--- /dev/null
+/* Copyright (C) 2014-2015 by Jacob Alexander
+ *
+ * This file is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this file. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+// ----- Includes -----
+
+// Compiler Includes
+#include <Lib/ScanLib.h>
+
+// Project Includes
+#include <cli.h>
+#include <led.h>
+#include <print.h>
+
+// Local Includes
+#include "led_scan.h"
+
+
+
+// ----- Defines -----
+
+#define I2C_TxBufferLength 300
+#define I2C_RxBufferLength 8
+
+#define LED_BufferLength 144
+
+
+// ----- Structs -----
+
+typedef struct I2C_Buffer {
+ uint16_t head;
+ uint16_t tail;
+ uint8_t sequencePos;
+ uint16_t size;
+ uint8_t *buffer;
+} I2C_Buffer;
+
+typedef struct LED_Buffer {
+ uint8_t buffer[LED_BufferLength];
+} LED_Buffer;
+
+
+
+// ----- Function Declarations -----
+
+// CLI Functions
+void cliFunc_echo( char* args );
+void cliFunc_i2cRecv( char* args );
+void cliFunc_i2cSend( char* args );
+void cliFunc_ledTest( char* args );
+void cliFunc_ledZero( char* args );
+
+uint8_t I2C_TxBufferPop();
+void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer );
+uint16_t I2C_BufferLen( I2C_Buffer *buffer );
+uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen );
+
+
+
+// ----- Variables -----
+
+// Scan Module command dictionary
+CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence." NL "\t\tUse |'s to split sequences with a stop." );
+CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." );
+CLIDict_Entry( ledTest, "Test out the led pages." );
+CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." );
+
+CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = {
+ CLIDict_Item( i2cRecv ),
+ CLIDict_Item( i2cSend ),
+ CLIDict_Item( ledTest ),
+ CLIDict_Item( ledZero ),
+ { 0, 0, 0 } // Null entry for dictionary end
+};
+
+
+
+// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented
+// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent
+volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ];
+volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ];
+
+volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr };
+volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr };
+
+LED_Buffer LED_pageBuffer;
+
+// A bit mask determining which LEDs are enabled in the ISSI chip
+// 0x00 -> 0x11
+const uint8_t LED_ledEnableMask[] = {
+0xE8, // I2C address
+0x00, // Starting register address
+0xFF, 0xFF, // C1-1 -> C1-16
+0xFF, 0xFF, // C2-1 -> C2-16
+0xFF, 0xFF, // C3-1 -> C3-16
+0xFF, 0xFF, // C4-1 -> C4-16
+0xFF, 0xFF, // C5-1 -> C5-16
+0xFF, 0xFF, // C6-1 -> C6-16
+0xFF, 0xFF, // C7-1 -> C7-16
+0xFF, 0xFF, // C8-1 -> C8-16
+0xFF, 0xFF, // C9-1 -> C9-16
+};
+
+// XXX Pre-fill example of buffers
+const uint8_t examplePage[] = {
+0xE8, // I2C address
+0x24, // Starting register address
+0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, // C1-1 -> C1-16
+0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, // C2-1 -> C2-16
+0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, // C3-1 -> C3-16
+0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, // C4-1 -> C4-16
+0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, // C5-1 -> C5-16
+0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, // C6-1 -> C6-16
+0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, // C7-1 -> C7-16
+0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, // C8-1 -> C8-16
+0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, // C9-1 -> C9-16
+};
+
+
+
+// ----- Interrupt Functions -----
+
+void i2c0_isr()
+{
+ cli(); // Disable Interrupts
+
+ uint8_t status = I2C0_S; // Read I2C Bus status
+
+ // Master Mode Transmit
+ if ( I2C0_C1 & I2C_C1_TX )
+ {
+ // Check current use of the I2C bus
+ // Currently sending data
+ if ( I2C_TxBuffer.sequencePos > 0 )
+ {
+ // Make sure slave sent an ACK
+ if ( status & I2C_S_RXAK )
+ {
+ // NACK Detected, disable interrupt
+ erro_print("I2C NAK detected...");
+ I2C0_C1 = I2C_C1_IICEN;
+
+ // Abort Tx Buffer
+ I2C_TxBuffer.head = 0;
+ I2C_TxBuffer.tail = 0;
+ I2C_TxBuffer.sequencePos = 0;
+ }
+ else
+ {
+ // Transmit byte
+ I2C0_D = I2C_TxBufferPop();
+ }
+ }
+ // Receiving data
+ else if ( I2C_RxBuffer.sequencePos > 0 )
+ {
+ // Master Receive, addr sent
+ if ( status & I2C_S_ARBL )
+ {
+ // Arbitration Lost
+ erro_print("Arbitration lost...");
+ // TODO Abort Rx
+
+ I2C0_C1 = I2C_C1_IICEN;
+ I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt
+ }
+ if ( status & I2C_S_RXAK )
+ {
+ // Slave Address NACK Detected, disable interrupt
+ erro_print("Slave Address I2C NAK detected...");
+ // TODO Abort Rx
+
+ I2C0_C1 = I2C_C1_IICEN;
+ }
+ else
+ {
+ dbug_print("Attempting to read byte");
+ I2C0_C1 = I2C_RxBuffer.sequencePos == 1
+ ? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read
+ : I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read
+ }
+ }
+ else
+ {
+ /*
+ dbug_msg("STOP - ");
+ printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) );
+ print(NL);
+ */
+
+ // Delay around STOP to make sure it actually happens...
+ delayMicroseconds( 1 );
+ I2C0_C1 = I2C_C1_IICEN; // Send STOP
+ delayMicroseconds( 7 );
+
+ // If there is another sequence, start sending
+ if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size )
+ {
+ // Clear status flags
+ I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
+
+ // Wait...till the master dies
+ while ( I2C0_S & I2C_S_BUSY );
+
+ // Enable I2C interrupt
+ I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
+
+ // Transmit byte
+ I2C0_D = I2C_TxBufferPop();
+ }
+ }
+ }
+ // Master Mode Receive
+ else
+ {
+ // XXX Do we need to handle 2nd last byte?
+ //I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv
+
+ // Last byte
+ if ( I2C_TxBuffer.sequencePos <= 1 )
+ {
+ // Change to Tx mode
+ I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
+
+ // Grab last byte
+ I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
+
+ delayMicroseconds( 1 ); // Should be enough time before issuing the stop
+ I2C0_C1 = I2C_C1_IICEN; // Send STOP
+ }
+ else
+ {
+ // Retrieve data
+ I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
+ }
+ }
+
+ I2C0_S = I2C_S_IICIF; // Clear interrupt
+
+ sei(); // Re-enable Interrupts
+}
+
+
+
+// ----- Functions -----
+
+inline void I2C_setup()
+{
+ // Enable I2C internal clock
+ SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0
+
+ // External pull-up resistor
+ PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
+ PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
+
+ // SCL Frequency Divider
+ // 400kHz -> 120 (0x85) @ 48 MHz F_BUS
+ I2C0_F = 0x85;
+ I2C0_FLT = 4;
+ I2C0_C1 = I2C_C1_IICEN;
+ I2C0_C2 = I2C_C2_HDRS; // High drive select
+//},
+
+ // Enable I2C Interrupt
+ NVIC_ENABLE_IRQ( IRQ_I2C0 );
+}
+
+void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg )
+{
+ // Page Setup
+ uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 };
+
+ // Max length of a page + chip id + reg start
+ uint8_t fullPage[ 0xB4 + 2 ] = { 0 }; // Max size of page
+ fullPage[0] = 0xE8; // Set chip id
+ fullPage[1] = startReg; // Set start reg
+
+ // Iterate through given pages, zero'ing out the given register regions
+ for ( uint8_t page = startPage; page < startPage + numPages; page++ )
+ {
+ // Set page
+ pageSetup[2] = page;
+
+ // Setup page
+ while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
+ delay(1);
+
+ // Zero out page
+ while ( I2C_Send( fullPage, endReg - startReg + 2, 0 ) == 0 )
+ delay(1);
+ }
+}
+
+void LED_sendPage( uint8_t *buffer, uint8_t len, uint8_t page )
+{
+ // Page Setup
+ uint8_t pageSetup[] = { 0xE8, 0xFD, page };
+
+ // Setup page
+ while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
+ delay(1);
+
+ // Write page to I2C Tx Buffer
+ while ( I2C_Send( buffer, len, 0 ) == 0 )
+ delay(1);
+
+}
+
+void LED_writeReg( uint8_t reg, uint8_t val, uint8_t page )
+{
+ // Page Setup
+ uint8_t pageSetup[] = { 0xE8, 0xFD, page };
+
+ // Reg Write Setup
+ uint8_t writeData[] = { 0xE8, reg, val };
+
+ // Setup page
+ while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
+ delay(1);
+
+ while ( I2C_Send( writeData, sizeof( writeData ), 0 ) == 0 )
+ delay(1);
+}
+
+// Setup
+inline void LED_setup()
+{
+ // Register Scan CLI dictionary
+ CLI_registerDictionary( ledCLIDict, ledCLIDictName );
+
+ // Initialize I2C
+ I2C_setup();
+
+ // Zero out Frame Registers
+ // This needs to be done before disabling the hardware shutdown (or the leds will do undefined things)
+ LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers
+
+ // Disable Hardware shutdown of ISSI chip (pull high)
+ GPIOD_PDDR |= (1<<1);
+ PORTD_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
+ GPIOD_PSOR |= (1<<1);
+
+ // Clear LED Pages
+ LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers
+
+ // Enable LEDs based upon mask
+ LED_sendPage( (uint8_t*)LED_ledEnableMask, sizeof( LED_ledEnableMask ), 0 );
+
+ // Disable Software shutdown of ISSI chip
+ LED_writeReg( 0x0A, 0x01, 0x0B );
+}
+
+
+inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer )
+{
+ uint8_t reTurn = 0;
+
+ // If sendLen is greater than buffer fail right away
+ if ( sendLen > buffer->size )
+ return 0;
+
+ // Calculate new tail to determine if buffer has enough space
+ // The first element specifies the expected number of bytes from the slave (+1)
+ // The second element in the new buffer is the length of the buffer sequence (+1)
+ uint16_t newTail = buffer->tail + sendLen + 2;
+ if ( newTail >= buffer->size )
+ newTail -= buffer->size;
+
+ if ( I2C_BufferLen( buffer ) < sendLen + 2 )
+ return 0;
+
+/*
+ print("|");
+ printHex( sendLen + 2 );
+ print("|");
+ printHex( *tail );
+ print("@");
+ printHex( newTail );
+ print("@");
+*/
+
+ // If buffer is clean, return 1, otherwise 2
+ reTurn = buffer->head == buffer->tail ? 1 : 2;
+
+ // Add to buffer, already know there is enough room (simplifies adding logic)
+ uint8_t bufferHeaderPos = 0;
+ for ( uint16_t c = 0; c < sendLen; c++ )
+ {
+ // Add data to buffer
+ switch ( bufferHeaderPos )
+ {
+ case 0:
+ buffer->buffer[ buffer->tail ] = recvLen;
+ bufferHeaderPos++;
+ c--;
+ break;
+
+ case 1:
+ buffer->buffer[ buffer->tail ] = sendLen;
+ bufferHeaderPos++;
+ c--;
+ break;
+
+ default:
+ buffer->buffer[ buffer->tail ] = data[ c ];
+ break;
+ }
+
+ // Check for wrap-around case
+ if ( buffer->tail + 1 >= buffer->size )
+ {
+ buffer->tail = 0;
+ }
+ // Normal case
+ else
+ {
+ buffer->tail++;
+ }
+ }
+
+ return reTurn;
+}
+
+
+inline uint16_t I2C_BufferLen( I2C_Buffer *buffer )
+{
+ // Tail >= Head
+ if ( buffer->tail >= buffer->head )
+ return buffer->head + buffer->size - buffer->tail;
+
+ // Head > Tail
+ return buffer->head - buffer->tail;
+}
+
+
+void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer )
+{
+ // Make sure buffer isn't full
+ if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) )
+ {
+ warn_msg("I2C_BufferPush failed, buffer full: ");
+ printHex( byte );
+ print( NL );
+ return;
+ }
+
+ // Check for wrap-around case
+ if ( buffer->tail + 1 >= buffer->size )
+ {
+ buffer->tail = 0;
+ }
+ // Normal case
+ else
+ {
+ buffer->tail++;
+ }
+
+ // Add byte to buffer
+ buffer->buffer[ buffer->tail ] = byte;
+}
+
+
+uint8_t I2C_TxBufferPop()
+{
+ // Return 0xFF if no buffer left (do not rely on this)
+ if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size )
+ {
+ erro_msg("No buffer to pop an entry from... ");
+ printHex( I2C_TxBuffer.head );
+ print(" ");
+ printHex( I2C_TxBuffer.tail );
+ print(" ");
+ printHex( I2C_TxBuffer.sequencePos );
+ print(NL);
+ return 0xFF;
+ }
+
+ // If there is currently no sequence being sent, the first entry in the RingBuffer is the length
+ if ( I2C_TxBuffer.sequencePos == 0 )
+ {
+ I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop
+ I2C_RxBuffer.sequencePos = I2C_TxBufferPop();
+ I2C_TxBuffer.sequencePos = I2C_TxBufferPop();
+ }
+
+ uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ];
+
+ // Prune head
+ I2C_TxBuffer.head++;
+
+ // Wrap-around case
+ if ( I2C_TxBuffer.head >= I2C_TxBuffer.size )
+ I2C_TxBuffer.head = 0;
+
+ // Decrement buffer sequence (until next stop will be sent)
+ I2C_TxBuffer.sequencePos--;
+
+ /*
+ dbug_msg("Popping: ");
+ printHex( data );
+ print(" ");
+ printHex( I2C_TxBuffer.head );
+ print(" ");
+ printHex( I2C_TxBuffer.tail );
+ print(" ");
+ printHex( I2C_TxBuffer.sequencePos );
+ print(NL);
+ */
+ return data;
+}
+
+
+uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen )
+{
+ // Check head and tail pointers
+ // If full, return 0
+ // If empty, start up I2C Master Tx
+ // If buffer is non-empty and non-full, just append to the buffer
+ switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) )
+ {
+ // Not enough buffer space...
+ case 0:
+ /*
+ erro_msg("Not enough Tx buffer space... ");
+ printHex( I2C_TxBuffer.head );
+ print(":");
+ printHex( I2C_TxBuffer.tail );
+ print("+");
+ printHex( sendLen );
+ print("|");
+ printHex( I2C_TxBuffer.size );
+ print( NL );
+ */
+ return 0;
+
+ // Empty buffer, initialize I2C
+ case 1:
+ // Clear status flags
+ I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
+
+ // Check to see if we already have control of the bus
+ if ( I2C0_C1 & I2C_C1_MST )
+ {
+ // Already the master (ah yeah), send a repeated start
+ I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
+ }
+ // Otherwise, seize control
+ else
+ {
+ // Wait...till the master dies
+ while ( I2C0_S & I2C_S_BUSY );
+
+ // Now we're the master (ah yisss), get ready to send stuffs
+ I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
+ }
+
+ // Enable I2C interrupt
+ I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
+
+ // Depending on what type of transfer, the first byte is configured for R or W
+ I2C0_D = I2C_TxBufferPop();
+
+ return 1;
+ }
+
+ // Dirty buffer, I2C already initialized
+ return 2;
+}
+
+
+
+// LED State processing loop
+inline uint8_t LED_scan()
+{
+
+ // I2C Busy
+ // S & I2C_S_BUSY
+ //I2C_S_BUSY
+
+ return 0;
+}
+
+
+
+// ----- CLI Command Functions -----
+
+void cliFunc_i2cSend( char* args )
+{
+ char* curArgs;
+ char* arg1Ptr;
+ char* arg2Ptr = args;
+
+ // Buffer used after interpretting the args, will be sent to I2C functions
+ // NOTE: Limited to 8 bytes currently (can be increased if necessary
+ #define i2cSend_BuffLenMax 8
+ uint8_t buffer[ i2cSend_BuffLenMax ];
+ uint8_t bufferLen = 0;
+
+ // No \r\n by default after the command is entered
+ print( NL );
+ info_msg("Sending: ");
+
+ // Parse args until a \0 is found
+ while ( bufferLen < i2cSend_BuffLenMax )
+ {
+ curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
+ CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
+
+ // Stop processing args if no more are found
+ if ( *arg1Ptr == '\0' )
+ break;
+
+ // If | is found, end sequence and start new one
+ if ( *arg1Ptr == '|' )
+ {
+ print("| ");
+ I2C_Send( buffer, bufferLen, 0 );
+ bufferLen = 0;
+ continue;
+ }
+
+ // Interpret the argument
+ buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
+
+ // Print out the arg
+ dPrint( arg1Ptr );
+ print(" ");
+ }
+
+ print( NL );
+
+ I2C_Send( buffer, bufferLen, 0 );
+}
+
+void cliFunc_i2cRecv( char* args )
+{
+ char* curArgs;
+ char* arg1Ptr;
+ char* arg2Ptr = args;
+
+ // Buffer used after interpretting the args, will be sent to I2C functions
+ // NOTE: Limited to 8 bytes currently (can be increased if necessary
+ #define i2cSend_BuffLenMax 8
+ uint8_t buffer[ i2cSend_BuffLenMax ];
+ uint8_t bufferLen = 0;
+
+ // No \r\n by default after the command is entered
+ print( NL );
+ info_msg("Sending: ");
+
+ // Parse args until a \0 is found
+ while ( bufferLen < i2cSend_BuffLenMax )
+ {
+ curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
+ CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
+
+ // Stop processing args if no more are found
+ if ( *arg1Ptr == '\0' )
+ break;
+
+ // If | is found, end sequence and start new one
+ if ( *arg1Ptr == '|' )
+ {
+ print("| ");
+ I2C_Send( buffer, bufferLen, 0 );
+ bufferLen = 0;
+ continue;
+ }
+
+ // Interpret the argument
+ buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
+
+ // Print out the arg
+ dPrint( arg1Ptr );
+ print(" ");
+ }
+
+ print( NL );
+
+ I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip
+}
+
+void cliFunc_ledTest( char* args )
+{
+ print( NL ); // No \r\n by default after the command is entered
+ LED_sendPage( (uint8_t*)examplePage, sizeof( examplePage ), 0 );
+}
+
+void cliFunc_ledZero( char* args )
+{
+ print( NL ); // No \r\n by default after the command is entered
+ LED_zeroPages( 0x00, 8, 0x24, 0xB4 ); // Only PWMs
+}
+