\name{diversity.contrast.test} \alias{diversity.contrast.test} \title{Diversity Contrast Test} \description{ This function performs the diversity contrast test comparing pairs of sister-clades. } \usage{ diversity.contrast.test(x, method = "ratiolog", alternative = "two.sided", nrep = 0, ...) } \arguments{ \item{x}{a matrix or a data frame with at least two columns: the first one gives the number of species in clades with a trait supposed to increase or decrease diversification rate, and the second one the number of species in the sister-clades without the trait. Each row represents a pair of sister-clades.} \item{method}{a character string specifying the kind of test: \code{"ratiolog"} (default), \code{"proportion"}, \code{"difference"}, \code{"logratio"}, or any unambiguous abbreviation of these.} \item{alternative}{a character string defining the alternative hypothesis: \code{"two.sided"} (default), \code{"less"}, \code{"greater"}, or any unambiguous abbreviation of these.} \item{nrep}{the number of replications of the randomization test; by default, a Wilcoxon test is done.} \item{\dots}{arguments passed to the function \code{\link[stats]{wilcox.test}}.} } \details{ If \code{method = "ratiolog"}, the test described in Barraclough et al. (1996) is performed. If \code{method = "proportion"}, the version in Barraclough et al. (1995) is used. If \code{method = "difference"}, the signed difference is used (Sargent 2004). If \code{method = "logratio"}, then this is Wiegmann et al.'s (1993) version. These four tests are essentially different versions of the same test (Vamosi and Vamosi 2005, Vamosi 2007). If \code{nrep = 0}, a Wilcoxon test is done on the species diversity contrasts with the null hypothesis is that they are distributed around zero. If \code{nrep > 0}, a randomization procedure is done where the signs of the diversity contrasts are randomly chosen. This is used to create a distribution of the test statistic which is compared with the observed value (the sum of the diversity contrasts). } \value{ a single numeric value with the \emph{P}-value. } \references{ Barraclough, T. G., Harvey, P. H. and Nee, S. (1995) Sexual selection and taxonomic diversity in passerine birds. \emph{Proceedings of the Royal Society of London. Series B. Biological Sciences}, \bold{259}, 211--215. Barraclough, T. G., Harvey, P. H., and Nee, S. (1996) Rate of \emph{rbc}L gene sequence evolution and species diversification in flowering plants (angiosperms). \emph{Proceedings of the Royal Society of London. Series B. Biological Sciences}, \bold{263}, 589--591. Sargent, R. D. (2004) Floral symmetry affects speciation rates in angiosperms. \emph{Proceedings of the Royal Society of London. Series B. Biological Sciences}, \bold{271}, 603--608. Vamosi, S. M. (2007) Endless tests: guidelines for analysing non-nested sister-group comparisons. An addendum. \emph{Evolutionary Ecology Research}, \bold{9}, 717. Vamosi, S. M. and Vamosi, J. C. (2005) Endless tests: guidelines for analysing non-nested sister-group comparisons. \emph{Evolutionary Ecology Research}, \bold{7}, 567--579. Wiegmann, B., Mitter, C. and Farrell, B. 1993. Diversification of carnivorous parasitic insects: extraordinary radiation or specialized dead end? \emph{American Naturalist}, \bold{142}, 737--754. } \author{Emmanuel Paradis} \seealso{ \code{\link{slowinskiguyer.test}}, \code{\link{mcconwaysims.test}} \code{\link{richness.yule.test}} } \examples{ ### data from Vamosi & Vamosi (2005): fleshy <- c(1, 1, 1, 1, 1, 3, 3, 5, 9, 16, 33, 40, 50, 100, 216, 393, 850, 947,1700) dry <- c(2, 64, 300, 89, 67, 4, 34, 10, 150, 35, 2, 60, 81, 1, 3, 1, 11, 1, 18) x <- cbind(fleshy, dry) diversity.contrast.test(x) diversity.contrast.test(x, alt = "g") diversity.contrast.test(x, alt = "g", nrep = 1e4) slowinskiguyer.test(x) mcconwaysims.test(x) } \keyword{htest}