“T SPEND A LOT OF TIME ON THIS TRSK.
T SHOULD LIRITE A PROGRAM AUTOMATING IT!™

Don Armstrong

August 17, 2015

Do

@ Compiling and installing software from source
installation shell scripts

@ Replacement of operating system specific compilation and

@ Re-compile when dependencies of the software were modified

=] =y = = na
Using make for science

@ POSIX Make (standardization of basic features of make)
@ GNU Make (standard make on Linux and OS X)

@ BSD Make (pmake or bmake)

@ nmake (Part of visual studio)

@ Mk (Plan 9 replacement of make)

=} F = = 12N Ge

Using make for science

http://pubs.opengroup.org/onlinepubs/009695399/utilities/make.html
http://www.gnu.org/software/make/manual/
https://www.freebsd.org/cgi/man.cgi?query=make(1)
https://msdn.microsoft.com/en-us/library/dd9y37ha.aspx
http://plan9.bell-labs.com/sys/doc/mk.html

@ Ant (popular for java software)

@ Cabal (popular for Haskell)

@ Maven (also java)

@ Rake (ruby build took)

@ Gradle (Rake DSL)

@ Leiningen (Clojure)

@ Tweaker (task definitions in any language)
@ Ruffus (Pipeline library for python)

@ Wikipedia List of build automation software

o (=] =

Using make for science

https://en.wikipedia.org/wiki/List_of_build_automation_software

@ Ubiquitous - any machine which you can run command line tools on
has GNU make available.

@ Large community - lots of people use GNU make. It’s not going to
go away tomorrow.

@ Simple rules - all of the rules are in a simple text file which is easily
edited and version controlled

@ Reasonable debugging - you can see the commands that make is
going to run fairly easily: make -n target;

@ Parallel - make can make targets in parallel: make -38 all;

@ Language agnostic - make doesn’t care what language your code is
written in

[m] [l = =

Using make for science

hello_world:

Jecho

"hello world"

> hello_world

=] =y = = na
Using make for science

TARGETS: PREREQUISITES
JRECIPE

@ TARGETS are file names separated by spaces
@ PREREQUISITES are file names separated by spaces.

@ RECIPE lines start with a tab, are executed by the shell and describe
how to make the TARGETS (generally from the PREREQUISITES)

@ A TARGET is out of date if it does not exist or if it is older than any of
the prerequisites.

o & - = DA
Using make for science

@ Two flavors of variables

@ FOO=bar - recursively expanded variables; references to other
variables are expanded at the time this variable is expanded

@ FOO:=bar - simply expanded variables; the value is assigned at the
moment the variable is created

@ Variables can come from the environment and can be overridden on
the command line: FOO=blah make Or make FOO=bleargh.

@ $@ - target name

@ $* — current stem

@ [s7 - all prerequisites

@ $< - first prerequisite

@ $(F0O0) - how variables are referenced

=] F

Using make for science

@ $(patsubst

o

%.sam,
foo.bam bar.bam.

% .bam, foo.sam bar.sam) -returns
@ $(filter-out %.bam, foo.sam bar.bam) - returns foo.sam
its argument (2)

@ $(words foo.sam bar.bam) - returns the number of words in
@ $(wordlist 1,2,foo.sam bar.bam bleargh.foo) -
ending with the second.

returns the words in its last argument starting with the 1st and

=] =y = = na
Using make for science

first_target:

“‘touch $@
second_target:

first_target
“4touch $@

@ By default, make builds the first target.

@ You can specify a specific target to build on the command line
(make first_target).

@ You can change the default target by using the variable
.DEFAULT_GOAL

second_target

o [DA
Using make for science

.PHONY :

clean

clean:

H4rm —f first_target second_target

@ .PHONY| - any time make considers this target, it is run
unconditionally, even if a file exists.

° - when a target is built, all lines will be given to a single
invocation of the shell.

@ Lots of other special targets which are not described here.

o = = = DA
Using make for science

%.fasta:

%.fasta.gz

dgzip -dc $< > s@

% .bam:

% .sam

dsamtools view -b -o $@ S$<

@ % is the pattern stem which is accessible by $*
@ The first rule uncompresses fasta files

@ The second rule turns sam files into bam files

o = = = DA
Using make for science

all:

using_make_for_science.pdf

relevant_xkcd.png:

Jdwget -0 $@
— "http://imgs.xkcd.com/comics/automation.pn
%.tex: %.Rnw
4R -—encoding=utf-8 -e \
.pdf:

A"library ('knitr'); knit ('$<')"

%$.tex $(wildcard *.bib) $(wildcard *.tex)
H4latexmk -pdf \

—

J-pdflatex="xelatex -shell-escape —-8bit

—-interaction=nonstopmode %0 %S' \
J-bibtex -use-make $<
=] =y = = na

@ all is the default

@ Download the optional relevant_xkcd.png
@ Make .tex files from the knitr source.

@ The third rule uses latexmk to build the pdf using XglATEX.

=} = 12N Ge

Using make for science

@ =200 tissue samples from Roadmap Epigenomics
@ No consistent workflow

@ Reanalyze them all using STAR and cufflinks

=] =y = = na
Using make for science

SRX=SRX007165

SRRS=SRR020291 SRR020290

NREADS=1

SRR_FILES=$ (patsubst %,%.sra,$(SRRS))

get_srr: $(SRR_FILES)

S(SRR_FILES): %.sra:
J4rsync -avP "rsync://ftp-
< trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByRun/sra/SRR/$ (shell
echo —n $*|sed 's/\(SRR[0-9][0-
91[0-91\) .*/\1/")/$*/$*.sra"
S@;

r ey

[=] ﬁl: = =

Using make for science

ifeq (S (NREADS),1)

FASTQ_FILES:=$ (patsubst %,%.fastg.gz,$(SRRS))
else

FASTQ_FILES:=$ (patsubst %,%_1.fastqg.gz, $(SRRS))

<~ $(patsubst %,%_2.fastqg.gz,$(SRRS))
endif

make_fastqg: $(FASTQ _FILES)

@ Use ifeg/else/endif to handle paired reads differently from unpaired
reads

@ FASTQ_FILES is the full set of fastq files dumped from the SRAs.

[m] [l = =

DA
Using make for science

ifeq ($(NREADS),1)
S(FASTQ_FILES): %.fastg.gz: %.sra
else
%_1.fastg.gz %_2.fastg.gz: %.sra
endif
4$ (MODULE) load sratoolkit/2.3.5-2;

Jdfastg-dump —--split-3 —-gzip $*;

\

@ Handles NREADS of 1 and 2 differently
@ Call fastq-dump to dump the fastq files

o (=] =

Using make for science

S (SRX) _star.bam:

4$ (MODULE) load STAR/2.4.2a; \

Jmkdir -p $(SRX)_star; \

ASTAR —-outFileNamePrefix $(SRX)_star/ \
4--outSAMtype BAM SortedByCoordinate \
4-—runThreadN $ (CORES) \
J-—outSAMstrandField intronMotif \
4-—genomeDir $ (STAR_INDEX_DIR) \
J--readFilesCommand "gzip —-dc" \
Jd--readFilesIn $ (TOPHAT FASTQ ARGUMENT) ;
4ln $(SRX)_star/Aligned.*.bam $Q@ -s

@ Call STAR with lots of options to do the alignment

o (=] =

Using make for science

call:

$ (SRX) _genes. fpkm_tracking

$ (SRX) _genes.fpkm_tracking: $(SRX)_star.bam
< S$(BOWTIE_INDEX_DIR)$ (GTF)
4$ (MODULE) load cufflinks/2.2.1;

—

\
Hdcufflinks -p $(CORES) -G $(wordlist
- 2,2,8") S<

A

isoforms. fpkm tracking skipped.gtf
< transcripts.gtf; do \
Jdone;

Jfor file in genes.fpkm_tracking

dmv $S{file} $(SRX)_SS{file};
@ Use cufflinks to call

= = - DQC
Using make for science

~donarm/uiuc_igb_scripts/dgsub —--mem 70G \
—-—-ppn 8 make call;

scripts for everything

@ http://git.donarmstrong.com/?p=uiuc_igb_scripts.
git;a=blob; f=dgsub

=] =y = = na
Using make for science

@ dgsub is my own gsub wrapper which avoids me having to write little

http://git.donarmstrong.com/?p=uiuc_igb_scripts.git;a=blob;f=dqsub
http://git.donarmstrong.com/?p=uiuc_igb_scripts.git;a=blob;f=dqsub

@ Timestamps, not MD5sums
@ Complicated workflows

@ Interaction of rules can be complicated to understand
@ Yet Another Language

=} = 12N Ge

Using make for science

TARGET :

PREREQ1 PREREQ1

Aif [—e S@.tgt.mdbsum] && [—e $@] \
A && md5sum —-status —-—check \

x S@.tgt.md5sum; then \

4 touch $@; \

Hdelse \

4 RECIPE FOR $@; \

4 mdssum $* > $@.tgt.md5sum; \

Afi;

@ Make builds things on the basis of timestamps
@ But what if the contents haven’t changed and it’s expensive to

rebuild?

@ Use md5sum!

o (=] =

Using make for science

@ If your workflow is really complicated, what then?
@ Use some other language to write your workflow in

@ Use a simple makefile which just runs the workflow

complicated_workflow_done:

reqgl reg2 reqg3

o = = = DA
Using make for science

4. /complicated_workflow.sh $%;
Hdtouch $@;

@ GNU Make Manual:

https://www.gnu.org/software/make/manual/

@ Mailing lists: http://www.gnu.org/software/make/

@ Stack overflow:
http://stackoverflow.com/questions/tagged/make

@ Myself: don@donarmstrong.com

@ This presentation: http:

//git.donarmstrong.com/using_make_for_science.git

=] =y = = na
Using make for science

https://www.gnu.org/software/make/manual/
http://www.gnu.org/software/make/
http://stackoverflow.com/questions/tagged/make
mailto:don@donarmstrong.com
http://git.donarmstrong.com/using_make_for_science.git
http://git.donarmstrong.com/using_make_for_science.git

	What make was made for
	Brief history of makes
	Other solutions in this problem space
	Why use GNU make?

	Introduction to Makefiles
	General Syntax
	Variables
	Functions
	Rules

	Examples
	This Presentation
	Calling records from SRA

	Why not make?
	Timestamps
	Complicated Workflows

	Further Resources

