“T SPEND A LOT OF TIME ON THIS TRSK.
T SHOULD LIRITE A PROGRAM AUTOMATING IT!™
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Do



@ Compiling and installing software from source
installation shell scripts

@ Replacement of operating system specific compilation and

@ Re-compile when dependencies of the software were modified
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@ POSIX Make (standardization of basic features of make)
@ GNU Make (standard make on Linux and OS X)

@ BSD Make (pmake or bmake)

@ nmake (Part of visual studio)

@ Mk (Plan 9 replacement of make)
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http://pubs.opengroup.org/onlinepubs/009695399/utilities/make.html
http://www.gnu.org/software/make/manual/
https://www.freebsd.org/cgi/man.cgi?query=make(1)
https://msdn.microsoft.com/en-us/library/dd9y37ha.aspx
http://plan9.bell-labs.com/sys/doc/mk.html

@ Ant (popular for java software)

@ Cabal (popular for Haskell)

@ Maven (also java)

@ Rake (ruby build took)

@ Gradle (Rake DSL)

@ Leiningen (Clojure)

@ Tweaker (task definitions in any language)
@ Ruffus (Pipeline library for python)

@ Wikipedia List of build automation software
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https://en.wikipedia.org/wiki/List_of_build_automation_software

@ Ubiquitous - any machine which you can run command line tools on
has GNU make available.

@ Large community - lots of people use GNU make. It’s not going to
go away tomorrow.

@ Simple rules - all of the rules are in a simple text file which is easily
edited and version controlled

@ Reasonable debugging - you can see the commands that make is
going to run fairly easily: make -n target;

@ Parallel - make can make targets in parallel: make -38 all;

@ Language agnostic - make doesn’t care what language your code is
written in
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hello_world:

Jecho

"hello world"

> hello_world
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TARGETS: PREREQUISITES
JRECIPE

@ TARGETS are file names separated by spaces
@ PREREQUISITES are file names separated by spaces.

@ RECIPE lines start with a tab, are executed by the shell and describe
how to make the TARGETS (generally from the PREREQUISITES)

@ A TARGET is out of date if it does not exist or if it is older than any of
the prerequisites.
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@ Two flavors of variables

@ FOO=bar - recursively expanded variables; references to other
variables are expanded at the time this variable is expanded

@ FOO:=bar - simply expanded variables; the value is assigned at the
moment the variable is created

@ Variables can come from the environment and can be overridden on
the command line: FOO=blah make Or make FOO=bleargh.

@ $@ - target name

@ $* — current stem

@ [s7 - all prerequisites

@ $< - first prerequisite

@ $(F0O0) - how variables are referenced
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@ $(patsubst

o

%.sam,
foo.bam bar.bam.

% .bam, foo.sam bar.sam) -returns
@ $(filter-out %.bam, foo.sam bar.bam) - returns foo.sam
its argument (2)

@ $(words foo.sam bar.bam) - returns the number of words in
@ $(wordlist 1,2,foo.sam bar.bam bleargh.foo) -
ending with the second.

returns the words in its last argument starting with the 1st and
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first_target:

“‘touch $@
second_target:

first_target
“4touch $@

@ By default, make builds the first target.

@ You can specify a specific target to build on the command line
(make first_target).

@ You can change the default target by using the variable
.DEFAULT_GOAL

second_target
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.PHONY :

clean

clean:

H4rm —f first_target second_target

@ .PHONY| - any time make considers this target, it is run
unconditionally, even if a file exists.

° - when a target is built, all lines will be given to a single
invocation of the shell.

@ Lots of other special targets which are not described here.
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%.fasta:

%.fasta.gz

dgzip -dc $< > s@

% .bam:

% .sam

dsamtools view -b -o $@ S$<

@ % is the pattern stem which is accessible by $*
@ The first rule uncompresses fasta files

@ The second rule turns sam files into bam files
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all:

using_make_for_science.pdf

relevant_xkcd.png:

Jdwget -0 $@
— "http://imgs.xkcd.com/comics/automation.pn
%.tex: %.Rnw
4R -—encoding=utf-8 -e \
.pdf:

A"library ('knitr'); knit ('$<')"

%$.tex $(wildcard *.bib) $(wildcard *.tex)
H4latexmk -pdf \

—

J-pdflatex="xelatex -shell-escape —-8bit

—-interaction=nonstopmode %0 %S' \
J-bibtex -use-make $<
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@ all is the default

@ Download the optional relevant_xkcd.png
@ Make .tex files from the knitr source.

@ The third rule uses latexmk to build the pdf using XglATEX.
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@ =200 tissue samples from Roadmap Epigenomics
@ No consistent workflow

@ Reanalyze them all using STAR and cufflinks
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SRX=SRX007165

SRRS=SRR020291 SRR020290

NREADS=1

SRR_FILES=$ (patsubst %,%.sra,$(SRRS))

get_srr: $(SRR_FILES)

S(SRR_FILES): %.sra:
J4rsync -avP "rsync://ftp-
< trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByRun/sra/SRR/$ (shell
echo —n $*|sed 's/\(SRR[0-9][0-
91[0-91\) .*/\1/")/$*/$*.sra"
S@;

r ey
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ifeq (S (NREADS),1)

FASTQ_FILES:=$ (patsubst %,%.fastg.gz,$(SRRS))
else

FASTQ_FILES:=$ (patsubst %,%_1.fastqg.gz, $(SRRS))

<~ $(patsubst %,%_2.fastqg.gz,$(SRRS))
endif

make_fastqg: $(FASTQ _FILES)

@ Use ifeg/else/endif to handle paired reads differently from unpaired
reads

@ FASTQ_FILES is the full set of fastq files dumped from the SRAs.
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ifeq ($(NREADS),1)
S(FASTQ_FILES): %.fastg.gz: %.sra
else
%_1.fastg.gz %_2.fastg.gz: %.sra
endif
4$ (MODULE) load sratoolkit/2.3.5-2;

Jdfastg-dump —--split-3 —-gzip $*;

\

@ Handles NREADS of 1 and 2 differently
@ Call fastq-dump to dump the fastq files
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S (SRX) _star.bam:

4$ (MODULE) load STAR/2.4.2a; \

Jmkdir -p $(SRX)_star; \

ASTAR —-outFileNamePrefix $(SRX)_star/ \
4--outSAMtype BAM SortedByCoordinate \
4-—runThreadN $ (CORES) \
J-—outSAMstrandField intronMotif \
4-—genomeDir $ (STAR_INDEX_DIR) \
J--readFilesCommand "gzip —-dc" \
Jd--readFilesIn $ (TOPHAT FASTQ ARGUMENT) ;
4ln $(SRX)_star/Aligned.*.bam $Q@ -s

@ Call STAR with lots of options to do the alignment
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call:

$ (SRX) _genes. fpkm_tracking

$ (SRX) _genes.fpkm_tracking: $(SRX)_star.bam
< S$(BOWTIE_INDEX_DIR)$ (GTF)
4$ (MODULE) load cufflinks/2.2.1;

—

\
Hdcufflinks -p $(CORES) -G $(wordlist
- 2,2,8") S<

A

isoforms. fpkm tracking skipped.gtf
< transcripts.gtf; do \
Jdone;

Jfor file in genes.fpkm_tracking

dmv $S{file} $(SRX)_SS{file};
@ Use cufflinks to call
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~donarm/uiuc_igb_scripts/dgsub —--mem 70G \
—-—-ppn 8 make call;

scripts for everything

@ http://git.donarmstrong.com/?p=uiuc_igb_scripts.
git;a=blob; f=dgsub
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@ dgsub is my own gsub wrapper which avoids me having to write little



http://git.donarmstrong.com/?p=uiuc_igb_scripts.git;a=blob;f=dqsub
http://git.donarmstrong.com/?p=uiuc_igb_scripts.git;a=blob;f=dqsub

@ Timestamps, not MD5sums
@ Complicated workflows

@ Interaction of rules can be complicated to understand
@ Yet Another Language

=} = 12N Ge

Using make for science



TARGET :

PREREQ1 PREREQ1

Aif [ —e S@.tgt.mdbsum ] && [ —e $@ ] \
A && md5sum —-status —-—check \

x S@.tgt.md5sum; then \

4 touch $@; \

Hdelse \

4 RECIPE FOR $@; \

4 mdssum $* > $@.tgt.md5sum; \

Afi;

@ Make builds things on the basis of timestamps
@ But what if the contents haven’t changed and it’s expensive to

rebuild?

@ Use md5sum!
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@ If your workflow is really complicated, what then?
@ Use some other language to write your workflow in

@ Use a simple makefile which just runs the workflow

complicated_workflow_done:

reqgl reg2 reqg3
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4. /complicated_workflow.sh $%;
Hdtouch $@;




@ GNU Make Manual:

https://www.gnu.org/software/make/manual/

@ Mailing lists: http://www.gnu.org/software/make/

@ Stack overflow:
http://stackoverflow.com/questions/tagged/make

@ Myself: don@donarmstrong.com

@ This presentation: http:

//git.donarmstrong.com/using_make_for_science.git
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