\name{Moran.I} \alias{Moran.I} \title{Moran's I Autocorrelation Index} \usage{ Moran.I(x, weight, scaled = FALSE, na.rm = FALSE, alternative = "two.sided") } \arguments{ \item{x}{a numeric vector.} \item{weight}{a matrix of weights.} \item{scaled}{a logical indicating whether the coefficient should be scaled so that it varies between -1 and +1 (default to \code{FALSE}).} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{alternative}{a character string specifying the alternative hypothesis that is tested against the null hypothesis of no phylogenetic correlation; must be of one "two.sided", "less", or "greater", or any unambiguous abbrevation of these.} } \description{ This function computes Moran's I autocorrelation coefficient of \code{x} giving a matrix of weights using the method described by Gittleman and Kot (1990). } \details{ The matrix \code{weight} is used as ``neighbourhood'' weights, and Moran's I coefficient is computed using the formula: \deqn{I = \frac{n}{S_0} \frac{\sum_{i=1}^n\sum_{j=1}^n w_{i,j}(y_i - \overline{y})(y_j - \overline{y})}{\sum_{i=1}^n {(y_i - \overline{y})}^2}}{\code{I = n/S0 * (sum\{i=1..n\} sum\{j=1..n\} wij(yi - ym))(yj - ym) / (sum\{i=1..n\} (yi - ym)^2)}} with \itemize{ \item \eqn{y_i}{yi} = observations \item \eqn{w_{i,j}}{wij} = distance weight \item \eqn{n} = number of observations \item \eqn{S_0}{S0} = \eqn{\sum_{i=1}^n\sum_{j=1}^n wij}{\code{sum_{i=1..n} sum{j=1..n} wij}} } The null hypothesis of no phylogenetic correlation is tested assuming normality of I under this null hypothesis. If the observed value of I is significantly greater than the expected value, then the values of \code{x} are positively autocorrelated, whereas if Iobserved < Iexpected, this will indicate negative autocorrelation. } \value{ A list containing the elements: \item{observed}{the computed Moran's I.} \item{expected}{the expected value of I under the null hypothesis.} \item{sd}{the standard deviation of I under the null hypothesis.} \item{p.value}{the P-value of the test of the null hypothesis against the alternative hypothesis specified in \code{alternative}.} } \references{ Gittleman, J. L. and Kot, M. (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. \emph{Systematic Zoology}, \bold{39}, 227--241. } \author{Julien Dutheil \email{julien.dutheil@univ-montp2.fr} and Emmanuel Paradis} \seealso{ \code{\link{weight.taxo}} } \examples{ tr <- rtree(30) x <- rnorm(30) ## weights w[i,j] = 1/d[i,j]: w <- 1/cophenetic(tr) ## set the diagonal w[i,i] = 0 (instead of Inf...): diag(w) <- 0 Moran.I(x, w) Moran.I(x, w, alt = "l") Moran.I(x, w, alt = "g") Moran.I(x, w, scaled = TRUE) # usualy the same } \keyword{models} \keyword{regression}