X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fgourlay-breaking.cc;h=ac250e9684a96c6dd382d373fa0a0c75c1715ed2;hb=675533acf58b9b863adc830f175696735ca6dc95;hp=3daa4ab12e22cf11a966dc269c4860cc3d6c6bc5;hpb=86d86173c41d3a4b832ce67768d58c6416c71d4e;p=lilypond.git diff --git a/lily/gourlay-breaking.cc b/lily/gourlay-breaking.cc index 3daa4ab12e..ac250e9684 100644 --- a/lily/gourlay-breaking.cc +++ b/lily/gourlay-breaking.cc @@ -3,18 +3,22 @@ source file of the GNU LilyPond music typesetter - (c) 1997 Han-Wen Nienhuys + (c) 1997--2002 Han-Wen Nienhuys */ +#include // rint #include "gourlay-breaking.hh" -#include "colhpos.hh" -#include "spring-spacer.hh" -#include "debug.hh" -#include "p-col.hh" -#include "p-score.hh" +#include "column-x-positions.hh" +#include "warn.hh" +#include "main.hh" +#include "paper-column.hh" +#include "paper-score.hh" #include "paper-def.hh" +#include "simple-spacer.hh" +#include "system.hh" -const HAPPY_DOTS_I = 3; +/// How often to print operator pacification marks? +const int HAPPY_DOTS_I = 3; /** Helper to trace back an optimal path @@ -25,166 +29,210 @@ struct Break_node { */ int prev_break_i_; - Real energy_f_; - Col_hpositions line_config_; - Break_node() + /** + Which system number so far? + */ + int line_i_; + + Real demerits_f_; + Column_x_positions line_config_; + + Break_node () { prev_break_i_ = -1; + line_i_ = 0; + demerits_f_ = 0; } }; /** - This algorithms is adapted from - */ + This algorithms is adapted from the OSU Tech report on breaking lines. -Array -Gourlay_breaking::do_solve() const + this function is longish, but not very complicated. + + */ +Array +Gourlay_breaking::do_solve () const { Array optimal_paths; - Line_of_cols all = all_cols(); - Array breaks = find_break_indices(); + Link_array all = + pscore_l_->line_l_->column_l_arr (); - optimal_paths.set_size (breaks.size()); - - Break_node first_node ; - first_node.prev_break_i_ = -1; - first_node.line_config_.energy_f_ = 0; + Array breaks = find_break_indices (); - optimal_paths[0] = first_node; - int break_idx=1; + Break_node first_node ; + optimal_paths.push (first_node); + Real worst_force = 0.0; - for (; break_idx< breaks.size(); break_idx++) + for (int break_idx=1; break_idx< breaks.size (); break_idx++) { - Array candidates; - Array candidate_lines; - Pointer_list spacer_p_list; - /* start with a short line, add measures. At some point the line becomes infeasible. Then we don't try to add more */ - for (int start_idx = break_idx; start_idx--;) - { - if (break_idx - start_idx > max_measures_i_) - break; + int minimal_start_idx = -1; + Column_x_positions minimal_sol; + Column_x_positions backup_sol; + + Real minimal_demerits = infinity_f; - if (optimal_paths[start_idx].prev_break_i_ < 0 - && optimal_paths[start_idx].line_config_.energy_f_) - - continue; - - Line_of_cols line = all.slice (breaks[start_idx], breaks[break_idx]+1); - - line[0] = line[0]->postbreak_l(); - line.top() = line.top ()->prebreak_l(); - - if (!feasible (line)) - break; - - Col_hpositions approx; - approx.cols = line; - - approx.spacer_l_ = generate_spacing_problem (line); - spacer_p_list.bottom().add (approx.spacer_l_); + bool ragged = to_boolean (pscore_l_->paper_l_->get_scmvar ("raggedright")); - ((Break_algorithm*)this)->approx_stats_.add (approx.cols); - approx.approximate_solve_line(); + for (int start_idx = break_idx; start_idx--;) + { + Link_array line = all.slice (breaks[start_idx], breaks[break_idx]+1); + + line[0] = dynamic_cast (line[0]) ->find_prebroken_piece (RIGHT); + line.top () = dynamic_cast (line.top ())->find_prebroken_piece (LEFT); - if (approx.energy_f_ > energy_bound_f_) + Column_x_positions cp; + cp.cols_ = line; + + Interval line_dims + = pscore_l_->paper_l_->line_dimensions_int (optimal_paths[start_idx].line_i_); + Simple_spacer * sp = generate_spacing_problem (line, line_dims); + sp->solve (&cp, ragged); + delete sp; + + if (fabs (cp.force_f_) > worst_force) + worst_force = fabs (cp.force_f_); + + /* + We remember this solution as a "should always work + solution", in case everything fucks up. */ + if (start_idx == break_idx - 1) + backup_sol = cp; + + Real this_demerits; + + if (optimal_paths[start_idx].demerits_f_ >= infinity_f) + this_demerits = infinity_f; + else + this_demerits = combine_demerits (optimal_paths[start_idx].line_config_, cp) + + optimal_paths[start_idx].demerits_f_; + + if (this_demerits < minimal_demerits) { - continue; + minimal_start_idx = start_idx; + minimal_sol = cp; + minimal_demerits = this_demerits; } - - // this is a likely candidate. Store it. - candidate_lines.push (approx); - candidates.push (start_idx); + /* + we couldn't satisfy the constraints, this won't get better + if we add more columns, so we get on with the next one + */ + if (!cp.satisfies_constraints_b_) + break ; } - - int minimal_j = -1; - Real minimal_energy = infinity_f; - for (int j=0; j < candidates.size(); j++) - { - int start = candidates[j]; - if (optimal_paths[start].line_config_.energy_f_ - + candidate_lines[j].energy_f_ > minimal_energy) - - continue; - if (!candidate_lines[j].satisfies_constraints_b_) - { - candidate_lines[j].solve_line(); - ((Break_algorithm*)this)->exact_stats_.add (candidate_lines[j].cols); - } - - Real this_energy - = optimal_paths[start].line_config_.energy_f_ - + candidate_lines[j].energy_f_ ; - - if (this_energy < minimal_energy) - { - minimal_j = j; - minimal_energy = this_energy; - } - } - - if (minimal_j < 0) + Break_node bnod; + if (minimal_start_idx < 0) { - optimal_paths[break_idx].prev_break_i_ = -1; - optimal_paths[break_idx].line_config_.energy_f_ = infinity_f; + bnod.demerits_f_ = infinity_f; + bnod.line_config_ = backup_sol; + bnod.prev_break_i_ = break_idx - 1; } else { - optimal_paths[break_idx].prev_break_i_ = candidates[minimal_j]; - optimal_paths[break_idx].line_config_ = candidate_lines[minimal_j]; + bnod.prev_break_i_ = minimal_start_idx; + bnod.demerits_f_ = minimal_demerits; + bnod.line_config_ = minimal_sol; } - - if (!(break_idx % HAPPY_DOTS_I)) - *mlog << "[" << break_idx << "]"< final_breaks; - Array lines; + progress_indication ("\n"); + + Array final_breaks; + Array lines; /* skip 0-th element, since it is a "dummy" elt*/ - for (int i = optimal_paths.size()-1; i> 0;) + for (int i = optimal_paths.size ()-1; i> 0;) { final_breaks.push (i); - assert (i > optimal_paths[i].prev_break_i_); - - // there was no "feasible path" - if (!optimal_paths[i].line_config_.config.size()) { - final_breaks.set_size (0); - break; - } - i = optimal_paths[i].prev_break_i_; + int prev = optimal_paths[i].prev_break_i_; + assert (i > prev); + i = prev; } - - for (int i= final_breaks.size(); i--;) - lines.push (optimal_paths[final_breaks[i]].line_config_); + if (optimal_paths.top ().demerits_f_ >= infinity_f) + warning (_ ("No feasible line breaking found")); + for (int i= final_breaks.size (); i--;) + { + Column_x_positions cp (optimal_paths[final_breaks[i]].line_config_); + + lines.push (cp); + if(!cp.satisfies_constraints_b_) + warning ("Could not find line breaking that satisfies constraints."); + } return lines; } -Gourlay_breaking::Gourlay_breaking() +Gourlay_breaking::Gourlay_breaking () { - get_line_spacer = Spring_spacer::constructor; - energy_bound_f_ = infinity_f; - max_measures_i_ = INT_MAX; } -void -Gourlay_breaking::do_set_pscore() + + +/* + TODO: uniformity parameter to control rel. importance of spacing differences. + + TODO: + + mixing break penalties and constraint-failing solutions is confusing. + */ +Real +Gourlay_breaking::combine_demerits (Column_x_positions const &prev, + Column_x_positions const &this_one) const { - energy_bound_f_ = pscore_l_->paper_l_->get_var ("gourlay_energybound"); - max_measures_i_ =int (rint (pscore_l_->paper_l_->get_var ("gourlay_maxmeasures"))); + Real break_penalties = 0.0; + Grob * pc = this_one.cols_.top (); + if (pc->original_l_) + { + SCM pen = pc->get_grob_property ("penalty"); + if (gh_number_p (pen) && fabs (gh_scm2double (pen)) < 10000) + { + break_penalties += gh_scm2double (pen); + } + } + +#if 1 + /* + Q: do want globally non-cramped lines, or locally equally cramped lines. + */ + Real demerit = abs (this_one.force_f_) + 0.1 *abs (prev.force_f_ - this_one.force_f_) + + break_penalties; +#else + Real demerit = abs (this_one.force_f_) + break_penalties; +#endif + + if (!this_one.satisfies_constraints_b_) + { + /* + If it doesn't satisfy constraints, we make this one + really unattractive. + + add 20000 to the demerits, so that a break penalty + of -10000 won't change the result */ + demerit = (demerit + 20000) >? 2000; + + demerit *= 10; + } + + return demerit; }