\name{mlphylo} \alias{mlphylo} \alias{logLik.phylo} \alias{deviance.phylo} \alias{AIC.phylo} \title{Estimating Phylogenies by Maximum Likelihood} \usage{ mlphylo(x, phy, model = DNAmodel(), search.tree = FALSE, quiet = FALSE, value = NULL, fixed = FALSE) \method{logLik}{phylo}(object, ...) \method{deviance}{phylo}(object, ...) \method{AIC}{phylo}(object, ..., k = 2) } \arguments{ \item{x}{an object of class \code{"DNAbin"} giving the (aligned) DNA sequence data.} \item{phy}{an object of class \code{"phylo"} giving the tree.} \item{model}{an object of class \code{"DNAmodel"} giving the model to be fitted.} \item{search.tree}{a logical specifying whether to search for the best tree (defaults to FALSE) (not functional for the moment).} \item{quiet}{a logical specifying whether to display the progress of the analysis.} \item{value}{a list with elements named \code{rates}, \code{alpha}, and \code{invar}, or at least one of these, giving the initial values of the parameters of the model. If \code{NULL}, some initial values are given internally.} \item{fixed}{a logical specifying whether to optimize parameters given in \code{value}.} \item{object}{an object of class \code{"phylo"}.} \item{k}{a numeric value giving the penalty per estimated parameter; the default is \code{k = 2} which is the classical Akaike information criterion.} \item{...}{further arguments passed to or from other methods.} } \description{ \code{mlphylo} estimates a phylogenetic tree by maximum likelihood given a set of DNA sequences. The model of evolution is specified with the function \code{\link{DNAmodel}}. \code{logLik}, \code{deviance}, and \code{AIC} are generic functions used to extract the log-likelihood, the deviance (-2*logLik), or the Akaike information criterion of a tree. If no such values are available, \code{NULL} is returned. } \details{ The model specified by \code{\link{DNAmodel}} is fitted using the standard ``pruning'' algorithm of Felsenstein (1981). The implementation of the inter-sites variation in substitution rates follows the methodology developed by Yang (1994). The difference among partitions is parametrized with a contrast parameter (denoted \eqn{\xi}{xi}) that specifies the contrast in mean susbtitution rate among the partitions. This methodology is inspired from one introduced by Yang (1996). The substitution rates are indexed column-wise in the rate matrix: the first rate is set to one. } \note{ For the moment, it is not possible to estimate neither branch lengths, nor the topology with \code{mlphylo}. The function may estimate all other parameters: substitution rates, shape (\eqn{\alpha}{alpha}) of the inter-sites variation in substitution rates, the proportion of invariants, and the ``contrast'' parameter (\eqn{\xi}{xi}) among partitions. Alternative topologies can also be compared using likelihood-ratio tests (LRTs) or AICs. } \value{ an object of class \code{"phylo"}. There are possible additional attributes: \item{loglik}{the maximum log-likelihood.} \item{npart}{the number of partitions.} \item{model}{the substitution model.} \item{rates}{the estimated substitution rates.} \item{invar}{the estimated proportion of invariants.} \item{alpha}{the estimated shape parameter of the inter-sites variation in substitution rates.} } \references{ Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. \emph{Journal of Molecular Evolution}, \bold{17}, 368--376. Yang, Z. (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. \emph{Journal of Molecular Evolution}, \bold{39}, 306--314. Yang, Z. (1996) Maximum-likelihood models for combined analyses of multiple sequence data. \emph{Journal of Molecular Evolution}, \bold{42}, 587--596. } \author{Emmanuel Paradis \email{Emmanuel.Paradis@mpl.ird.fr}} \seealso{ \code{\link{DNAmodel}}, \code{\link{nj}}, \code{\link{read.dna}}, \code{\link{summary.phylo}}, \code{\link{bionj}}, \code{\link{fastme}} } \keyword{models}