\name{chronogram} \alias{chronogram} \title{Chronogram Computed by Nonparametric Rate Smoothing} \usage{ chronogram(phy, scale = 1, expo = 2, minEdgeLength = 1e-06) } \arguments{ \item{phy}{A phylogenetic tree (i.e. an object of class \code{"phylo"}), where the branch lengths are measured in substitutions.} \item{scale}{Age of the root in the inferred chronogram (default value: 0). } \item{expo}{Exponent in the objective function (default value: 2)} \item{minEdgeLength}{Minimum edge length in the phylogram (default value: 1e-06). If any branch lengths are smaller then they will be set to this value.} } \description{ \code{chronogram} computes a chronogram from a phylogram by applying the NPRS (nonparametric rate smoothing) algorithm described in Sanderson (1997). } \details{ Please refer to Sanderson (1997) for mathematical details } \value{ \code{chronogram} returns an object of class \code{"phylo"}. The branch lengths of this tree will be clock-like and scaled so that the root node has age 1 (or the value set by the option \code{scale} } \author{ Gangolf Jobb (\url{http://www.treefinder.de}) and Korbinian Strimmer (\url{http://www.stat.uni-muenchen.de/~strimmer/}) } \seealso{ \code{\link{ratogram}}, \code{\link{NPRS.criterion}}. } \references{ Sanderson, M. J. (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. \emph{Molecular Biology and Evolution}, \bold{14}, 1218--1231. } \examples{ # get tree data("landplants.newick") # example tree in NH format tree.landplants <- read.tree(text = landplants.newick) # plot tree tree.landplants plot(tree.landplants, label.offset = 0.001) # estimate chronogram chrono.plants <- chronogram(tree.landplants) # plot plot(chrono.plants, label.offset = 0.001) # value of NPRS function for our estimated chronogram NPRS.criterion(tree.landplants, chrono.plants) } \keyword{manip}