X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fbeam.cc;h=4acf18c1439f9aa5699e8d9c23dc68a8204b2c30;hb=a066a93ee74edebb9d238a1bac93c3bc7e8e6e4a;hp=46ed26ba6604bab63e8c939708d53d1b87ee5ad0;hpb=eeec992b7029d0982bf4ed0eb3995e9ca99c10e9;p=lilypond.git diff --git a/lily/beam.cc b/lily/beam.cc index 46ed26ba66..4acf18c143 100644 --- a/lily/beam.cc +++ b/lily/beam.cc @@ -1,10 +1,21 @@ /* - beam.cc -- implement Beam + This file is part of LilyPond, the GNU music typesetter. - source file of the GNU LilyPond music typesetter - - (c) 1997--2008 Han-Wen Nienhuys + Copyright (C) 1997--2011 Han-Wen Nienhuys Jan Nieuwenhuizen + + LilyPond is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + LilyPond is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with LilyPond. If not, see . */ /* @@ -26,22 +37,27 @@ #include "beam.hh" +#include "align-interface.hh" +#include "beam-scoring-problem.hh" #include "beaming-pattern.hh" #include "directional-element-interface.hh" -#include "main.hh" +#include "grob-array.hh" #include "international.hh" #include "interval-set.hh" #include "item.hh" #include "least-squares.hh" #include "lookup.hh" +#include "main.hh" #include "misc.hh" +#include "note-head.hh" #include "output-def.hh" #include "pointer-group-interface.hh" +#include "rhythmic-head.hh" #include "spanner.hh" +#include "staff-symbol.hh" #include "staff-symbol-referencer.hh" #include "stem.hh" #include "warn.hh" -#include "grob-array.hh" #if DEBUG_BEAM_SCORING #include "text-interface.hh" // debug output. @@ -50,10 +66,9 @@ #include - Beam_stem_segment::Beam_stem_segment () { - max_connect_ = 1000; // infinity + max_connect_ = 1000; // infinity stem_ = 0; width_ = 0.0; stem_x_ = 0.0; @@ -62,6 +77,12 @@ Beam_stem_segment::Beam_stem_segment () dir_ = CENTER; } +bool +beam_segment_less (Beam_segment const &a, Beam_segment const &b) +{ + return a.horizontal_[LEFT] < b.horizontal_[LEFT]; +} + Beam_segment::Beam_segment () { vertical_count_ = 0; @@ -73,7 +94,7 @@ Beam::add_stem (Grob *me, Grob *s) if (Stem::get_beam (s)) { programming_error ("Stem already has beam"); - return ; + return; } Pointer_group_interface::add_grob (me, ly_symbol2scm ("stems"), s); @@ -82,10 +103,10 @@ Beam::add_stem (Grob *me, Grob *s) } Real -Beam::get_thickness (Grob *me) +Beam::get_beam_thickness (Grob *me) { - return robust_scm2double (me->get_property ("thickness"), 0) - * Staff_symbol_referencer::staff_space (me); + return robust_scm2double (me->get_property ("beam-thickness"), 0) + * Staff_symbol_referencer::staff_space (me); } /* Return the translation between 2 adjoining beams. */ @@ -95,12 +116,12 @@ Beam::get_beam_translation (Grob *me) int beam_count = get_beam_count (me); Real staff_space = Staff_symbol_referencer::staff_space (me); Real line = Staff_symbol_referencer::line_thickness (me); - Real thickness = get_thickness (me); + Real beam_thickness = get_beam_thickness (me); Real fract = robust_scm2double (me->get_property ("length-fraction"), 1.0); - + Real beam_translation = beam_count < 4 - ? (2 * staff_space + line - thickness) / 2.0 - : (3 * staff_space + line - thickness) / 3.0; + ? (2 * staff_space + line - beam_thickness) / 2.0 + : (3 * staff_space + line - beam_thickness) / 3.0; return fract * beam_translation; } @@ -125,15 +146,15 @@ SCM Beam::calc_normal_stems (SCM smob) { Grob *me = unsmob_grob (smob); - + extract_grob_set (me, "stems", stems); SCM val = Grob_array::make_array (); Grob_array *ga = unsmob_grob_array (val); - for (vsize i = 0; i < stems.size (); i++) + for (vsize i = 0; i < stems.size (); i++) if (Stem::is_normal_stem (stems[i])) ga->add (stems[i]); - - return val; + + return val; } MAKE_SCHEME_CALLBACK (Beam, calc_direction, 1); @@ -156,34 +177,34 @@ Beam::calc_direction (SCM smob) { extract_grob_set (me, "stems", stems); if (stems.size () == 0) - { - me->warning (_ ("removing beam with no stems")); - me->suicide (); - - return SCM_UNSPECIFIED; - } - else - { - Grob *stem = first_normal_stem (me); - - /* - This happens for chord tremolos. - */ - if (!stem) - stem = stems[0]; - - if (is_direction (stem->get_property_data ("direction"))) - dir = to_dir (stem->get_property_data ("direction")); - else - dir = to_dir (stem->get_property ("default-direction")); - } + { + me->warning (_ ("removing beam with no stems")); + me->suicide (); + + return SCM_UNSPECIFIED; + } + else + { + Grob *stem = first_normal_stem (me); + + /* + This happens for chord tremolos. + */ + if (!stem) + stem = stems[0]; + + if (is_direction (stem->get_property_data ("direction"))) + dir = to_dir (stem->get_property_data ("direction")); + else + dir = to_dir (stem->get_property ("default-direction")); + } } if (count >= 1) { if (!dir) - dir = get_default_dir (me); - + dir = get_default_dir (me); + consider_auto_knees (me); } @@ -191,12 +212,10 @@ Beam::calc_direction (SCM smob) { set_stem_directions (me, dir); } - + return scm_from_int (dir); } - - /* We want a maximal number of shared beams, but if there is choice, we * take the one that is closest to the end of the stem. This is for * situations like @@ -211,8 +230,8 @@ Beam::calc_direction (SCM smob) */ int position_with_maximal_common_beams (SCM left_beaming, SCM right_beaming, - Direction left_dir, - Direction right_dir) + Direction left_dir, + Direction right_dir) { Slice lslice = int_list_to_slice (scm_cdr (left_beaming)); @@ -223,17 +242,17 @@ position_with_maximal_common_beams (SCM left_beaming, SCM right_beaming, { int count = 0; for (SCM s = scm_car (right_beaming); scm_is_pair (s); s = scm_cdr (s)) - { - int k = -right_dir * scm_to_int (scm_car (s)) + i; - if (scm_c_memq (scm_from_int (k), left_beaming) != SCM_BOOL_F) - count++; - } + { + int k = -right_dir * scm_to_int (scm_car (s)) + i; + if (scm_c_memq (scm_from_int (k), left_beaming) != SCM_BOOL_F) + count++; + } if (count >= best_count) - { - best_count = count; - best_start = i; - } + { + best_count = count; + best_start = i; + } } return best_start; @@ -244,12 +263,12 @@ SCM Beam::calc_beaming (SCM smob) { Grob *me = unsmob_grob (smob); - + extract_grob_set (me, "stems", stems); Slice last_int; last_int.set_empty (); - + SCM last_beaming = scm_cons (SCM_EOL, scm_list_1 (scm_from_int (0))); Direction last_dir = CENTER; for (vsize i = 0; i < stems.size (); i++) @@ -259,51 +278,51 @@ Beam::calc_beaming (SCM smob) Direction this_dir = get_grob_direction (this_stem); if (scm_is_pair (last_beaming) && scm_is_pair (this_beaming)) - { - int start_point = position_with_maximal_common_beams - (last_beaming, this_beaming, - last_dir ? last_dir : this_dir, - this_dir); - - Direction d = LEFT; - Slice new_slice; - do - { - new_slice.set_empty (); - SCM s = index_get_cell (this_beaming, d); - for (; scm_is_pair (s); s = scm_cdr (s)) - { - int new_beam_pos - = start_point - this_dir * scm_to_int (scm_car (s)); - - new_slice.add_point (new_beam_pos); - scm_set_car_x (s, scm_from_int (new_beam_pos)); - } - } - while (flip (&d) != LEFT); - - if (!new_slice.is_empty ()) - last_int = new_slice; - } + { + int start_point = position_with_maximal_common_beams + (last_beaming, this_beaming, + last_dir ? last_dir : this_dir, + this_dir); + + Direction d = LEFT; + Slice new_slice; + do + { + new_slice.set_empty (); + SCM s = index_get_cell (this_beaming, d); + for (; scm_is_pair (s); s = scm_cdr (s)) + { + int new_beam_pos + = start_point - this_dir * scm_to_int (scm_car (s)); + + new_slice.add_point (new_beam_pos); + scm_set_car_x (s, scm_from_int (new_beam_pos)); + } + } + while (flip (&d) != LEFT); + + if (!new_slice.is_empty ()) + last_int = new_slice; + } else - { - /* - FIXME: what's this for? - */ - SCM s = scm_cdr (this_beaming); - for (; scm_is_pair (s); s = scm_cdr (s)) - { - int np = -this_dir * scm_to_int (scm_car (s)); - scm_set_car_x (s, scm_from_int (np)); - last_int.add_point (np); - } - } - + { + /* + FIXME: what's this for? + */ + SCM s = scm_cdr (this_beaming); + for (; scm_is_pair (s); s = scm_cdr (s)) + { + int np = -this_dir * scm_to_int (scm_car (s)); + scm_set_car_x (s, scm_from_int (np)); + last_int.add_point (np); + } + } + if (scm_ilength (scm_cdr (this_beaming)) > 0) - { - last_beaming = this_beaming; - last_dir = this_dir; - } + { + last_beaming = this_beaming; + last_dir = this_dir; + } } return SCM_EOL; @@ -311,13 +330,14 @@ Beam::calc_beaming (SCM smob) bool operator <(Beam_stem_segment const &a, - Beam_stem_segment const &b) + Beam_stem_segment const &b) { return a.rank_ < b.rank_; } -typedef map > Position_stem_segments_map; +typedef map > Position_stem_segments_map; +// TODO - should store result in a property? vector Beam::get_beam_segments (Grob *me_grob, Grob **common) { @@ -325,7 +345,7 @@ Beam::get_beam_segments (Grob *me_grob, Grob **common) Stem #'beaming is correct */ (void) me_grob->get_property ("beaming"); - Spanner *me = dynamic_cast (me_grob); + Spanner *me = dynamic_cast (me_grob); extract_grob_set (me, "stems", stems); Grob *commonx = common_refpoint_of_array (stems, me, X_AXIS); @@ -334,7 +354,7 @@ Beam::get_beam_segments (Grob *me_grob, Grob **common) commonx = me->get_bound (RIGHT)->common_refpoint (commonx, X_AXIS); *common = commonx; - + int gap_count = robust_scm2int (me->get_property ("gap-count"), 0); Real gap_length = robust_scm2double (me->get_property ("gap"), 0.0); @@ -356,50 +376,50 @@ Beam::get_beam_segments (Grob *me_grob, Grob **common) SCM beaming = stem->get_property ("beaming"); Direction d = LEFT; do - { - // Find the maximum and minimum beam ranks. - // Given that RANKS is never reset to empty, the interval will always be - // smallest for the left beamlet of the first stem, and then it might grow. - // Do we really want this? (It only affects the tremolo gaps) --jneem - for (SCM s = index_get_cell (beaming, d); - scm_is_pair (s); s = scm_cdr (s)) - { - if (!scm_is_integer (scm_car (s))) - continue; - - int beam_rank = scm_to_int (scm_car (s)); - ranks.add_point (beam_rank); - } - - for (SCM s = index_get_cell (beaming, d); - scm_is_pair (s); s = scm_cdr (s)) - { - if (!scm_is_integer (scm_car (s))) - continue; - - int beam_rank = scm_to_int (scm_car (s)); - Beam_stem_segment seg; - seg.stem_ = stem; - seg.stem_x_ = stem_x; - seg.rank_ = 2 * i + (d+1)/2; - seg.width_ = stem_width; - seg.stem_index_ = i; - seg.dir_ = d; - seg.max_connect_ = robust_scm2int (stem->get_property ("max-beam-connect"), 1000); - - Direction stem_dir = get_grob_direction (stem); - - seg.gapped_ - = (stem_dir * beam_rank < (stem_dir * ranks[-stem_dir] + gap_count)); - stem_segments[beam_rank].push_back (seg); - } - } + { + // Find the maximum and minimum beam ranks. + // Given that RANKS is never reset to empty, the interval will always be + // smallest for the left beamlet of the first stem, and then it might grow. + // Do we really want this? (It only affects the tremolo gaps) --jneem + for (SCM s = index_get_cell (beaming, d); + scm_is_pair (s); s = scm_cdr (s)) + { + if (!scm_is_integer (scm_car (s))) + continue; + + int beam_rank = scm_to_int (scm_car (s)); + ranks.add_point (beam_rank); + } + + for (SCM s = index_get_cell (beaming, d); + scm_is_pair (s); s = scm_cdr (s)) + { + if (!scm_is_integer (scm_car (s))) + continue; + + int beam_rank = scm_to_int (scm_car (s)); + Beam_stem_segment seg; + seg.stem_ = stem; + seg.stem_x_ = stem_x; + seg.rank_ = 2 * i + (d + 1) / 2; + seg.width_ = stem_width; + seg.stem_index_ = i; + seg.dir_ = d; + seg.max_connect_ = robust_scm2int (stem->get_property ("max-beam-connect"), 1000); + + Direction stem_dir = get_grob_direction (stem); + + seg.gapped_ + = (stem_dir * beam_rank < (stem_dir * ranks[-stem_dir] + gap_count)); + stem_segments[beam_rank].push_back (seg); + } + } while (flip (&d) != LEFT); } Drul_array break_overshoot = robust_scm2drul (me->get_property ("break-overshoot"), - Drul_array (-0.5, 0.0)); + Drul_array (-0.5, 0.0)); vector segments; for (Position_stem_segments_map::const_iterator i (stem_segments.begin ()); @@ -413,114 +433,114 @@ Beam::get_beam_segments (Grob *me_grob, Grob **common) // Iterate over all of the segments of the current beam rank, // merging the adjacent Beam_stem_segments into one Beam_segment // when appropriate. - int vertical_count = (*i).first; + int vertical_count = (*i).first; for (vsize j = 0; j < segs.size (); j++) - { - // Keeping track of the different directions here is a little tricky. - // segs[j].dir_ is the direction of the beam segment relative to the stem - // (ie. segs[j].dir_ == LEFT if the beam segment sticks out to the left of - // its stem) whereas event_dir refers to the edge of the beam segment that - // we are currently looking at (ie. if segs[j].dir_ == event_dir then we - // are looking at that edge of the beam segment that is furthest from its - // stem). - Direction event_dir = LEFT; - Beam_stem_segment const& seg = segs[j]; - do - { - Beam_stem_segment const& neighbor_seg = segs[j + event_dir]; - // TODO: make names clearer? --jneem - // on_line_bound: whether the current segment is on the boundary of the WHOLE beam - // on_beam_bound: whether the current segment is on the boundary of just that part - // of the beam with the current beam_rank - bool on_line_bound = (seg.dir_ == LEFT) ? seg.stem_index_ == 0 - : seg.stem_index_ == stems.size() - 1; - bool on_beam_bound = (event_dir == LEFT) ? j == 0 : - j == segs.size () - 1; - bool inside_stem = (event_dir == LEFT) - ? seg.stem_index_ > 0 - : seg.stem_index_ + 1 < stems.size () ; - - bool event = on_beam_bound - || abs (seg.rank_ - neighbor_seg.rank_) > 1 - || (abs (vertical_count) >= seg.max_connect_ - || abs (vertical_count) >= neighbor_seg.max_connect_); - - if (!event) - // Then this edge of the current segment is irrelevent because it will - // be connected with the next segment in the event_dir direction. - continue; - - current.vertical_count_ = vertical_count; - current.horizontal_[event_dir] = seg.stem_x_; - if (seg.dir_ == event_dir) - // then we are examining the edge of a beam segment that is furthest - // from its stem. - { - if (on_line_bound - && me->get_bound (event_dir)->break_status_dir ()) - { - current.horizontal_[event_dir] - = (robust_relative_extent (me->get_bound (event_dir), - commonx, X_AXIS)[RIGHT] - + event_dir * break_overshoot[event_dir]); - } - else - { - Grob *stem = stems[seg.stem_index_]; - Drul_array beamlet_length = - robust_scm2interval (stem->get_property ("beamlet-default-length"), Interval (1.0, 1.0)); - Drul_array max_proportion = - robust_scm2interval (stem->get_property ("beamlet-max-length-proportion"), Interval (0.5, 0.5)); - Real length = beamlet_length[seg.dir_]; - - if (inside_stem) - { - Grob *neighbor_stem = stems[seg.stem_index_ + event_dir]; - Real neighbor_stem_x = neighbor_stem->relative_coordinate (commonx, X_AXIS); - - length = min (length, - fabs (neighbor_stem_x - seg.stem_x_) * max_proportion[seg.dir_]); - } - current.horizontal_[event_dir] += event_dir * length; - } - } - else - // we are examining the edge of a beam segment that is closest - // (ie. touching, unless there is a gap) its stem. - { - current.horizontal_[event_dir] += event_dir * seg.width_/2; - if (seg.gapped_) - { - current.horizontal_[event_dir] -= event_dir * gap_length; - - if (Stem::is_invisible (seg.stem_)) - { - /* - Need to do this in case of whole notes. We don't want the - heads to collide with the beams. - */ - extract_grob_set (seg.stem_, "note-heads", heads); - - for (vsize k = 0; k < heads.size (); k ++) - current.horizontal_[event_dir] - = event_dir * min (event_dir * current.horizontal_[event_dir], - - gap_length/2 - + event_dir - * heads[k]->extent (commonx, - X_AXIS)[-event_dir]); - } - } - } - - if (event_dir == RIGHT) - { - segments.push_back (current); - current = Beam_segment (); - } - } - while (flip (&event_dir) != LEFT); - } - + { + // Keeping track of the different directions here is a little tricky. + // segs[j].dir_ is the direction of the beam segment relative to the stem + // (ie. segs[j].dir_ == LEFT if the beam segment sticks out to the left of + // its stem) whereas event_dir refers to the edge of the beam segment that + // we are currently looking at (ie. if segs[j].dir_ == event_dir then we + // are looking at that edge of the beam segment that is furthest from its + // stem). + Direction event_dir = LEFT; + Beam_stem_segment const &seg = segs[j]; + do + { + Beam_stem_segment const &neighbor_seg = segs[j + event_dir]; + // TODO: make names clearer? --jneem + // on_line_bound: whether the current segment is on the boundary of the WHOLE beam + // on_beam_bound: whether the current segment is on the boundary of just that part + // of the beam with the current beam_rank + bool on_line_bound = (seg.dir_ == LEFT) ? seg.stem_index_ == 0 + : seg.stem_index_ == stems.size () - 1; + bool on_beam_bound = (event_dir == LEFT) ? j == 0 + : j == segs.size () - 1; + bool inside_stem = (event_dir == LEFT) + ? seg.stem_index_ > 0 + : seg.stem_index_ + 1 < stems.size (); + + bool event = on_beam_bound + || abs (seg.rank_ - neighbor_seg.rank_) > 1 + || (abs (vertical_count) >= seg.max_connect_ + || abs (vertical_count) >= neighbor_seg.max_connect_); + + if (!event) + // Then this edge of the current segment is irrelevent because it will + // be connected with the next segment in the event_dir direction. + continue; + + current.vertical_count_ = vertical_count; + current.horizontal_[event_dir] = seg.stem_x_; + if (seg.dir_ == event_dir) + // then we are examining the edge of a beam segment that is furthest + // from its stem. + { + if (on_line_bound + && me->get_bound (event_dir)->break_status_dir ()) + { + current.horizontal_[event_dir] + = (robust_relative_extent (me->get_bound (event_dir), + commonx, X_AXIS)[RIGHT] + + event_dir * break_overshoot[event_dir]); + } + else + { + Grob *stem = stems[seg.stem_index_]; + Drul_array beamlet_length + = robust_scm2interval (stem->get_property ("beamlet-default-length"), Interval (1.1, 1.1)); + Drul_array max_proportion + = robust_scm2interval (stem->get_property ("beamlet-max-length-proportion"), Interval (0.75, 0.75)); + Real length = beamlet_length[seg.dir_]; + + if (inside_stem) + { + Grob *neighbor_stem = stems[seg.stem_index_ + event_dir]; + Real neighbor_stem_x = neighbor_stem->relative_coordinate (commonx, X_AXIS); + + length = min (length, + fabs (neighbor_stem_x - seg.stem_x_) * max_proportion[seg.dir_]); + } + current.horizontal_[event_dir] += event_dir * length; + } + } + else + // we are examining the edge of a beam segment that is closest + // (ie. touching, unless there is a gap) its stem. + { + current.horizontal_[event_dir] += event_dir * seg.width_ / 2; + if (seg.gapped_) + { + current.horizontal_[event_dir] -= event_dir * gap_length; + + if (Stem::is_invisible (seg.stem_)) + { + /* + Need to do this in case of whole notes. We don't want the + heads to collide with the beams. + */ + extract_grob_set (seg.stem_, "note-heads", heads); + + for (vsize k = 0; k < heads.size (); k++) + current.horizontal_[event_dir] + = event_dir * min (event_dir * current.horizontal_[event_dir], + - gap_length / 2 + + event_dir + * heads[k]->extent (commonx, + X_AXIS)[-event_dir]); + } + } + } + + if (event_dir == RIGHT) + { + segments.push_back (current); + current = Beam_segment (); + } + } + while (flip (&event_dir) != LEFT); + } + } return segments; @@ -533,6 +553,8 @@ Beam::print (SCM grob) Spanner *me = unsmob_spanner (grob); Grob *commonx = 0; vector segments = get_beam_segments (me, &commonx); + if (!segments.size ()) + return SCM_EOL; Interval span; if (normal_stem_count (me)) @@ -542,7 +564,7 @@ Beam::print (SCM grob) } else { - extract_grob_set (me, "stems", stems); + extract_grob_set (me, "stems", stems); span[LEFT] = stems[0]->relative_coordinate (commonx, X_AXIS); span[RIGHT] = stems.back ()->relative_coordinate (commonx, X_AXIS); } @@ -562,71 +584,115 @@ Beam::print (SCM grob) scale_drul (&pos, Staff_symbol_referencer::staff_space (me)); Real dy = pos[RIGHT] - pos[LEFT]; - Real slope = (dy && span.length ()) ? dy / span.length () : 0; + Real slope = (dy && span.length ()) ? dy / span.length () : 0; - Real thick = get_thickness (me); + Real beam_thickness = get_beam_thickness (me); Real beam_dy = get_beam_translation (me); Direction feather_dir = to_dir (me->get_property ("grow-direction")); - + + Interval placements = robust_scm2interval (me->get_property ("normalized-endpoints"), Interval (0.0, 0.0)); + Stencil the_beam; - for (vsize i = 0; i < segments.size (); i ++) + + int extreme = (segments[0].vertical_count_ == 0 + ? segments[0].vertical_count_ + : segments.back ().vertical_count_); + + for (vsize i = 0; i < segments.size (); i++) { Real local_slope = slope; + /* + Makes local slope proportional to the ratio of the length of this beam + to the total length. + */ if (feather_dir) - { - local_slope += feather_dir * segments[i].vertical_count_ * beam_dy / span.length (); - } - - Stencil b = Lookup::beam (local_slope, segments[i].horizontal_.length (), thick, blot); + local_slope += (feather_dir * segments[i].vertical_count_ + * beam_dy + * placements.length () + / span.length ()); + + Stencil b = Lookup::beam (local_slope, segments[i].horizontal_.length (), beam_thickness, blot); b.translate_axis (segments[i].horizontal_[LEFT], X_AXIS); - - b.translate_axis (local_slope - * (segments[i].horizontal_[LEFT] - span.linear_combination (feather_dir)) - + pos.linear_combination (feather_dir) - + beam_dy * segments[i].vertical_count_, Y_AXIS); - the_beam.add_stencil (b); + Real multiplier = feather_dir ? placements[LEFT] : 1.0; + + Interval weights (1 - multiplier, multiplier); + + if (feather_dir != LEFT) + weights.swap (); + + // we need two translations: the normal one and + // the one of the lowest segment + int idx[] = {i, extreme}; + Real translations[2]; + + for (int j = 0; j < 2; j++) + translations[j] = slope + * (segments[idx[j]].horizontal_[LEFT] - span.linear_combination (CENTER)) + + pos.linear_combination (CENTER) + + beam_dy * segments[idx[j]].vertical_count_; + + Real weighted_average = translations[0] * weights[LEFT] + translations[1] * weights[RIGHT]; + + /* + Tricky. The manipulation of the variable `weighted_average' below ensures + that beams with a RIGHT grow direction will start from the position of the + lowest segment at 0, and this error will decrease and decrease over the + course of the beam. Something with a LEFT grow direction, on the other + hand, will always start in the correct place but progressively accrue + error at broken places. This code shifts beams up given where they are + in the total span length (controlled by the variable `multiplier'). To + better understand what it does, try commenting it out: you'll see that + all of the RIGHT growing beams immediately start too low and get better + over line breaks, whereas all of the LEFT growing beams start just right + and get worse over line breaks. + */ + Real factor = Interval (multiplier, 1 - multiplier).linear_combination (feather_dir); + + if (segments[0].vertical_count_ < 0 && feather_dir) + weighted_average += beam_dy * (segments.size () - 1) * factor; + + b.translate_axis (weighted_average, Y_AXIS); + + the_beam.add_stencil (b); + } - + #if (DEBUG_BEAM_SCORING) SCM annotation = me->get_property ("annotation"); - if (!scm_is_string (annotation)) - { - SCM debug = me->layout ()->lookup_variable (ly_symbol2scm ("debug-beam-scoring")); - if (to_boolean (debug)) - annotation = me->get_property ("quant-score"); - } - if (scm_is_string (annotation)) { - extract_grob_set (me, "stems", stems); + extract_grob_set (me, "stems", stems); /* - This code prints the demerits for each beam. Perhaps this - should be switchable for those who want to twiddle with the - parameters. + This code prints the demerits for each beam. Perhaps this + should be switchable for those who want to twiddle with the + parameters. */ string str; SCM properties = Font_interface::text_font_alist_chain (me); + properties = scm_cons (scm_acons (ly_symbol2scm ("font-size"), scm_from_int (-5), SCM_EOL), + properties); + Direction stem_dir = stems.size () ? to_dir (stems[0]->get_property ("direction")) : UP; Stencil score = *unsmob_stencil (Text_interface::interpret_markup - (me->layout ()->self_scm (), properties, annotation)); + (me->layout ()->self_scm (), properties, annotation)); if (!score.is_empty ()) - { - score.translate_axis (me->relative_coordinate(commonx, X_AXIS), X_AXIS); - the_beam.add_at_edge (Y_AXIS, stem_dir, score, 1.0); - } + { + score.translate_axis (me->relative_coordinate (commonx, X_AXIS), X_AXIS); + the_beam.add_at_edge (Y_AXIS, stem_dir, score, 1.0); + } } #endif the_beam.translate_axis (-me->relative_coordinate (commonx, X_AXIS), X_AXIS); return the_beam.smobbed_copy (); } - + Direction Beam::get_default_dir (Grob *me) { @@ -638,10 +704,10 @@ Beam::get_default_dir (Grob *me) Interval positions = Stem::head_positions (*s); Direction d = DOWN; do - { - if (sign (positions[d]) == d) - extremes[d] = d * max (d * positions[d], d * extremes[d]); - } + { + if (sign (positions[d]) == d) + extremes[d] = d * max (d * positions[d], d * extremes[d]); + } while (flip (&d) != DOWN); } @@ -655,45 +721,44 @@ Beam::get_default_dir (Grob *me) Direction stem_dir = CENTER; SCM stem_dir_scm = s->get_property_data ("direction"); if (is_direction (stem_dir_scm)) - { - stem_dir = to_dir (stem_dir_scm); - force_dir = true; - } + { + stem_dir = to_dir (stem_dir_scm); + force_dir = true; + } else - stem_dir = to_dir (s->get_property ("default-direction")); + stem_dir = to_dir (s->get_property ("default-direction")); if (!stem_dir) - stem_dir = to_dir (s->get_property ("neutral-direction")); + stem_dir = to_dir (s->get_property ("neutral-direction")); if (stem_dir) - { - count[stem_dir] ++; - total[stem_dir] += max (int (- stem_dir * Stem::head_positions (s) [-stem_dir]), 0); - } + { + count[stem_dir]++; + total[stem_dir] += max (int (- stem_dir * Stem::head_positions (s) [-stem_dir]), 0); + } } - if (!force_dir) { if (abs (extremes[UP]) > -extremes[DOWN]) - return DOWN; + return DOWN; else if (extremes[UP] < -extremes[DOWN]) - return UP; + return UP; } - + Direction dir = CENTER; Direction d = CENTER; if ((d = (Direction) sign (count[UP] - count[DOWN]))) dir = d; else if (count[UP] - && count[DOWN] - && (d = (Direction) sign (total[UP] / count[UP] - total[DOWN]/count[DOWN]))) + && count[DOWN] + && (d = (Direction) sign (total[UP] / count[UP] - total[DOWN] / count[DOWN]))) dir = d; - else if ((d = (Direction) sign (total[UP] - total[DOWN]))) + else if ((d = (Direction) sign (total[UP] - total[DOWN]))) dir = d; else dir = to_dir (me->get_property ("neutral-direction")); - + return dir; } @@ -711,7 +776,7 @@ Beam::set_stem_directions (Grob *me, Direction d) SCM forcedir = s->get_property_data ("direction"); if (!to_dir (forcedir)) - set_grob_direction (s, d); + set_grob_direction (s, d); } } @@ -750,24 +815,24 @@ Beam::consider_auto_knees (Grob *me) Interval head_extents = Stem::head_positions (stem); if (!head_extents.is_empty ()) - { - head_extents[LEFT] += -1; - head_extents[RIGHT] += 1; - head_extents *= staff_space * 0.5; - - /* - We could subtract beam Y position, but this routine only - sets stem directions, a constant shift does not have an - influence. - */ - head_extents += stem->pure_relative_y_coordinate (common, 0, INT_MAX); - - if (to_dir (stem->get_property_data ("direction"))) - { - Direction stemdir = to_dir (stem->get_property ("direction")); - head_extents[-stemdir] = -stemdir * infinity_f; - } - } + { + head_extents[LEFT] += -1; + head_extents[RIGHT] += 1; + head_extents *= staff_space * 0.5; + + /* + We could subtract beam Y position, but this routine only + sets stem directions, a constant shift does not have an + influence. + */ + head_extents += stem->pure_relative_y_coordinate (common, 0, INT_MAX); + + if (to_dir (stem->get_property_data ("direction"))) + { + Direction stemdir = to_dir (stem->get_property ("direction")); + head_extents[-stemdir] = -stemdir * infinity_f; + } + } head_extents_array.push_back (head_extents); gaps.remove_interval (head_extents); @@ -776,46 +841,46 @@ Beam::consider_auto_knees (Grob *me) Interval max_gap; Real max_gap_len = 0.0; - for (vsize i = gaps.allowed_regions_.size () -1; i != VPOS ;i--) + for (vsize i = gaps.allowed_regions_.size () - 1; i != VPOS; i--) { Interval gap = gaps.allowed_regions_[i]; /* - the outer gaps are not knees. + the outer gaps are not knees. */ if (isinf (gap[LEFT]) || isinf (gap[RIGHT])) - continue; + continue; if (gap.length () >= max_gap_len) - { - max_gap_len = gap.length (); - max_gap = gap; - } + { + max_gap_len = gap.length (); + max_gap = gap; + } } Real beam_translation = get_beam_translation (me); - Real beam_thickness = Beam::get_thickness (me); + Real beam_thickness = Beam::get_beam_thickness (me); int beam_count = Beam::get_beam_count (me); Real height_of_beams = beam_thickness / 2 - + (beam_count - 1) * beam_translation; + + (beam_count - 1) * beam_translation; Real threshold = scm_to_double (scm) + height_of_beams; if (max_gap_len > threshold) { int j = 0; for (vsize i = 0; i < stems.size (); i++) - { - Grob *stem = stems[i]; - Interval head_extents = head_extents_array[j++]; + { + Grob *stem = stems[i]; + Interval head_extents = head_extents_array[j++]; - Direction d = (head_extents.center () < max_gap.center ()) - ? UP : DOWN; + Direction d = (head_extents.center () < max_gap.center ()) + ? UP : DOWN; - stem->set_property ("direction", scm_from_int (d)); + stem->set_property ("direction", scm_from_int (d)); - head_extents.intersect (max_gap); - assert (head_extents.is_empty () || head_extents.length () < 1e-6); - } + head_extents.intersect (max_gap); + assert (head_extents.is_empty () || head_extents.length () < 1e-6); + } } } @@ -829,38 +894,34 @@ This is done in beam because the shorten has to be uniform over the entire beam. */ - - void set_minimum_dy (Grob *me, Real *dy) { if (*dy) { /* - If dy is smaller than the smallest quant, we - get absurd direction-sign penalties. + If dy is smaller than the smallest quant, we + get absurd direction-sign penalties. */ Real ss = Staff_symbol_referencer::staff_space (me); - Real thickness = Beam::get_thickness (me) / ss; + Real beam_thickness = Beam::get_beam_thickness (me) / ss; Real slt = Staff_symbol_referencer::line_thickness (me) / ss; - Real sit = (thickness - slt) / 2; + Real sit = (beam_thickness - slt) / 2; Real inter = 0.5; - Real hang = 1.0 - (thickness - slt) / 2; + Real hang = 1.0 - (beam_thickness - slt) / 2; *dy = sign (*dy) * max (fabs (*dy), - min (min (sit, inter), hang)); + min (min (sit, inter), hang)); } } - - MAKE_SCHEME_CALLBACK (Beam, calc_stem_shorten, 1) SCM Beam::calc_stem_shorten (SCM smob) { Grob *me = unsmob_grob (smob); - + /* shortening looks silly for x staff beams */ @@ -868,7 +929,7 @@ Beam::calc_stem_shorten (SCM smob) return scm_from_int (0); Real forced_fraction = 1.0 * forced_stem_count (me) - / normal_stem_count (me); + / normal_stem_count (me); int beam_count = get_beam_count (me); @@ -879,44 +940,45 @@ Beam::calc_stem_shorten (SCM smob) Real staff_space = Staff_symbol_referencer::staff_space (me); SCM shorten_elt - = robust_list_ref (beam_count -1, shorten_list); + = robust_list_ref (beam_count - 1, shorten_list); Real shorten = scm_to_double (shorten_elt) * staff_space; shorten *= forced_fraction; - if (shorten) return scm_from_double (shorten); return scm_from_double (0.0); } - Interval Beam::no_visible_stem_positions (Grob *me, Interval default_value) { extract_grob_set (me, "stems", stems); if (stems.empty ()) return default_value; - + Interval head_positions; Slice multiplicity; - for (vsize i = 0; i < stems.size(); i++) + for (vsize i = 0; i < stems.size (); i++) { head_positions.unite (Stem::head_positions (stems[i])); multiplicity.unite (Stem::beam_multiplicity (stems[i])); } Direction dir = get_grob_direction (me); - Real y = head_positions[dir] - * 0.5 * Staff_symbol_referencer::staff_space (me) - + dir * get_beam_translation (me) * (multiplicity.length () + 1); + + if (!dir) + programming_error ("The beam should have a direction by now."); + + Real y = head_positions.linear_combination (dir) + * 0.5 * Staff_symbol_referencer::staff_space (me) + + dir * get_beam_translation (me) * (multiplicity.length () + 1); y /= Staff_symbol_referencer::staff_space (me); - return Interval (y,y); + return Interval (y, y); } - /* Compute a first approximation to the beam slope. */ @@ -927,7 +989,7 @@ Beam::calc_least_squares_positions (SCM smob, SCM /* posns */) Grob *me = unsmob_grob (smob); int count = normal_stem_count (me); - Interval pos (0,0); + Interval pos (0, 0); if (count < 1) return ly_interval2scm (no_visible_stem_positions (me, pos)); @@ -942,9 +1004,9 @@ Beam::calc_least_squares_positions (SCM smob, SCM /* posns */) Grob *lvs = last_normal_stem (me); Interval ideal (Stem::get_stem_info (fvs).ideal_y_ - + fvs->relative_coordinate (commony, Y_AXIS) - my_y, - Stem::get_stem_info (lvs).ideal_y_ - + lvs->relative_coordinate (commony, Y_AXIS) - my_y); + + fvs->relative_coordinate (commony, Y_AXIS) - my_y, + Stem::get_stem_info (lvs).ideal_y_ + + lvs->relative_coordinate (commony, Y_AXIS) - my_y); Real x0 = first_normal_stem (me)->relative_coordinate (commonx, X_AXIS); for (vsize i = 0; i < stems.size (); i++) @@ -963,29 +1025,29 @@ Beam::calc_least_squares_positions (SCM smob, SCM /* posns */) if (!ideal.delta ()) { Interval chord (Stem::chord_start_y (stems[0]), - Stem::chord_start_y (stems.back ())); + Stem::chord_start_y (stems.back ())); /* Simple beams (2 stems) on middle line should be allowed to be - slightly sloped. + slightly sloped. - However, if both stems reach middle line, - ideal[LEFT] == ideal[RIGHT] and ideal.delta () == 0. + However, if both stems reach middle line, + ideal[LEFT] == ideal[RIGHT] and ideal.delta () == 0. - For that case, we apply artificial slope */ + For that case, we apply artificial slope */ if (!ideal[LEFT] && chord.delta () && count == 2) - { - /* FIXME. -> UP */ - Direction d = (Direction) (sign (chord.delta ()) * UP); - pos[d] = get_thickness (me) / 2; - pos[-d] = -pos[d]; - } + { + /* FIXME. -> UP */ + Direction d = (Direction) (sign (chord.delta ()) * UP); + pos[d] = get_beam_thickness (me) / 2; + pos[-d] = -pos[d]; + } else - pos = ideal; + pos = ideal; /* - For broken beams this doesn't work well. In this case, the - slope esp. of the first part of a broken beam should predict - where the second part goes. + For broken beams this doesn't work well. In this case, the + slope esp. of the first part of a broken beam should predict + where the second part goes. */ ldy = pos[RIGHT] - pos[LEFT]; } @@ -993,13 +1055,13 @@ Beam::calc_least_squares_positions (SCM smob, SCM /* posns */) { vector ideals; for (vsize i = 0; i < stems.size (); i++) - { - Grob *s = stems[i]; - ideals.push_back (Offset (x_posns[i], - Stem::get_stem_info (s).ideal_y_ - + s->relative_coordinate (commony, Y_AXIS) - - my_y)); - } + { + Grob *s = stems[i]; + ideals.push_back (Offset (x_posns[i], + Stem::get_stem_info (s).ideal_y_ + + s->relative_coordinate (commony, Y_AXIS) + - my_y)); + } minimise_least_squares (&slope, &y, ideals); @@ -1016,10 +1078,22 @@ Beam::calc_least_squares_positions (SCM smob, SCM /* posns */) */ scale_drul (&pos, 1 / Staff_symbol_referencer::staff_space (me)); - me->set_property ("least-squares-dy", scm_from_double (ldy)); + me->set_property ("least-squares-dy", scm_from_double (ldy)); return ly_interval2scm (pos); } +// Assuming V is not empty, pick a 'reasonable' point inside V. +static Real +point_in_interval (Interval v, Real dist) +{ + if (isinf (v[DOWN])) + return v[UP] - dist; + else if (isinf (v[UP])) + return v[DOWN] + dist; + else + return v.center (); +} + /* We can't combine with previous function, since check concave and slope damping comes first. @@ -1032,41 +1106,44 @@ SCM Beam::shift_region_to_valid (SCM grob, SCM posns) { Grob *me = unsmob_grob (grob); + /* Code dup. */ vector x_posns; extract_grob_set (me, "stems", stems); - Grob *commonx = common_refpoint_of_array (stems, me, X_AXIS); - Grob *commony = common_refpoint_of_array (stems, me, Y_AXIS); + extract_grob_set (me, "covered-grobs", covered); + Grob *common[NO_AXES] = { me, me }; + for (Axis a = X_AXIS; a < NO_AXES; incr (a)) + { + common[a] = common_refpoint_of_array (stems, me, a); + common[a] = common_refpoint_of_array (covered, common[a], a); + } Grob *fvs = first_normal_stem (me); if (!fvs) return posns; - - Real x0 = fvs->relative_coordinate (commonx, X_AXIS); + Interval x_span; + x_span[LEFT] = fvs->relative_coordinate (common[X_AXIS], X_AXIS); for (vsize i = 0; i < stems.size (); i++) { Grob *s = stems[i]; - Real x = s->relative_coordinate (commonx, X_AXIS) - x0; + Real x = s->relative_coordinate (common[X_AXIS], X_AXIS) - x_span[LEFT]; x_posns.push_back (x); } Grob *lvs = last_normal_stem (me); - if (!lvs) - return posns; - - Real dx = lvs->relative_coordinate (commonx, X_AXIS) - x0; + x_span[RIGHT] = lvs->relative_coordinate (common[X_AXIS], X_AXIS); Drul_array pos = ly_scm2interval (posns); scale_drul (&pos, Staff_symbol_referencer::staff_space (me)); - Real dy = pos[RIGHT] - pos[LEFT]; - Real y = pos[LEFT]; - Real slope = dx ? (dy / dx) : 0.0; + Real beam_dy = pos[RIGHT] - pos[LEFT]; + Real beam_left_y = pos[LEFT]; + Real slope = x_span.delta () ? (beam_dy / x_span.delta ()) : 0.0; /* Shift the positions so that we have a chance of finding good @@ -1074,25 +1151,25 @@ Beam::shift_region_to_valid (SCM grob, SCM posns) */ Interval feasible_left_point; feasible_left_point.set_full (); + for (vsize i = 0; i < stems.size (); i++) { Grob *s = stems[i]; if (Stem::is_invisible (s)) - continue; + continue; Direction d = get_grob_direction (s); - Real left_y - = Stem::get_stem_info (s).shortest_y_ - - slope * x_posns [i]; + = Stem::get_stem_info (s).shortest_y_ + - slope * x_posns [i]; /* - left_y is now relative to the stem S. We want relative to - ourselves, so translate: + left_y is now relative to the stem S. We want relative to + ourselves, so translate: */ left_y - += + s->relative_coordinate (commony, Y_AXIS) - - me->relative_coordinate (commony, Y_AXIS); + += + s->relative_coordinate (common[Y_AXIS], Y_AXIS) + - me->relative_coordinate (common[Y_AXIS], Y_AXIS); Interval flp; flp.set_full (); @@ -1101,20 +1178,180 @@ Beam::shift_region_to_valid (SCM grob, SCM posns) feasible_left_point.intersect (flp); } - if (feasible_left_point.is_empty ()) - warning (_ ("no viable initial configuration found: may not find good beam slope")); - else if (!feasible_left_point.contains (y)) + vector filtered; + /* + We only update these for objects that are too large for quanting + to find a workaround. Typically, these are notes with + stems, and timesig/keysig/clef, which take out the entire area + inside the staff as feasible. + + The code below disregards the thickness and multiplicity of the + beam. This should not be a problem, as the beam quanting will + take care of computing the impact those exactly. + */ + Real min_y_size = 2.0; + + // A list of intervals into which beams may not fall + vector forbidden_intervals; + + for (vsize i = 0; i < covered.size (); i++) { - const int REGION_SIZE = 2; // UGH UGH - if (isinf (feasible_left_point[DOWN])) - y = feasible_left_point[UP] - REGION_SIZE; - else if (isinf (feasible_left_point[UP])) - y = feasible_left_point[DOWN]+ REGION_SIZE; + if (!covered[i]->is_live ()) + continue; + + if (Beam::has_interface (covered[i]) && is_cross_staff (covered[i])) + continue; + + Box b; + for (Axis a = X_AXIS; a < NO_AXES; incr (a)) + b[a] = covered[i]->extent (common[a], a); + + if (b[X_AXIS].is_empty () || b[Y_AXIS].is_empty ()) + continue; + + if (intersection (b[X_AXIS], x_span).is_empty ()) + continue; + + filtered.push_back (covered[i]); + Grob *head_stem = Rhythmic_head::get_stem (covered[i]); + if (head_stem && Stem::is_normal_stem (head_stem) + && Note_head::has_interface (covered[i])) + { + if (Stem::get_beam (head_stem)) + { + /* + We must assume that stems are infinitely long in this + case, as asking for the length of the stem typically + leads to circular dependencies. + + This strategy assumes that we don't want to handle the + collision of beams in opposite non-forced directions + with this code, where shortening the stems of both + would resolve the problem, eg. + + x x + | | + ===== + + ===== + | | + x x + + Such beams would need a coordinating grob to resolve + the collision, since both will likely want to occupy + the centerline. + */ + Direction stemdir = get_grob_direction (head_stem); + b[Y_AXIS][stemdir] = stemdir * infinity_f; + } + else + { + // TODO - should we include the extent of the stem here? + } + } + + if (b[Y_AXIS].length () < min_y_size) + continue; + + Direction d = LEFT; + do + { + Real x = b[X_AXIS][d] - x_span[LEFT]; + Real dy = slope * x; + + Direction yd = DOWN; + Interval disallowed; + do + { + Real left_y = b[Y_AXIS][yd]; + + left_y -= dy; + + // Translate back to beam as ref point. + left_y -= me->relative_coordinate (common[Y_AXIS], Y_AXIS); + + disallowed[yd] = left_y; + } + while (flip (&yd) != DOWN); + + forbidden_intervals.push_back (disallowed); + } + while (flip (&d) != LEFT); + } + + Grob_array *arr + = Pointer_group_interface::get_grob_array (me, + ly_symbol2scm ("covered-grobs")); + arr->set_array (filtered); + + vector_sort (forbidden_intervals, Interval::left_less); + Real epsilon = 1.0e-10; + Interval feasible_beam_placements (beam_left_y, beam_left_y); + + /* + forbidden_intervals contains a vector of intervals in which + the beam cannot start. it iterates through these intervals, + pushing feasible_beam_placements epsilon over or epsilon under a + collision. when this type of change happens, the loop is marked + as "dirty" and re-iterated. + + TODO: figure out a faster ways that this loop can happen via + a better search algorithm and/or OOP. + */ + + bool dirty = false; + do + { + dirty = false; + for (vsize i = 0; i < forbidden_intervals.size (); i++) + { + Direction d = DOWN; + do + { + if (forbidden_intervals[i][d] == d * infinity_f) + feasible_beam_placements[d] = d * infinity_f; + else if (forbidden_intervals[i].contains (feasible_beam_placements[d])) + { + feasible_beam_placements[d] = d * epsilon + forbidden_intervals[i][d]; + dirty = true; + } + } + while (flip (&d) != DOWN); + } + } + while (dirty); + + // if the beam placement falls out of the feasible region, we push it + // to infinity so that it can never be a feasible candidate below + Direction d = DOWN; + do + { + if (!feasible_left_point.contains (feasible_beam_placements[d])) + feasible_beam_placements[d] = d * infinity_f; + } + while (flip (&d) != DOWN); + + if ((feasible_beam_placements[UP] == infinity_f && feasible_beam_placements[DOWN] == -infinity_f) && !feasible_left_point.is_empty ()) + { + // We are somewhat screwed: we have a collision, but at least + // there is a way to satisfy stem length constraints. + beam_left_y = point_in_interval (feasible_left_point, 2.0); + } + else if (!feasible_left_point.is_empty ()) + { + // Only one of them offers is feasible solution. Pick that one. + if (abs (beam_left_y - feasible_beam_placements[DOWN]) > abs (beam_left_y - feasible_beam_placements[UP])) + beam_left_y = feasible_beam_placements[UP]; else - y = feasible_left_point.center (); + beam_left_y = feasible_beam_placements[DOWN]; + } + else + { + // We are completely screwed. + me->warning (_ ("no viable initial configuration found: may not find good beam slope")); } - pos = Drul_array (y, (y + dy)); + pos = Drul_array (beam_left_y, (beam_left_y + beam_dy)); scale_drul (&pos, 1 / Staff_symbol_referencer::staff_space (me)); return ly_interval2scm (pos); @@ -1133,7 +1370,6 @@ Beam::slope_damping (SCM smob, SCM posns) if (normal_stem_count (me) <= 1) return posns; - SCM s = me->get_property ("damping"); Real damping = scm_to_double (s); Real concaveness = robust_scm2double (me->get_property ("concaveness"), 0.0); @@ -1143,7 +1379,7 @@ Beam::slope_damping (SCM smob, SCM posns) me->set_property ("least-squares-dy", scm_from_double (0)); damping = 0; } - + if (damping) { scale_drul (&pos, Staff_symbol_referencer::staff_space (me)); @@ -1156,7 +1392,7 @@ Beam::slope_damping (SCM smob, SCM posns) Grob *commonx = fvs->common_refpoint (lvs, X_AXIS); Real dx = last_normal_stem (me)->relative_coordinate (commonx, X_AXIS) - - first_normal_stem (me)->relative_coordinate (commonx, X_AXIS); + - first_normal_stem (me)->relative_coordinate (commonx, X_AXIS); Real slope = dy && dx ? dy / dx : 0; @@ -1175,6 +1411,19 @@ Beam::slope_damping (SCM smob, SCM posns) return ly_interval2scm (pos); } +MAKE_SCHEME_CALLBACK (Beam, quanting, 2); +SCM +Beam::quanting (SCM smob, SCM posns) +{ + Grob *me = unsmob_grob (smob); + Drul_array ys (0, 0); + ys = robust_scm2drul (posns, ys); + Beam_scoring_problem problem (me, ys); + + ys = problem.solve (); + return ly_interval2scm (ys); +} + /* Report slice containing the numbers that are both in (car BEAMING) and (cdr BEAMING) @@ -1188,7 +1437,7 @@ where_are_the_whole_beams (SCM beaming) { if (scm_c_memq (scm_car (s), scm_cdr (beaming)) != SCM_BOOL_F) - l.add_point (scm_to_int (scm_car (s))); + l.add_point (scm_to_int (scm_car (s))); } return l; @@ -1198,43 +1447,43 @@ where_are_the_whole_beams (SCM beaming) in POS for stem S. This Y position is relative to S. */ Real Beam::calc_stem_y (Grob *me, Grob *stem, Grob **common, - Real xl, Real xr, Direction feather_dir, - Drul_array pos, bool french) + Real xl, Real xr, Direction feather_dir, + Drul_array pos, bool french) { Real beam_translation = get_beam_translation (me); Direction stem_dir = get_grob_direction (stem); Real dx = xr - xl; - Real relx = dx ? (stem->relative_coordinate (common[X_AXIS], X_AXIS) - xl)/dx : 0; - Real xdir = 2*relx-1; + Real relx = dx ? (stem->relative_coordinate (common[X_AXIS], X_AXIS) - xl) / dx : 0; + Real xdir = 2 * relx - 1; - Real stem_y = linear_combination(pos, xdir); + Real stem_y = linear_combination (pos, xdir); SCM beaming = stem->get_property ("beaming"); Slice beam_slice (french - ? where_are_the_whole_beams (beaming) - : Stem::beam_multiplicity (stem)); + ? where_are_the_whole_beams (beaming) + : Stem::beam_multiplicity (stem)); if (beam_slice.is_empty ()) - beam_slice = Slice (0,0); - Interval beam_multiplicity(beam_slice[LEFT], - beam_slice[RIGHT]); + beam_slice = Slice (0, 0); + Interval beam_multiplicity (beam_slice[LEFT], + beam_slice[RIGHT]); /* feather dir = 1 , relx 0->1 : factor 0 -> 1 - feather dir = 0 , relx 0->1 : factor 1 -> 1 - feather dir = -1, relx 0->1 : factor 1 -> 0 + feather dir = 0 , relx 0->1 : factor 1 -> 1 + feather dir = -1, relx 0->1 : factor 1 -> 0 */ Real feather_factor = 1; if (feather_dir > 0) feather_factor = relx; else if (feather_dir < 0) feather_factor = 1 - relx; - + stem_y += feather_factor * beam_translation - * beam_multiplicity[Direction(((french) ? DOWN : UP)*stem_dir)]; + * beam_multiplicity[Direction (((french) ? DOWN : UP) * stem_dir)]; Real id = me->relative_coordinate (common[Y_AXIS], Y_AXIS) - - stem->relative_coordinate (common[Y_AXIS], Y_AXIS); + - stem->relative_coordinate (common[Y_AXIS], Y_AXIS); return stem_y + id; } @@ -1243,7 +1492,7 @@ Beam::calc_stem_y (Grob *me, Grob *stem, Grob **common, Hmm. At this time, beam position and slope are determined. Maybe, stem directions and length should set to relative to the chord's position of the beam. */ -MAKE_SCHEME_CALLBACK (Beam, set_stem_lengths, 1); +MAKE_SCHEME_CALLBACK (Beam, set_stem_lengths, 1); SCM Beam::set_stem_lengths (SCM smob) { @@ -1254,7 +1503,7 @@ Beam::set_stem_lengths (SCM smob) (void) me->get_property ("beaming"); SCM posns = me->get_property ("positions"); - + extract_grob_set (me, "stems", stems); if (!stems.size ()) return posns; @@ -1272,7 +1521,7 @@ Beam::set_stem_lengths (SCM smob) if (robust_scm2int (me->get_property ("gap-count"), 0)) { gap = true; - thick = get_thickness (me); + thick = get_beam_thickness (me); } Grob *fvs = first_normal_stem (me); @@ -1288,20 +1537,20 @@ Beam::set_stem_lengths (SCM smob) bool french = to_boolean (s->get_property ("french-beaming")); Real stem_y = calc_stem_y (me, s, common, - xl, xr, feather_dir, - pos, french && s != lvs && s!= fvs); + xl, xr, feather_dir, + pos, french && s != lvs && s != fvs); /* - Make the stems go up to the end of the beam. This doesn't matter - for normal beams, but for tremolo beams it looks silly otherwise. + Make the stems go up to the end of the beam. This doesn't matter + for normal beams, but for tremolo beams it looks silly otherwise. */ if (gap - && !Stem::is_invisible (s)) - stem_y += thick * 0.5 * get_grob_direction (s); + && !Stem::is_invisible (s)) + stem_y += thick * 0.5 * get_grob_direction (s); /* - Do set_stemend for invisible stems too, so tuplet brackets - have a reference point for sloping + Do set_stemend for invisible stems too, so tuplet brackets + have a reference point for sloping */ Stem::set_stemend (s, 2 * stem_y / staff_space); } @@ -1318,30 +1567,30 @@ Beam::set_beaming (Grob *me, Beaming_pattern const *beaming) for (vsize i = 0; i < stems.size (); i++) { /* - Don't overwrite user settings. + Don't overwrite user settings. */ do - { - Grob *stem = stems[i]; - SCM beaming_prop = stem->get_property ("beaming"); - if (beaming_prop == SCM_EOL - || index_get_cell (beaming_prop, d) == SCM_EOL) - { - int count = beaming->beamlet_count (i, d); - if (i > 0 - && i + 1 < stems.size () - && Stem::is_invisible (stem)) - count = min (count, beaming->beamlet_count (i,-d)); - - if ( ((i == 0 && d == LEFT) - || (i == stems.size ()-1 && d == RIGHT)) - && stems.size () > 1 - && to_boolean (me->get_property ("clip-edges"))) - count = 0; - - Stem::set_beaming (stem, count, d); - } - } + { + Grob *stem = stems[i]; + SCM beaming_prop = stem->get_property ("beaming"); + if (beaming_prop == SCM_EOL + || index_get_cell (beaming_prop, d) == SCM_EOL) + { + int count = beaming->beamlet_count (i, d); + if (i > 0 + && i + 1 < stems.size () + && Stem::is_invisible (stem)) + count = min (count, beaming->beamlet_count (i, -d)); + + if ( ((i == 0 && d == LEFT) + || (i == stems.size () - 1 && d == RIGHT)) + && stems.size () > 1 + && to_boolean (me->get_property ("clip-edges"))) + count = 0; + + Stem::set_beaming (stem, count, d); + } + } while (flip (&d) != LEFT); } } @@ -1357,13 +1606,13 @@ Beam::forced_stem_count (Grob *me) Grob *s = stems[i]; /* I can imagine counting those boundaries as a half forced stem, - but let's count them full for now. */ + but let's count them full for now. */ Direction defdir = to_dir (s->get_property ("default-direction")); - + if (abs (Stem::chord_start_y (s)) > 0.1 - && defdir - && get_grob_direction (s) != defdir) - f++; + && defdir + && get_grob_direction (s) != defdir) + f++; } return f; } @@ -1408,7 +1657,7 @@ Beam::rest_collision_callback (SCM smob, SCM prev_offset) return scm_from_int (0); Real offset = robust_scm2double (prev_offset, 0.0); - + Grob *st = unsmob_grob (rest->get_object ("stem")); Grob *stem = st; if (!stem) @@ -1420,7 +1669,7 @@ Beam::rest_collision_callback (SCM smob, SCM prev_offset) return scm_from_double (0.0); Drul_array pos (robust_scm2drul (beam->get_property ("positions"), - Drul_array (0,0))); + Drul_array (0, 0))); Real staff_space = Staff_symbol_referencer::staff_space (rest); @@ -1428,22 +1677,22 @@ Beam::rest_collision_callback (SCM smob, SCM prev_offset) Real dy = pos[RIGHT] - pos[LEFT]; - Drul_array visible_stems (first_normal_stem (beam), - last_normal_stem (beam)); + Drul_array visible_stems (first_normal_stem (beam), + last_normal_stem (beam)); extract_grob_set (beam, "stems", stems); - + Grob *common = common_refpoint_of_array (stems, beam, X_AXIS); - + Real x0 = visible_stems[LEFT]->relative_coordinate (common, X_AXIS); Real dx = visible_stems[RIGHT]->relative_coordinate (common, X_AXIS) - x0; Real slope = dy && dx ? dy / dx : 0; Direction d = get_grob_direction (stem); Real stem_y = pos[LEFT] - + (stem->relative_coordinate (common, X_AXIS) - x0) * slope; + + (stem->relative_coordinate (common, X_AXIS) - x0) * slope; Real beam_translation = get_beam_translation (beam); - Real beam_thickness = Beam::get_thickness (beam); + Real beam_thickness = Beam::get_beam_thickness (beam); /* TODO: this is not strictly correct for 16th knee beams. @@ -1452,22 +1701,18 @@ Beam::rest_collision_callback (SCM smob, SCM prev_offset) = Stem::beam_multiplicity (stem).length () + 1; Real height_of_my_beams = beam_thickness / 2 - + (beam_count - 1) * beam_translation; + + (beam_count - 1) * beam_translation; Real beam_y = stem_y - d * height_of_my_beams; Grob *common_y = rest->common_refpoint (beam, Y_AXIS); - /* - TODO: this is dubious, because this call needs the info we're - computing right now. - */ - Interval rest_extent = rest->extent (common_y, Y_AXIS); - rest_extent.translate (offset); - + Interval rest_extent = rest->extent (rest, Y_AXIS); + rest_extent.translate (offset + rest->get_parent (Y_AXIS)->relative_coordinate (common_y, Y_AXIS)); + Real rest_dim = rest_extent[d]; Real minimum_distance = staff_space * (robust_scm2double (stem->get_property ("stemlet-length"), 0.0) - + robust_scm2double (rest->get_property ("minimum-distance"), 0.0)); + + robust_scm2double (rest->get_property ("minimum-distance"), 0.0)); Real shift = d * min (d * (beam_y - d * minimum_distance - rest_dim), 0.0); @@ -1487,6 +1732,77 @@ Beam::rest_collision_callback (SCM smob, SCM prev_offset) return scm_from_double (offset + staff_space * shift); } +MAKE_SCHEME_CALLBACK_WITH_OPTARGS (Beam, pure_rest_collision_callback, 4, 1, ""); +SCM +Beam::pure_rest_collision_callback (SCM smob, + SCM, /* prev_offset */ + SCM, /* start */ + SCM /* end */) +{ + Real amount = 0.0; + + Grob *me = unsmob_grob (smob); + Grob *stem = unsmob_grob (me->get_object ("stem")); + if (!stem) + return scm_from_double (amount); + Grob *beam = unsmob_grob (stem->get_object ("beam")); + if (!beam + || !Beam::normal_stem_count (beam)) + return scm_from_double (amount); + + Real ss = Staff_symbol_referencer::staff_space (me); + + /* + This gives the extrema of rest positions. + In general, beams are never typeset more than one staff space away + from the staff in either direction. + */ + Grob *staff = Staff_symbol_referencer::get_staff_symbol (me); + Interval rest_max_pos = staff ? Staff_symbol::line_span (staff) : Interval (0.0, 0.0); + rest_max_pos.widen (1); + rest_max_pos *= ss / 2; + + extract_grob_set (beam, "stems", stems); + vector my_stems; + + for (vsize i = 0; i < stems.size (); i++) + if (Stem::head_count (stems[i]) || stems[i] == stem) + my_stems.push_back (stems[i]); + + vsize idx = -1; + + for (vsize i = 0; i < my_stems.size (); i++) + if (my_stems[i] == stem) + { + idx = i; + break; + } + Grob *left; + Grob *right; + + if (idx == (vsize)-1 || my_stems.size () == 1) + return scm_from_double (amount); + else if (idx == 0) + left = right = my_stems[1]; + else if (idx == my_stems.size () - 1) + left = right = my_stems[idx - 1]; + else + { + left = my_stems[idx - 1]; + right = my_stems[idx + 1]; + } + Direction beamdir = get_grob_direction (beam); + /* + Take the position between the two bounding head_positions, + then bound it by the minimum and maximum positions outside the staff. + 4.0 = 2.0 to get out of staff space * 2.0 for the average + */ + amount = min (max ((Stem::head_positions (left)[beamdir] + Stem::head_positions (right)[beamdir]) / 4.0, rest_max_pos[DOWN]), rest_max_pos[UP]); + + return scm_from_double (amount); +} + + bool Beam::is_knee (Grob *me) { @@ -1501,10 +1817,10 @@ Beam::is_knee (Grob *me) { Direction dir = get_grob_direction (stems[i]); if (d && d != dir) - { - knee = true; - break; - } + { + knee = true; + break; + } d = dir; } @@ -1540,47 +1856,83 @@ Beam::get_direction_beam_count (Grob *me, Direction d) for (vsize i = stems.size (); i--;) { /* - Should we take invisible stems into account? + Should we take invisible stems into account? */ if (get_grob_direction (stems[i]) == d) - bc = max (bc, (Stem::beam_multiplicity (stems[i]).length () + 1)); + bc = max (bc, (Stem::beam_multiplicity (stems[i]).length () + 1)); } return bc; } ADD_INTERFACE (Beam, - "A beam.\n" - "\n" - "The @code{thickness} property is the weight of beams," - " measured in staffspace. The @code{direction} property is" - " not user-serviceable. Use the @code{direction} property" - " of @code{Stem} instead.", - - /* properties */ - "annotation " - "auto-knee-gap " - "beamed-stem-shorten " - "beaming " - "break-overshoot " - "clip-edges " - "concaveness " - "damping " - "details " - "direction " - "gap " - "gap-count " - "grow-direction " - "inspect-quants " - "knee " - "length-fraction " - "least-squares-dy " - "neutral-direction " - "normal-stems " - "positions " - "quant-score " - "quantized-positions " - "shorten " - "stems " - "thickness " - ); + "A beam.\n" + "\n" + "The @code{beam-thickness} property is the weight of beams," + " measured in staffspace. The @code{direction} property is" + " not user-serviceable. Use the @code{direction} property" + " of @code{Stem} instead.\n" + "\n" + "The following properties may be set in the @code{details}" + " list.\n" + "\n" + "@table @code\n" + "@item stem-length-demerit-factor\n" + "Demerit factor used for inappropriate stem lengths.\n" + "@item secondary-beam-demerit\n" + "Demerit used in quanting calculations for multiple" + " beams.\n" + "@item region-size\n" + "Size of region for checking quant scores.\n" + "@item beam-eps\n" + "Epsilon for beam quant code to check for presence" + " in gap.\n" + "@item stem-length-limit-penalty\n" + "Penalty for differences in stem lengths on a beam.\n" + "@item damping-direction-penalty\n" + "Demerit penalty applied when beam direction is different" + " from damping direction.\n" + "@item hint-direction-penalty\n" + "Demerit penalty applied when beam direction is different" + " from damping direction, but damping slope is" + " <= @code{round-to-zero-slope}.\n" + "@item musical-direction-factor\n" + "Demerit scaling factor for difference between" + " beam slope and music slope.\n" + "@item ideal-slope-factor\n" + "Demerit scaling factor for difference between" + " beam slope and damping slope.\n" + "@item round-to-zero-slope\n" + "Damping slope which is considered zero for purposes of" + " calculating direction penalties.\n" + "@end table\n", + + /* properties */ + "annotation " + "auto-knee-gap " + "beamed-stem-shorten " + "beaming " + "beam-thickness " + "break-overshoot " + "clip-edges " + "concaveness " + "collision-interfaces " + "collision-voice-only " + "covered-grobs " + "damping " + "details " + "direction " + "gap " + "gap-count " + "grow-direction " + "inspect-quants " + "knee " + "length-fraction " + "least-squares-dy " + "neutral-direction " + "normal-stems " + "positions " + "quantized-positions " + "shorten " + "stems " + );