X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fskyline.cc;h=33447faeb8f63796a51c9b2647757fa7aaba79ca;hb=6dcc906d0eab776bddec84fe6d95fa53ed06b607;hp=1cc6b6877e3405b7e57852303e91d2de1a2b24a6;hpb=f84fa056117227739b77c1c50efc06e6ef4f32da;p=lilypond.git diff --git a/lily/skyline.cc b/lily/skyline.cc index 1cc6b6877e..33447faeb8 100644 --- a/lily/skyline.cc +++ b/lily/skyline.cc @@ -3,7 +3,7 @@ source file of the GNU LilyPond music typesetter - (c) 2002--2003 Han-Wen Nienhuys + (c) 2002--2004 Han-Wen Nienhuys */ #include "skyline.hh" @@ -32,7 +32,7 @@ skyline[...].width_ forms a partition of the real interval, where the segments are adjacent, and ascending. Hence we have - skyline.top().width_[RIGHT] = inf + skyline.top ().width_[RIGHT] = inf skyline[0].width_[LEFT] = -inf */ @@ -43,7 +43,7 @@ const Real EPS = 1e-12; /* TODO: avoid unnecessary fragmentation. - This is O(n^2), searching and insertion. Could be O(n log n) with + This is O (n^2), searching and insertion. Could be O (n log n) with binsearch. */ void @@ -51,7 +51,7 @@ insert_extent_into_skyline (Array *line, Box b, Axis line_axis, Direction d) { Interval extent = b[line_axis]; - if (extent.empty_b()) + if (extent.is_empty ()) return; Real stick_out = b[other_axis (line_axis)][d]; @@ -59,29 +59,29 @@ insert_extent_into_skyline (Array *line, Box b, Axis line_axis, /* Intersect each segment of LINE with EXTENT, and if non-empty, insert relevant segments. */ - for (int i = line->size(); i--;) + for (int i = line->size (); i--;) { - Interval w = line->elem(i).width_; + Interval w = line->elem (i).width_; w.intersect (extent); if (extent[LEFT] >= w[RIGHT]) break; - Real my_height = line->elem(i).height_; + Real my_height = line->elem (i).height_; - if (!w.empty_b () && - w.length() > EPS + if (!w.is_empty () && + w.length () > EPS && d* (my_height - stick_out) < 0) { - Interval e1 (line->elem(i).width_[LEFT], extent[LEFT]); - Interval e3 (extent[RIGHT], line->elem(i).width_[RIGHT]); + Interval e1 (line->elem (i).width_[LEFT], extent[LEFT]); + Interval e3 (extent[RIGHT], line->elem (i).width_[RIGHT]); - if (!e3.empty_b () && e3.length() > EPS) + if (!e3.is_empty () && e3.length () > EPS) line->insert (Skyline_entry (e3, my_height), i+1); - line->elem_ref(i).height_ = stick_out; - line->elem_ref(i).width_ = w; - if (!e1.empty_b () && e1.length() > EPS) + line->elem_ref (i).height_ = stick_out; + line->elem_ref (i).width_ = w; + if (!e1.is_empty () && e1.length () > EPS) line->insert (Skyline_entry (e1, my_height), i ); } @@ -94,7 +94,7 @@ merge_skyline (Array * a1, Array const & a2, Direction dir) { - for (int i = 0; i < a2.size(); i++) + for (int i = 0; i < a2.size (); i++) { Box b; b[X_AXIS] = a2[i].width_; @@ -112,8 +112,8 @@ empty_skyline (Direction d) Array skyline; Interval i; - i.set_empty(); - i.swap(); + i.set_empty (); + i.swap (); Skyline_entry e; e.width_ = i; e.height_ = -d * infinity_f; @@ -125,16 +125,16 @@ Array extents_to_skyline (Array const &extents, Axis a, Direction d) { - Array skyline = empty_skyline(d); + Array skyline = empty_skyline (d); /* - This makes a cubic algorithm (array insertion is O(n), - searching the array dumbly is O(n), and for n items, we get O(n^3).) + This makes a cubic algorithm (array insertion is O (n), + searching the array dumbly is O (n), and for n items, we get O (n^3).) We could do a lot better (n log (n), using a balanced tree) but that seems overkill for now. */ - for (int j = extents.size(); j--; ) + for (int j = extents.size (); j--; ) insert_extent_into_skyline (&skyline, extents[j], a, d); return skyline; @@ -146,23 +146,23 @@ extents_to_skyline (Array const &extents, Axis a, Direction d) minimum distance that can be achieved between baselines. "Clouds" is a skyline pointing down. - This is an O(n) algorithm. + This is an O (n) algorithm. */ Real skyline_meshing_distance (Array const &buildings, Array const &clouds) { int i = buildings.size () -1; - int j = clouds.size() -1; + int j = clouds.size () -1; Real distance = - infinity_f; while (i > 0 || j > 0) { Interval w = buildings[i].width_; - w.intersect(clouds[j].width_); + w.intersect (clouds[j].width_); - if (!w.empty_b()) + if (!w.is_empty ()) distance = distance >? (buildings[i].height_ - clouds[j].height_); if (i>0 && buildings[i].width_[LEFT] >= clouds[j].width_[LEFT]) @@ -178,7 +178,7 @@ skyline_meshing_distance (Array const &buildings, return distance; } -Skyline_entry::Skyline_entry() +Skyline_entry::Skyline_entry () { height_ = 0.0; }