyou are not a nexus file 
1248                 if((c = filehandle.peek()) != '#') {  
1249                         while((c = filehandle.peek()) != ';') {
1250                 if (m->control_pressed) {  filehandle.close(); return 0; }
1251                                 while ((c = filehandle.peek()) != ';') {
1252                     if (m->control_pressed) {  filehandle.close(); return 0; }
1253                                         // get past comments
1254                                         if(c == '[') {
1255                                                 comment = 1;
1256                                         }
1257                                         if(c == ']'){
1258                                                 comment = 0;
1259                                         }
1260                                         if((c == '(') && (comment != 1)){ break; }
1261                                         filehandle.get();
1262                                 }
1263
1264                                 done = readTreeString(filehandle); 
1265                                 if (done == 0) { break; }
1266                         }
1267                 //ifyou are a nexus file
1268                 }else if((c = filehandle.peek()) == '#') {
1269                         string holder = "";
1270                                         
1271                         // get past comments
1272                         while(holder != "translate" && holder != "Translate"){
1273                 if (m->control_pressed) {  filehandle.close(); return 0; }
1274                                 if(holder == "[" || holder == "[!"){
1275                                         comment = 1;
1276                                 }
1277                                 if(holder == "]"){
1278                                         comment = 0;
1279                                 }
1280                                 filehandle >> holder; 
1281
1282                                 //if there is no translate then you must read tree string otherwise use translate to get names
1283                                 if((holder == "tree") && (comment != 1)){       
1284                                         //pass over the "tree rep.6878900 = "
1285                                         while (((c = filehandle.get()) != '(') && ((c = filehandle.peek()) != EOF)) {;}
1286
1287                                         if(c == EOF) { break; }
1288                                         filehandle.putback(c);  //put back first ( of tree.
1289                                         done = readTreeString(filehandle);
1290         
1291                                         break;
1292                                 }
1293                         
1294                                 if (done == 0) { break;  }
1295                         }
1296                         
1297                         //use nexus translation rather than parsing tree to save time
1298                         if((holder == "translate") || (holder == "Translate")) {
1299
1300                                 string number, name, h;
1301                                 h = ""; // so it enters the loop the first time
1302                                 while((h != ";") && (number != ";")) {
1303                     if (m->control_pressed) {  filehandle.close(); return 0; }
1304                                         filehandle >> number;
1305                                         filehandle >> name;
1306         
1307                                         //c = , until done with translation then c = ;
1308                                         h = name.substr(name.length()-1, name.length()); 
1309                                         name.erase(name.end()-1);  //erase the comma
1310                                         m->Treenames.push_back(number);
1311                                 }
1312                                 if(number == ";") { m->Treenames.pop_back(); }  //in case ';' from translation is on next line instead of next to last name
1313                         }
1314                 }
1315                 filehandle.close();
1316                 return 0;
1317                 //for (int i = 0; i < globaldata->Treenames.size(); i++) {
1318 //cout << globaldata->Treenames[i] << endl; }
1319 //cout << globaldata->Treenames.size() << endl;
1320         }
1321         catch(exception& e) {
1322                 m->errorOut(e, "Tree", "parseTreeFile");
1323                 exit(1);
1324         }
1325 }
1326 /*******************************************************/
1327
1328 /*******************************************************/
1329 int Tree::readTreeString(ifstream& filehandle)  {
1330         try {
1331                 int c;
1332                 string name;  //, k
1333                 
1334                 while((c = filehandle.peek()) != ';') {
1335             if (m->control_pressed) {  return 0; }
1336 //k = c;
1337 //cout << " at beginning of while " <<  k << endl;                      
1338                         if(c == ')')  {    
1339                                 //to pass over labels in trees
1340                                 c=filehandle.get();
1341                                 while((c!=',') && (c != -1) && (c!= ':') && (c!=';')){ c=filehandle.get(); }
1342                                 filehandle.putback(c);
1343                         }
1344                         if(c == ';') { return 0; }
1345                         if(c == -1) { return 0; }
1346                         //if you are a name
1347                         if((c != '(') && (c != ')') && (c != ',') && (c != ':') && (c != '\n') && (c != '\t') && (c != 32)) { //32 is space
1348                                 name = "";
1349                                 c = filehandle.get();
1350                         //k = c;
1351 //cout << k << endl;
1352                                 while ((c != '(') && (c != ')') && (c != ',') && (c != ':')  && (c != '\n') && (c != 32) && (c != '\t')) {                      
1353                                         name += c;
1354                                         c = filehandle.get();
1355                         //k = c;
1356 //cout << " in name while " << k << endl;
1357                                 }
1358                                 
1359 //cout << "name = " << name << endl;
1360                 if (name != "\r" ) {
1361                     m->Treenames.push_back(name);   } //cout << m->Treenames.size() << '\t' << name << endl;
1362                 
1363                                 filehandle.putback(c);
1364 //k = c;
1365 //cout << " after putback" <<  k << endl;
1366                         } 
1367                         
1368                         if(c  == ':') { //read until you reach the end of the branch length
1369                                 while ((c != '(') && (c != ')') && (c != ',') && (c != ';') && (c != '\n') && (c != '\t') && (c != 32)) {
1370                                         c = filehandle.get();
1371         //k = c;
1372         //cout << " in branch while " << k << endl;
1373                                 }
1374                                 filehandle.putback(c);
1375                         }
1376                 
1377                         c = filehandle.get();
1378 //k = c;
1379         //cout << " here after get " << k << endl;
1380                         if(c == ';') { return 0; }
1381                         if(c == ')') { filehandle.putback(c); }
1382         //k = c;
1383 //cout << k << endl;
1384
1385                 }
1386                 return 0;
1387         }
1388         catch(exception& e) {
1389                 m->errorOut(e, "Tree", "readTreeString");
1390                 exit(1);
1391         }
1392 }       
1393
1394 /*******************************************************/
1395
1396 /*******************************************************/
1397