\name{delta.plot} \alias{delta.plot} \title{Delta Plots} \usage{ delta.plot(X, k = 20, plot = TRUE, which = 1:2) } \arguments{ \item{X}{a distance matrix, may be an object of class ``dist''.} \item{k}{an integer giving the number of intervals in the plot.} \item{plot}{a logival specifying whether to draw the \eqn{\delta}{delta} plot (the default).} \item{which}{a numeric vector indicating which plots are done; 1: the histogram of the \eqn{\delta_q}{delta_q} values, 2: the plot of the individual \eqn{\bar{\delta}}{delta.bar} values. By default, both plots are done.} } \description{ This function makes a \eqn{\delta}{delta} plot following Holland et al. (2002). } \details{ See Holland et al. (2002) for details and interpretation. The computing time of this function is proportional to the fourth power of the number of observations (\eqn{O(n^4)}), so calculations may be very long with only a slight increase in sample size. } \value{ This function returns invisibly a named list with two components: \itemize{ \item{counts}{the counts for the histogram of \eqn{\delta_q}{delta_q} values} \item{delta.bar}{the mean \eqn{\delta}{delta} value for each observation} } } \references{ Holland, B. R., Huber, K. T., Dress, A. and Moulton, V. (2002) Delta plots: a tool for analyzing phylogenetic distance data. \emph{Molecular Biology and Evolution}, \bold{12}, 2051--2059. } \author{Emmanuel Paradis} \seealso{ \code{\link{dist.dna}} } \examples{ data(woodmouse) d <- dist.dna(woodmouse) delta.plot(d) layout(1) delta.plot(d, 40, which = 1) } \keyword{hplot}