X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fbeam-quanting.cc;h=f3505772f1a70940c4deb9014d400b9158e485a2;hb=a6a51abfd0195a3cf7d6ea095cf69808852f21ce;hp=06b7c2d80be86fe2f6fb4690709ee720ced8a57c;hpb=1f8a60df45cfe68b39a6461b4f898a677847ff8c;p=lilypond.git diff --git a/lily/beam-quanting.cc b/lily/beam-quanting.cc index 06b7c2d80b..f3505772f1 100644 --- a/lily/beam-quanting.cc +++ b/lily/beam-quanting.cc @@ -1,26 +1,51 @@ /* - beam-quanting.cc -- implement Beam quanting functions + This file is part of LilyPond, the GNU music typesetter. - source file of the GNU LilyPond music typesetter - - (c) 1997--2009 Han-Wen Nienhuys + Copyright (C) 1997--2015 Han-Wen Nienhuys Jan Nieuwenhuizen + + LilyPond is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + LilyPond is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with LilyPond. If not, see . */ -#include "beam.hh" +#include "beam-scoring-problem.hh" #include +#include +#include using namespace std; -#include "grob.hh" #include "align-interface.hh" +#include "beam.hh" +#include "direction.hh" +#include "directional-element-interface.hh" +#include "grob.hh" +#include "grob-array.hh" +#include "item.hh" #include "international.hh" +#include "interval-minefield.hh" +#include "least-squares.hh" +#include "libc-extension.hh" +#include "main.hh" +#include "note-head.hh" #include "output-def.hh" #include "pointer-group-interface.hh" +#include "spanner.hh" #include "staff-symbol-referencer.hh" +#include "stencil.hh" #include "stem.hh" #include "warn.hh" -#include "main.hh" +#include "string-convert.hh" Real get_detail (SCM alist, SCM sym, Real def) @@ -37,321 +62,1019 @@ Beam_quant_parameters::fill (Grob *him) { SCM details = him->get_property ("details"); - SECONDARY_BEAM_DEMERIT = get_detail (details, ly_symbol2scm ("secondary-beam-demerit"), 10.0); - STEM_LENGTH_DEMERIT_FACTOR = get_detail (details, ly_symbol2scm ("stem-length-demerit-factor"), 5); - REGION_SIZE = get_detail (details, ly_symbol2scm ("region-size"), 2); + // General BEAM_EPS = get_detail (details, ly_symbol2scm ("beam-eps"), 1e-3); + REGION_SIZE = get_detail (details, ly_symbol2scm ("region-size"), 2); + + // forbidden quants + SECONDARY_BEAM_DEMERIT = get_detail (details, ly_symbol2scm ("secondary-beam-demerit"), 10.0) + // For stems that are non-standard, the forbidden beam quanting + // doesn't really work, so decrease their importance. + * exp(- 8*fabs (1.0 - robust_scm2double(him->get_property ("length-fraction"), 1.0))); + STEM_LENGTH_DEMERIT_FACTOR = get_detail (details, ly_symbol2scm ("stem-length-demerit-factor"), 5); + HORIZONTAL_INTER_QUANT_PENALTY = get_detail (details, ly_symbol2scm ("horizontal-inter-quant"), 500); + STEM_LENGTH_LIMIT_PENALTY = get_detail (details, ly_symbol2scm ("stem-length-limit-penalty"), 5000); DAMPING_DIRECTION_PENALTY = get_detail (details, ly_symbol2scm ("damping-direction-penalty"), 800); HINT_DIRECTION_PENALTY = get_detail (details, ly_symbol2scm ("hint-direction-penalty"), 20); MUSICAL_DIRECTION_FACTOR = get_detail (details, ly_symbol2scm ("musical-direction-factor"), 400); IDEAL_SLOPE_FACTOR = get_detail (details, ly_symbol2scm ("ideal-slope-factor"), 10); ROUND_TO_ZERO_SLOPE = get_detail (details, ly_symbol2scm ("round-to-zero-slope"), 0.02); + + // Collisions + COLLISION_PENALTY = get_detail (details, ly_symbol2scm ("collision-penalty"), 500); + + /* For grace notes, beams get scaled down to 80%, but glyphs go down + to 63% (magstep -4 for accidentals). To make the padding + commensurate with glyph size for grace notes, we take the square + of the length fraction, yielding a 64% decrease. + */ + COLLISION_PADDING = get_detail (details, ly_symbol2scm ("collision-padding"), 0.5) + * sqr (robust_scm2double(him->get_property ("length-fraction"), 1.0)); + STEM_COLLISION_FACTOR = get_detail (details, ly_symbol2scm ("stem-collision-factor"), 0.1); } +// Add x if x is positive, add |x|*fac if x is negative. static Real shrink_extra_weight (Real x, Real fac) { return fabs (x) * ((x < 0) ? fac : 1.0); } -struct Quant_score +/****************************************************************/ + +Beam_configuration::Beam_configuration () { - Real yl; - Real yr; - Real demerits; + y = Interval (0.0, 0.0); + demerits = 0.0; + next_scorer_todo = ORIGINAL_DISTANCE; +} + +bool Beam_configuration::done () const +{ + return next_scorer_todo >= NUM_SCORERS; +} + +void Beam_configuration::add (Real demerit, const string &reason) +{ + demerits += demerit; #if DEBUG_BEAM_SCORING - string score_card_; + if (demerit) + score_card_ += to_string (" %s %.2f", reason.c_str (), demerit); #endif -}; +} + +Beam_configuration *Beam_configuration::new_config (Interval start, + Interval offset) +{ + Beam_configuration *qs = new Beam_configuration; + qs->y = Interval (int (start[LEFT]) + offset[LEFT], + int (start[RIGHT]) + offset[RIGHT]); + + // This orders the sequence so we try combinations closest to the + // the ideal offset first. + Real start_score = abs (offset[RIGHT]) + abs (offset[LEFT]); + qs->demerits = start_score / 1000.0; + qs->next_scorer_todo = ORIGINAL_DISTANCE + 1; + + return qs; +} + +Real +Beam_scoring_problem::y_at (Real x, Beam_configuration const *p) const +{ + return p->y[LEFT] + x * p->y.delta () / x_span_; +} + +/****************************************************************/ /* TODO: - Make all demerits customisable - - One sensible check per demerit (what's this --hwn) - - Add demerits for quants per se, as to forbid a specific quant entirely */ -int -best_quant_score_idx (vector const &qscores) +// This is a temporary hack to see how much we can gain by using a +// priority queue on the beams to score. +static int score_count = 0; +LY_DEFINE (ly_beam_score_count, "ly:beam-score-count", 0, 0, 0, + (), + "count number of beam scores.") +{ + return scm_from_int (score_count); +} + +void Beam_scoring_problem::add_collision (Real x, Interval y, + Real score_factor) { - Real best = 1e6; - int best_idx = -1; - for (vsize i = qscores.size (); i--;) + // We used to screen for quant range, but no more. + + Beam_collision c; + c.beam_y_.set_empty (); + + for (vsize j = 0; j < segments_.size (); j++) { - if (qscores[i].demerits < best) - { - best = qscores [i].demerits; - best_idx = i; - } + if (segments_[j].horizontal_.contains (x)) + c.beam_y_.add_point (segments_[j].vertical_count_ * beam_translation_); + if (segments_[j].horizontal_[LEFT] > x) + break; } + c.beam_y_.widen (0.5 * beam_thickness_); + + c.x_ = x; - return best_idx; + y *= 1 / staff_space_; + c.y_ = y; + c.base_penalty_ = score_factor; + collisions_.push_back (c); } -MAKE_SCHEME_CALLBACK (Beam, quanting, 2); -SCM -Beam::quanting (SCM smob, SCM posns) +void Beam_scoring_problem::init_instance_variables (Grob *me, Drul_array ys, bool align_broken_intos) { - Grob *me = unsmob_grob (smob); + beam_ = dynamic_cast (me); + unquanted_y_ = ys; - Beam_quant_parameters parameters; - parameters.fill (me); - - Real yl = scm_to_double (scm_car (posns)); - Real yr = scm_to_double (scm_cdr (posns)); + /* + If 'ys' are finite, use them as starting points for y-positions of the + ends of the beam, instead of the best-fit through the natural ends of + the stems. Otherwise, we want to do initial slope calculations. + */ + do_initial_slope_calculations_ = false; + for (LEFT_and_RIGHT (d)) + do_initial_slope_calculations_ |= isinf (unquanted_y_[d]) || isnan (unquanted_y_[d]); /* Calculations are relative to a unit-scaled staff, i.e. the quants are - divided by the current staff_space. + divided by the current staff_space_. */ - Real ss = Staff_symbol_referencer::staff_space (me); - Real beam_thickness = Beam::get_beam_thickness (me) / ss; - Real slt = Staff_symbol_referencer::line_thickness (me) / ss; + staff_space_ = Staff_symbol_referencer::staff_space (beam_); + beam_thickness_ = Beam::get_beam_thickness (beam_) / staff_space_; + line_thickness_ = Staff_symbol_referencer::line_thickness (beam_) / staff_space_; - Real dy_mus = robust_scm2double (me->get_property ("least-squares-dy"), 0); - Real straddle = 0.0; - Real sit = (beam_thickness - slt) / 2; - Real inter = 0.5; - Real hang = 1.0 - (beam_thickness - slt) / 2; - Real quants [] = {straddle, sit, inter, hang }; + // This is the least-squares DY, corrected for concave beams. + musical_dy_ = robust_scm2double (beam_->get_property ("least-squares-dy"), 0); - int num_quants = int (sizeof (quants) / sizeof (Real)); - vector quantsl; - vector quantsr; + vector beams; + align_broken_intos_ = align_broken_intos; + if (align_broken_intos_) + { + Spanner *orig = dynamic_cast (beam_->original ()); + if (!orig) + align_broken_intos_ = false; + else if (!orig->broken_intos_.size ()) + align_broken_intos_ = false; + else + beams.insert (beams.end (), orig->broken_intos_.begin (), orig->broken_intos_.end ()); + } + if (!align_broken_intos_) + beams.push_back (beam_); /* - going to REGION_SIZE == 2, yields another 0.6 second with - wtk1-fugue2. + x_span_ is a single scalar, cumulatively summing the length of all the + segments the parent beam was broken-into. + */ + x_span_ = 0.0; + is_knee_ = false; + normal_stem_count_ = 0; + for (vsize i = 0; i < beams.size (); i++) + { + extract_grob_set (beams[i], "stems", stems); + extract_grob_set (beams[i], "covered-grobs", fake_collisions); + vector collisions; + + for (vsize j = 0; j < fake_collisions.size (); j++) + if (fake_collisions[j]->get_system () == beams[i]->get_system ()) + collisions.push_back (fake_collisions[j]); + + Grob *common[2]; + for (int a = 2; a--;) + common[a] = common_refpoint_of_array (stems, beams[i], Axis (a)); + + for (LEFT_and_RIGHT (d)) + common[X_AXIS] = beams[i]->get_bound (d)->common_refpoint (common[X_AXIS], X_AXIS); + + // positions of the endpoints of this beam segment, including any overhangs + const Interval x_pos = robust_scm2interval (beams[i]->get_property ("X-positions"), + Interval (0.0, 0.0)); + + Drul_array edge_stems (Beam::first_normal_stem (beams[i]), + Beam::last_normal_stem (beams[i])); + + Drul_array dirs_found (0, 0); + + Real my_y = beams[i]->relative_coordinate (common[Y_AXIS], Y_AXIS); + + Interval beam_width (-1.0, -1.0); + for (vsize j = 0; j < stems.size (); j++) + { + Grob *s = stems[j]; + beam_multiplicity_.push_back (Stem::beam_multiplicity (stems[j])); + head_positions_.push_back (Stem::head_positions (stems[j])); + is_normal_.push_back (Stem::is_normal_stem (stems[j])); + + Stem_info si (Stem::get_stem_info (s)); + si.scale (1 / staff_space_); + stem_infos_.push_back (si); + chord_start_y_.push_back (Stem::chord_start_y (s)); + dirs_found[si.dir_] = true; + + bool f = to_boolean (s->get_property ("french-beaming")) + && s != edge_stems[LEFT] && s != edge_stems[RIGHT]; + + Real y = Beam::calc_stem_y (beams[i], s, common, x_pos[LEFT], x_pos[RIGHT], CENTER, + Interval (0, 0), f); + base_lengths_.push_back (y / staff_space_); + stem_xpositions_.push_back (s->relative_coordinate (common[X_AXIS], X_AXIS) - x_pos[LEFT] + x_span_); + stem_ypositions_.push_back (s->relative_coordinate (common[Y_AXIS], Y_AXIS) - my_y); + + if (is_normal_.back ()) + { + if (beam_width[LEFT] == -1.0) + beam_width[LEFT] = stem_xpositions_.back (); + beam_width[RIGHT] = stem_xpositions_.back (); + } + } + + edge_dirs_ = Drul_array (CENTER, CENTER); + normal_stem_count_ += Beam::normal_stem_count (beams[i]); + if (normal_stem_count_) + edge_dirs_ = Drul_array (stem_infos_[0].dir_, + stem_infos_.back ().dir_); + + is_xstaff_ = has_interface (common[Y_AXIS]); + is_knee_ |= dirs_found[DOWN] && dirs_found[UP]; + + staff_radius_ = Staff_symbol_referencer::staff_radius (beams[i]); + edge_beam_counts_ = Drul_array + (Stem::beam_multiplicity (stems[0]).length () + 1, + Stem::beam_multiplicity (stems.back ()).length () + 1); + + // TODO - why are we dividing by staff_space_? + beam_translation_ = Beam::get_beam_translation (beams[i]) / staff_space_; + + for (LEFT_and_RIGHT (d)) + { + quant_range_[d].set_full (); + if (!edge_stems[d]) + continue; + + Real stem_offset = edge_stems[d]->relative_coordinate (common[Y_AXIS], Y_AXIS) + - beams[i]->relative_coordinate (common[Y_AXIS], Y_AXIS); + Interval heads = Stem::head_positions (edge_stems[d]) * 0.5 * staff_space_; + + Direction ed = edge_dirs_[d]; + heads.widen (0.5 * staff_space_ + + (edge_beam_counts_[d] - 1) * beam_translation_ + beam_thickness_ * .5); + quant_range_[d][-ed] = heads[ed] + stem_offset; + } + + segments_ = Beam::get_beam_segments (beams[i]); + vector_sort (segments_, beam_segment_less); + for (vsize j = 0; j < segments_.size (); j++) + segments_[j].horizontal_ += (x_span_ - x_pos[LEFT]); + + set colliding_stems; + for (vsize j = 0; j < collisions.size (); j++) + { + if (!collisions[j]->is_live ()) + continue; + + if (has_interface (collisions[j]) && Beam::is_cross_staff (collisions[j])) + continue; + + Box b; + for (Axis a = X_AXIS; a < NO_AXES; incr (a)) + b[a] = collisions[j]->extent (common[a], a); + + if (b[X_AXIS][RIGHT] < x_pos[LEFT] || b[X_AXIS][LEFT] > x_pos[RIGHT]) + continue; + if (b[X_AXIS].is_empty () || b[Y_AXIS].is_empty ()) + continue; + + b[X_AXIS] += (x_span_ - x_pos[LEFT]); + b[Y_AXIS] -= my_y; + Real width = b[X_AXIS].length (); + Real width_factor = sqrt (width / staff_space_); + + for (LEFT_and_RIGHT (d)) + add_collision (b[X_AXIS][d], b[Y_AXIS], width_factor); + + Grob *stem = unsmob (collisions[j]->get_object ("stem")); + if (has_interface (stem) && Stem::is_normal_stem (stem)) + { + colliding_stems.insert (stem); + } + } + + for (set::const_iterator it (colliding_stems.begin ()); it != colliding_stems.end (); it++) + { + Grob *s = *it; + Real x = (robust_relative_extent (s, common[X_AXIS], X_AXIS) - x_pos[LEFT] + x_span_).center (); + + Direction stem_dir = get_grob_direction (*it); + Interval y; + y.set_full (); + y[-stem_dir] = Stem::chord_start_y (*it) + (*it)->relative_coordinate (common[Y_AXIS], Y_AXIS) + - my_y; + + Real factor = parameters_.STEM_COLLISION_FACTOR; + if (!unsmob (s->get_object ("beam"))) + factor = 1.0; + add_collision (x, y, factor); + } + x_span_ += beams[i]->spanner_length (); + } +} - (result indexes between 70 and 575) ? --hwn. +Beam_scoring_problem::Beam_scoring_problem (Grob *me, Drul_array ys, bool align_broken_intos) +{ + beam_ = dynamic_cast (me); + unquanted_y_ = ys; + align_broken_intos_ = align_broken_intos; - */ + parameters_.fill (me); + init_instance_variables (me, ys, align_broken_intos); + if (do_initial_slope_calculations_) + { + least_squares_positions (); + slope_damping (); + shift_region_to_valid (); + } +} + +// Assuming V is not empty, pick a 'reasonable' point inside V. +static Real +point_in_interval (Interval v, Real dist) +{ + if (isinf (v[DOWN])) + return v[UP] - dist; + else if (isinf (v[UP])) + return v[DOWN] + dist; + else + return v.center (); +} + +/* Set stem's shorten property if unset. + +TODO: +take some y-position (chord/beam/nearest?) into account +scmify forced-fraction + +This is done in beam because the shorten has to be uniform over the +entire beam. +*/ + +void +set_minimum_dy (Grob *me, Real *dy) +{ + if (*dy) + { + /* + If dy is smaller than the smallest quant, we + get absurd direction-sign penalties. + */ + + Real ss = Staff_symbol_referencer::staff_space (me); + Real beam_thickness = Beam::get_beam_thickness (me) / ss; + Real slt = Staff_symbol_referencer::line_thickness (me) / ss; + Real sit = (beam_thickness - slt) / 2; + Real inter = 0.5; + Real hang = 1.0 - (beam_thickness - slt) / 2; + + *dy = sign (*dy) * max (fabs (*dy), + min (min (sit, inter), hang)); + } +} + +void +Beam_scoring_problem::no_visible_stem_positions () +{ + if (!head_positions_.size ()) + { + unquanted_y_ = Interval (0, 0); + return; + } + + Interval head_positions; + Slice multiplicity; + for (vsize i = 0; i < head_positions_.size (); i++) + { + head_positions.unite (head_positions_[i]); + multiplicity.unite (beam_multiplicity_[i]); + } + + Direction dir = get_grob_direction (beam_); + + if (!dir) + programming_error ("The beam should have a direction by now."); + + Real y = head_positions.linear_combination (dir) + * 0.5 * staff_space_ + + dir * beam_translation_ * (multiplicity.length () + 1); + + unquanted_y_ = Interval (y, y); +} + +vsize +Beam_scoring_problem::first_normal_index () +{ + for (vsize i = 0; i < is_normal_.size (); i++) + if (is_normal_[i]) + return i; + + beam_->programming_error ("No normal stems, but asking for first normal stem index."); + return 0; +} + +vsize +Beam_scoring_problem::last_normal_index () +{ + for (vsize i = is_normal_.size (); i--;) + if (is_normal_[i]) + return i; + + beam_->programming_error ("No normal stems, but asking for first normal stem index."); + return 0; +} + +void +Beam_scoring_problem::least_squares_positions () +{ + if (!normal_stem_count_) + { + no_visible_stem_positions (); + return; + } + + if (stem_infos_.size () < 1) + return; + + vsize fnx = first_normal_index (); + vsize lnx = last_normal_index (); + + Interval ideal (stem_infos_[fnx].ideal_y_ + stem_ypositions_[fnx], + stem_infos_[lnx].ideal_y_ + stem_ypositions_[lnx]); + + Real y = 0; + Real slope = 0; + Real dy = 0; + Real ldy = 0.0; + if (!ideal.delta ()) + { + Interval chord (chord_start_y_[0], + chord_start_y_.back ()); + + /* Simple beams (2 stems) on middle line should be allowed to be + slightly sloped. + + However, if both stems reach middle line, + ideal[LEFT] == ideal[RIGHT] and ideal.delta () == 0. + + For that case, we apply artificial slope */ + if (!ideal[LEFT] && chord.delta () && stem_infos_.size () == 2) + { + /* FIXME. -> UP */ + Direction d = (Direction) (sign (chord.delta ()) * UP); + unquanted_y_[d] = Beam::get_beam_thickness (beam_) / 2; + unquanted_y_[-d] = -unquanted_y_[d]; + } + else + unquanted_y_ = ideal; + + ldy = unquanted_y_[RIGHT] - unquanted_y_[LEFT]; + } + else + { + vector ideals; + for (vsize i = 0; i < stem_infos_.size (); i++) + if (is_normal_[i]) + ideals.push_back (Offset (stem_xpositions_[i], + stem_infos_[i].ideal_y_ + + stem_ypositions_[i])); + + minimise_least_squares (&slope, &y, ideals); + + dy = slope * x_span_; + + set_minimum_dy (beam_, &dy); + + ldy = dy; + unquanted_y_ = Interval (y, (y + dy)); + } + + musical_dy_ = ldy; + beam_->set_property ("least-squares-dy", scm_from_double (musical_dy_)); +} + +/* + Determine whether a beam is concave. + + A beam is concave when the middle notes get closer to the + beam than the left and right edge notes. + + This is determined in two ways: by looking at the positions of the + middle notes, or by looking at the deviation of the inside notes + compared to the line connecting first and last. + + The tricky thing is what to do with beams with chords. There are no + real guidelines in this case. +*/ + +bool +is_concave_single_notes (vector const &positions, Direction beam_dir) +{ + Interval covering; + covering.add_point (positions[0]); + covering.add_point (positions.back ()); + + bool above = false; + bool below = false; + bool concave = false; /* - Do stem computations. These depend on YL and YR linearly, so we can - precompute for every stem 2 factors. + notes above and below the interval covered by 1st and last note. */ - vector stems - = extract_grob_array (me, "stems"); - vector stem_infos; - vector base_lengths; - vector stem_xposns; - - Drul_array dirs_found (0, 0); - Grob *common[2]; - for (int a = 2; a--;) - common[a] = common_refpoint_of_array (stems, me, Axis (a)); - - Grob *fvs = first_normal_stem (me); - Grob *lvs = last_normal_stem (me); - Real xl = fvs ? fvs->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; - Real xr = fvs ? lvs->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; + for (vsize i = 1; i + 1 < positions.size (); i++) + { + above = above || (positions[i] > covering[UP]); + below = below || (positions[i] < covering[DOWN]); + } + concave = concave || (above && below); /* - We store some info to quickly interpolate. The stemlength are - affine linear in YL and YR. If YL == YR == 0, then we might have - stem_y != 0.0, when we're cross staff. + A note as close or closer to the beam than begin and end, but the + note is reached in the opposite direction as the last-first dy + */ + int dy = positions.back () - positions[0]; + int closest = max (beam_dir * positions.back (), beam_dir * positions[0]); + for (vsize i = 2; !concave && i + 1 < positions.size (); i++) + { + int inner_dy = positions[i] - positions[i - 1]; + if (sign (inner_dy) != sign (dy) + && (beam_dir * positions[i] >= closest + || beam_dir * positions[i - 1] >= closest)) + concave = true; + } + bool all_closer = true; + for (vsize i = 1; all_closer && i + 1 < positions.size (); i++) + { + all_closer = all_closer + && (beam_dir * positions[i] > closest); + } + + concave = concave || all_closer; + return concave; +} + +Real +calc_positions_concaveness (vector const &positions, Direction beam_dir) +{ + Real dy = positions.back () - positions[0]; + Real slope = dy / Real (positions.size () - 1); + Real concaveness = 0.0; + for (vsize i = 1; i + 1 < positions.size (); i++) + { + Real line_y = slope * i + positions[0]; + + concaveness += max (beam_dir * (positions[i] - line_y), 0.0); + } + + concaveness /= positions.size (); + + /* + Normalize. For dy = 0, the slope ends up as 0 anyway, so the + scaling of concaveness doesn't matter much. */ - for (vsize i = 0; i < stems.size (); i++) + if (dy) + concaveness /= fabs (dy); + return concaveness; +} + +Real +Beam_scoring_problem::calc_concaveness () +{ + SCM conc = beam_->get_property ("concaveness"); + if (scm_is_number (conc)) + return scm_to_double (conc); + + if (is_knee_ || is_xstaff_) + return 0.0; + + Direction beam_dir = CENTER; + for (vsize i = is_normal_.size (); i--;) + if (is_normal_[i] && stem_infos_[i].dir_) + beam_dir = stem_infos_[i].dir_; + + if (normal_stem_count_ <= 2) + return 0.0; + + vector close_positions; + vector far_positions; + for (vsize i = 0; i < is_normal_.size (); i++) + if (is_normal_[i]) + { + /* + For chords, we take the note head that is closest to the beam. + + Hmmm.. wait, for the beams in the last measure of morgenlied, + this doesn't look so good. Let's try the heads farthest from + the beam. + */ + + close_positions.push_back ((int) rint (head_positions_[i][beam_dir])); + far_positions.push_back ((int) rint (head_positions_[i][-beam_dir])); + } + + Real concaveness = 0.0; + + if (is_concave_single_notes (beam_dir == UP ? close_positions : far_positions, beam_dir)) + { + concaveness = 10000; + } + else { - Grob *s = stems[i]; + concaveness = (calc_positions_concaveness (far_positions, beam_dir) + + calc_positions_concaveness (close_positions, beam_dir)) / 2; + } - Stem_info si (Stem::get_stem_info (s)); - si.scale (1 / ss); - stem_infos.push_back (si); - dirs_found[stem_infos.back ().dir_] = true; + return concaveness; +} + +void +Beam_scoring_problem::slope_damping () +{ + if (normal_stem_count_ <= 1) + return; - bool f = to_boolean (s->get_property ("french-beaming")) - && s != lvs && s != fvs; + SCM s = beam_->get_property ("damping"); + Real damping = scm_to_double (s); + Real concaveness = calc_concaveness (); + if (concaveness >= 10000) + { + unquanted_y_[LEFT] = unquanted_y_[RIGHT]; + musical_dy_ = 0; + damping = 0; + } - if (Stem::is_normal_stem (s)) - { - base_lengths.push_back (calc_stem_y (me, s, common, xl, xr, CENTER, - Interval (0, 0), f) / ss); - } - else - { - base_lengths.push_back (0); - } + if (damping) + { + Real dy = unquanted_y_[RIGHT] - unquanted_y_[LEFT]; - stem_xposns.push_back (s->relative_coordinate (common[X_AXIS], X_AXIS)); + Real slope = dy && x_span_ ? dy / x_span_ : 0; + + slope = 0.6 * tanh (slope) / (damping + concaveness); + + Real damped_dy = slope * x_span_; + + set_minimum_dy (beam_, &damped_dy); + + unquanted_y_[LEFT] += (dy - damped_dy) / 2; + unquanted_y_[RIGHT] -= (dy - damped_dy) / 2; } - bool xstaff = Align_interface::has_interface (common[Y_AXIS]); +} - Direction ldir = Direction (stem_infos[0].dir_); - Direction rdir = Direction (stem_infos.back ().dir_); - bool is_knee = dirs_found[LEFT] && dirs_found[RIGHT]; +void +Beam_scoring_problem::shift_region_to_valid () +{ + if (!normal_stem_count_) + return; - int region_size = (int) parameters.REGION_SIZE; + Real beam_dy = unquanted_y_[RIGHT] - unquanted_y_[LEFT]; + Real slope = x_span_ ? beam_dy / x_span_ : 0.0; /* - Knees are harder, lets try some more possibilities for knees. + Shift the positions so that we have a chance of finding good + quants (i.e. no short stem failures.) */ - if (is_knee) - region_size += 2; + Interval feasible_left_point; + feasible_left_point.set_full (); + for (vsize i = 0; i < stem_infos_.size (); i++) + { + // TODO - check for invisible here... + Real left_y + = stem_infos_[i].shortest_y_ + - slope * stem_xpositions_ [i]; + + /* + left_y is now relative to the stem S. We want relative to + ourselves, so translate: + */ + left_y += stem_ypositions_[i]; + Interval flp; + flp.set_full (); + flp[-stem_infos_[i].dir_] = left_y; + + feasible_left_point.intersect (flp); + } + + vector filtered; /* - Asymetry ? should run to <= region_size ? + We only update these for objects that are too large for quanting + to find a workaround. Typically, these are notes with + stems, and timesig/keysig/clef, which take out the entire area + inside the staff as feasible. + + The code below disregards the thickness and multiplicity of the + beam. This should not be a problem, as the beam quanting will + take care of computing the impact those exactly. */ - for (int i = -region_size; i < region_size; i++) - for (int j = 0; j < num_quants; j++) - { - quantsl.push_back (i + quants[j] + int (yl)); - quantsr.push_back (i + quants[j] + int (yr)); - } + Real min_y_size = 2.0; - vector qscores; + // A list of intervals into which beams may not fall + vector forbidden_intervals; - for (vsize l = 0; l < quantsl.size (); l++) - for (vsize r = 0; r < quantsr.size (); r++) - { - Quant_score qs; - qs.yl = quantsl[l]; - qs.yr = quantsr[r]; - qs.demerits = 0.0; + for (vsize i = 0; i < collisions_.size (); i++) + { + if (collisions_[i].x_ < 0 || collisions_[i].x_ > x_span_) + continue; - qscores.push_back (qs); - } + if (collisions_[i].y_.length () < min_y_size) + continue; + + for (LEFT_and_RIGHT (d)) + { + Real dy = slope * collisions_[i].x_; - /* This is a longish function, but we don't separate this out into - neat modular separate subfunctions, as the subfunctions would be - called for many values of YL, YR. By precomputing various - parameters outside of the loop, we can save a lot of time. */ - for (vsize i = qscores.size (); i--;) + Interval disallowed; + for (DOWN_and_UP (yd)) + { + Real left_y = collisions_[i].y_[yd] - dy; + disallowed[yd] = left_y; + } + + forbidden_intervals.push_back (disallowed); + } + } + + vector_sort (forbidden_intervals, Interval::left_less); + Real beam_left_y = unquanted_y_[LEFT]; + Interval feasible_beam_placements (beam_left_y, beam_left_y); + + Interval_minefield minefield (feasible_beam_placements, 0.0); + for (vsize i = 0; i < forbidden_intervals.size (); i++) + minefield.add_forbidden_interval (forbidden_intervals[i]); + minefield.solve (); + feasible_beam_placements = minefield.feasible_placements (); + + // if the beam placement falls out of the feasible region, we push it + // to infinity so that it can never be a feasible candidate below + for (DOWN_and_UP (d)) { - Real d = score_slopes_dy (qscores[i].yl, qscores[i].yr, - dy_mus, yr- yl, - xr - xl, - xstaff, ¶meters); - qscores[i].demerits += d; + if (!feasible_left_point.contains (feasible_beam_placements[d])) + feasible_beam_placements[d] = d * infinity_f; + } -#if DEBUG_BEAM_SCORING - qscores[i].score_card_ += to_string ("S%.2f", d); -#endif + if ((feasible_beam_placements[UP] == infinity_f && feasible_beam_placements[DOWN] == -infinity_f) && !feasible_left_point.is_empty ()) + { + // We are somewhat screwed: we have a collision, but at least + // there is a way to satisfy stem length constraints. + beam_left_y = point_in_interval (feasible_left_point, 2.0); + } + else if (!feasible_left_point.is_empty ()) + { + // Only one of them offers is feasible solution. Pick that one. + if (abs (beam_left_y - feasible_beam_placements[DOWN]) > abs (beam_left_y - feasible_beam_placements[UP])) + beam_left_y = feasible_beam_placements[UP]; + else + beam_left_y = feasible_beam_placements[DOWN]; + } + else + { + // We are completely screwed. + beam_->warning (_ ("no viable initial configuration found: may not find good beam slope")); } - Real rad = Staff_symbol_referencer::staff_radius (me); - Drul_array edge_beam_counts - (Stem::beam_multiplicity (stems[0]).length () + 1, - Stem::beam_multiplicity (stems.back ()).length () + 1); + unquanted_y_ = Drul_array (beam_left_y, (beam_left_y + beam_dy)); +} - Real beam_translation = get_beam_translation (me) / ss; +void +Beam_scoring_problem::generate_quants (vector *scores) const +{ + int region_size = (int) parameters_.REGION_SIZE; - Real reasonable_score = (is_knee) ? 200000 : 100; - for (vsize i = qscores.size (); i--;) - if (qscores[i].demerits < reasonable_score) - { - Real d = score_forbidden_quants (qscores[i].yl, qscores[i].yr, - rad, slt, beam_thickness, beam_translation, - edge_beam_counts, ldir, rdir, ¶meters); - qscores[i].demerits += d; + // Knees and collisions are harder, lets try some more possibilities + if (is_knee_) + region_size += 2; + if (collisions_.size ()) + region_size += 2; -#if DEBUG_BEAM_SCORING - qscores[i].score_card_ += to_string (" F %.2f", d); -#endif - } + Real straddle = 0.0; + Real sit = (beam_thickness_ - line_thickness_) / 2; + Real inter = 0.5; + Real hang = 1.0 - (beam_thickness_ - line_thickness_) / 2; + Real base_quants [] = {straddle, sit, inter, hang}; + int num_base_quants = int (sizeof (base_quants) / sizeof (Real)); - for (vsize i = qscores.size (); i--;) - if (qscores[i].demerits < reasonable_score) + /* + Asymetry ? should run to <= region_size ? + */ + vector unshifted_quants; + for (int i = -region_size; i < region_size; i++) + for (int j = 0; j < num_base_quants; j++) { - Real d = score_stem_lengths (stems, stem_infos, - base_lengths, stem_xposns, - xl, xr, - is_knee, - qscores[i].yl, qscores[i].yr, ¶meters); - qscores[i].demerits += d; + unshifted_quants.push_back (i + base_quants[j]); + } -#if DEBUG_BEAM_SCORING - qscores[i].score_card_ += to_string (" L %.2f", d); -#endif + for (vsize i = 0; i < unshifted_quants.size (); i++) + for (vsize j = 0; j < unshifted_quants.size (); j++) + { + Beam_configuration *c + = Beam_configuration::new_config (unquanted_y_, + Interval (unshifted_quants[i], + unshifted_quants[j])); + + for (LEFT_and_RIGHT (d)) + { + if (!quant_range_[d].contains (c->y[d])) + { + delete c; + c = NULL; + break; + } + } + if (c) + scores->push_back (c); } - int best_idx = best_quant_score_idx (qscores); +} -#if DEBUG_BEAM_SCORING - SCM inspect_quants = me->get_property ("inspect-quants"); - if (to_boolean (me->layout ()->lookup_variable (ly_symbol2scm ("debug-beam-scoring"))) - && scm_is_pair (inspect_quants)) - { - Drul_array ins = ly_scm2interval (inspect_quants); - - Real mindist = 1e6; - for (vsize i = 0; i < qscores.size (); i++) - { - Real d = fabs (qscores[i].yl- ins[LEFT]) + fabs (qscores[i].yr - ins[RIGHT]); - if (d < mindist) - { - best_idx = i; - mindist = d; - } - } - if (mindist > 1e5) - programming_error ("cannot find quant"); +void Beam_scoring_problem::one_scorer (Beam_configuration *config) const +{ + score_count++; + switch (config->next_scorer_todo) + { + case SLOPE_IDEAL: + score_slope_ideal (config); + break; + case SLOPE_DIRECTION: + score_slope_direction (config); + break; + case SLOPE_MUSICAL: + score_slope_musical (config); + break; + case FORBIDDEN: + score_forbidden_quants (config); + break; + case STEM_LENGTHS: + score_stem_lengths (config); + break; + case COLLISIONS: + score_collisions (config); + break; + case HORIZONTAL_INTER: + score_horizontal_inter_quants (config); + break; + + case NUM_SCORERS: + case ORIGINAL_DISTANCE: + default: + assert (false); } -#endif + config->next_scorer_todo++; +} - Interval final_positions; - if (best_idx < 0) +Beam_configuration * +Beam_scoring_problem::force_score (SCM inspect_quants, const vector &configs) const +{ + Drul_array ins = ly_scm2interval (inspect_quants); + Real mindist = 1e6; + Beam_configuration *best = NULL; + for (vsize i = 0; i < configs.size (); i++) { - warning (_ ("no feasible beam position")); - final_positions = Interval (0, 0); + Real d = fabs (configs[i]->y[LEFT] - ins[LEFT]) + fabs (configs[i]->y[RIGHT] - ins[RIGHT]); + if (d < mindist) + { + best = configs[i]; + mindist = d; + } + } + if (mindist > 1e5) + programming_error ("cannot find quant"); + + while (!best->done ()) + one_scorer (best); + + return best; +} + +Drul_array +Beam_scoring_problem::solve () const +{ + vector configs; + generate_quants (&configs); + + if (configs.empty ()) + { + programming_error ("No viable beam quanting found. Using unquanted y value."); + return unquanted_y_; + } + + if (to_boolean (beam_->get_property ("skip-quanting"))) + return unquanted_y_; + + Beam_configuration *best = NULL; + + bool debug + = to_boolean (beam_->layout ()->lookup_variable (ly_symbol2scm ("debug-beam-scoring"))); + SCM inspect_quants = beam_->get_property ("inspect-quants"); + if (scm_is_pair (inspect_quants)) + { + debug = true; + best = force_score (inspect_quants, configs); } else { - final_positions = Drul_array (qscores[best_idx].yl, - qscores[best_idx].yr); + std::priority_queue < Beam_configuration *, std::vector, + Beam_configuration_less > queue; + for (vsize i = 0; i < configs.size (); i++) + queue.push (configs[i]); + + /* + TODO + + It would be neat if we generated new configurations on the + fly, depending on the best complete score so far, eg. + + if (best->done()) { + if (best->demerits < sqrt(queue.size()) + break; + while (best->demerits > sqrt(queue.size()) { + generate and insert new configuration + } + } + + that would allow us to do away with region_size altogether. + */ + while (true) + { + best = queue.top (); + if (best->done ()) + break; + + queue.pop (); + one_scorer (best); + queue.push (best); + } } - + + Interval final_positions = best->y; + #if DEBUG_BEAM_SCORING - if (best_idx >= 0 - && to_boolean (me->layout ()->lookup_variable (ly_symbol2scm ("debug-beam-scoring")))) + if (debug) { - qscores[best_idx].score_card_ += to_string ("i%d", best_idx); - // debug quanting - me->set_property ("quant-score", - ly_string2scm (qscores[best_idx].score_card_)); + int completed = 0; + for (vsize i = 0; i < configs.size (); i++) + { + if (configs[i]->done ()) + completed++; + } + + string card = best->score_card_ + to_string (" c%d/%d", completed, configs.size ()); + beam_->set_property ("annotation", ly_string2scm (card)); } #endif - return ly_interval2scm (final_positions); -} + junk_pointers (configs); + if (align_broken_intos_) + { + Interval normalized_endpoints = robust_scm2interval (beam_->get_property ("normalized-endpoints"), Interval (0, 1)); + Real y_length = final_positions[RIGHT] - final_positions[LEFT]; -Real -Beam::score_stem_lengths (vector const &stems, - vector const &stem_infos, - vector const &base_stem_ys, - vector const &stem_xs, - Real xl, Real xr, - bool knee, - Real yl, Real yr, + final_positions[LEFT] += normalized_endpoints[LEFT] * y_length; + final_positions[RIGHT] -= (1 - normalized_endpoints[RIGHT]) * y_length; + } - Beam_quant_parameters const *parameters) + return final_positions; +} + +void +Beam_scoring_problem::score_stem_lengths (Beam_configuration *config) const { - Real limit_penalty = parameters->STEM_LENGTH_LIMIT_PENALTY; + Real limit_penalty = parameters_.STEM_LENGTH_LIMIT_PENALTY; Drul_array score (0, 0); Drul_array count (0, 0); - for (vsize i = 0; i < stems.size (); i++) + for (vsize i = 0; i < stem_xpositions_.size (); i++) { - Grob *s = stems[i]; - if (!Stem::is_normal_stem (s)) - continue; - - Real x = stem_xs[i]; - Real dx = xr - xl; - Real beam_y = dx ? yr * (x - xl) / dx + yl * (xr - x) / dx : (yr + yl) / 2; - Real current_y = beam_y + base_stem_ys[i]; - Real length_pen = parameters->STEM_LENGTH_DEMERIT_FACTOR; - - Stem_info info = stem_infos[i]; + if (!is_normal_[i]) + continue; + + Real x = stem_xpositions_[i]; + Real dx = x_span_; + Real beam_y = dx + ? config->y[RIGHT] * x / dx + config->y[LEFT] * (x_span_ - x) / dx + : (config->y[RIGHT] + config->y[LEFT]) / 2; + Real current_y = beam_y + base_lengths_[i]; + Real length_pen = parameters_.STEM_LENGTH_DEMERIT_FACTOR; + + Stem_info info = stem_infos_[i]; Direction d = info.dir_; score[d] += limit_penalty * max (0.0, (d * (info.shortest_y_ - current_y))); @@ -362,33 +1085,36 @@ Beam::score_stem_lengths (vector const &stems, /* We introduce a power, to make the scoring strictly convex. Otherwise a symmetric knee beam (up/down/up/down) does not have an optimum in the middle. */ - if (knee) - ideal_score = pow (ideal_score, 1.1); + if (is_knee_) + ideal_score = pow (ideal_score, 1.1); score[d] += length_pen * ideal_score; - count[d]++; } - Direction d = DOWN; - do + /* Divide by number of stems, to make the measure scale-free. */ + for (DOWN_and_UP (d)) score[d] /= max (count[d], 1); - while (flip (&d) != DOWN); - return score[LEFT] + score[RIGHT]; -} + /* + sometimes, two perfectly symmetric kneed beams will have the same score + and can either be quanted up or down. -Real -Beam::score_slopes_dy (Real yl, Real yr, - Real dy_mus, Real dy_damp, - Real dx, - bool xstaff, + we choose the quanting in the direction of the slope so that the first stem + always seems longer, reaching to the second, rather than squashed. + */ + if (is_knee_ && count[LEFT] == count[RIGHT] && count[LEFT] == 1 && unquanted_y_.delta ()) + score[Direction (sign (unquanted_y_.delta ()))] += score[Direction (sign (unquanted_y_.delta ()))] < 1.0 ? 0.01 : 0.0; - Beam_quant_parameters const *parameters) + config->add (score[LEFT] + score[RIGHT], "L"); +} + +void +Beam_scoring_problem::score_slope_direction (Beam_configuration *config) const { - Real dy = yr - yl; + Real dy = config->y.delta (); + Real damped_dy = unquanted_y_.delta (); Real dem = 0.0; - /* DAMPING_DIRECTION_PENALTY is a very harsh measure, while for complex beaming patterns, horizontal is often a good choice. @@ -396,34 +1122,52 @@ Beam::score_slopes_dy (Real yl, Real yr, TODO: find a way to incorporate the complexity of the beam in this penalty. */ - if (sign (dy_damp) != sign (dy)) + if (sign (damped_dy) != sign (dy)) { if (!dy) - { - if (fabs (dy_damp / dx) > parameters->ROUND_TO_ZERO_SLOPE) - dem += parameters->DAMPING_DIRECTION_PENALTY; - else - dem += parameters->HINT_DIRECTION_PENALTY; - } + { + if (fabs (damped_dy / x_span_) > parameters_.ROUND_TO_ZERO_SLOPE) + dem += parameters_.DAMPING_DIRECTION_PENALTY; + else + dem += parameters_.HINT_DIRECTION_PENALTY; + } else - dem += parameters->DAMPING_DIRECTION_PENALTY; + dem += parameters_.DAMPING_DIRECTION_PENALTY; } - - dem += parameters->MUSICAL_DIRECTION_FACTOR - * max (0.0, (fabs (dy) - fabs (dy_mus))); - Real slope_penalty = parameters->IDEAL_SLOPE_FACTOR; + config->add (dem, "Sd"); +} + +// Score for going against the direction of the musical pattern +void +Beam_scoring_problem::score_slope_musical (Beam_configuration *config) const +{ + Real dy = config->y.delta (); + Real dem = parameters_.MUSICAL_DIRECTION_FACTOR + * max (0.0, (fabs (dy) - fabs (musical_dy_))); + config->add (dem, "Sm"); +} + +// Score deviation from calculated ideal slope. +void +Beam_scoring_problem::score_slope_ideal (Beam_configuration *config) const +{ + Real dy = config->y.delta (); + Real damped_dy = unquanted_y_.delta (); + Real dem = 0.0; + + Real slope_penalty = parameters_.IDEAL_SLOPE_FACTOR; /* Xstaff beams tend to use extreme slopes to get short stems. We put in a penalty here. */ - if (xstaff) + if (is_xstaff_) slope_penalty *= 10; /* Huh, why would a too steep beam be better than a too flat one ? */ - dem += shrink_extra_weight (fabs (dy_damp) - fabs (dy), 1.5) - * slope_penalty; + dem += shrink_extra_weight (fabs (damped_dy) - fabs (dy), 1.5) + * slope_penalty; - return dem; + config->add (dem, "Si"); } static Real @@ -432,106 +1176,156 @@ my_modf (Real x) return x - floor (x); } +// TODO - there is some overlap with forbidden quants, but for +// horizontal beams, it is much more serious to have stafflines +// appearing in the wrong place, so we have a separate scorer. +void +Beam_scoring_problem::score_horizontal_inter_quants (Beam_configuration *config) const +{ + if (config->y.delta () == 0.0 + && abs (config->y[LEFT]) < staff_radius_ * staff_space_) + { + Real yshift = config->y[LEFT] - 0.5 * staff_space_; + if (fabs (my_round (yshift) - yshift) < 0.01 * staff_space_) + config->add (parameters_.HORIZONTAL_INTER_QUANT_PENALTY, "H"); + } +} + /* TODO: The fixed value SECONDARY_BEAM_DEMERIT is probably flawed: because for 32nd and 64th beams the forbidden quants are relatively more important than stem lengths. */ -Real -Beam::score_forbidden_quants (Real yl, Real yr, - Real radius, - Real slt, - Real beam_thickness, Real beam_translation, - Drul_array beam_counts, - Direction ldir, Direction rdir, - - Beam_quant_parameters const *parameters) +void +Beam_scoring_problem::score_forbidden_quants (Beam_configuration *config) const { - Real dy = yr - yl; - Drul_array y (yl, yr); - Drul_array dirs (ldir, rdir); - - Real extra_demerit = parameters->SECONDARY_BEAM_DEMERIT / (max (beam_counts[LEFT], beam_counts[RIGHT])); + Real dy = config->y.delta (); - Direction d = LEFT; + Real extra_demerit = + parameters_.SECONDARY_BEAM_DEMERIT + / max (edge_beam_counts_[LEFT], edge_beam_counts_[RIGHT]); + Real dem = 0.0; - Real eps = parameters->BEAM_EPS; + Real eps = parameters_.BEAM_EPS; - do + for (LEFT_and_RIGHT (d)) { - for (int j = 1; j <= beam_counts[d]; j++) - { - Direction stem_dir = dirs[d]; - - /* - The 2.2 factor is to provide a little leniency for - borderline cases. If we do 2.0, then the upper outer line - will be in the gap of the (2, sit) quant, leading to a - false demerit. - */ - Real gap1 = y[d] - stem_dir * ((j - 1) * beam_translation + beam_thickness / 2 - slt / 2.2); - Real gap2 = y[d] - stem_dir * (j * beam_translation - beam_thickness / 2 + slt / 2.2); - - Interval gap; - gap.add_point (gap1); - gap.add_point (gap2); - - for (Real k = -radius; - k <= radius + eps; k += 1.0) - if (gap.contains (k)) - { - Real dist = min (fabs (gap[UP] - k), fabs (gap[DOWN] - k)); - - /* - this parameter is tuned to grace-stem-length.ly - */ - Real fixed_demerit = 0.4; - - dem += extra_demerit - * (fixed_demerit - + (1 - fixed_demerit) * (dist / gap.length ()) * 2); - } - } + for (int j = 1; j <= edge_beam_counts_[d]; j++) + { + Direction stem_dir = edge_dirs_[d]; + + /* + The fudge_factor is to provide a little leniency for + borderline cases. If we do 2.0, then the upper outer line + will be in the gap of the (2, sit) quant, leading to a + false demerit. By increasing the fudge factor to 2.2, we + fix this case. + */ + Real fudge_factor = 2.2; + Real gap1 = config->y[d] - stem_dir * ((j - 1) * beam_translation_ + beam_thickness_ / 2 - line_thickness_ / fudge_factor); + Real gap2 = config->y[d] - stem_dir * (j * beam_translation_ - beam_thickness_ / 2 + line_thickness_ / fudge_factor); + + Interval gap; + gap.add_point (gap1); + gap.add_point (gap2); + + for (Real k = -staff_radius_; + k <= staff_radius_ + eps; k += 1.0) + if (gap.contains (k)) + { + Real dist = min (fabs (gap[UP] - k), fabs (gap[DOWN] - k)); + + /* + this parameter is tuned to grace-stem-length.ly + retuned from 0.40 to 0.39 by MS because of slight increases + in gap.length () resulting from measuring beams at real ends + instead of from the middle of stems. + + TODO: + This function needs better comments so we know what is forbidden + and why. + */ + Real fixed_demerit = 0.39; + + dem += extra_demerit + * (fixed_demerit + + (1 - fixed_demerit) * (dist / gap.length ()) * 2); + } + } } - while ((flip (&d)) != LEFT); - if (max (beam_counts[LEFT], beam_counts[RIGHT]) >= 2) + config->add (dem, "Fl"); + dem = 0.0; + if (max (edge_beam_counts_[LEFT], edge_beam_counts_[RIGHT]) >= 2) { Real straddle = 0.0; - Real sit = (beam_thickness - slt) / 2; + Real sit = (beam_thickness_ - line_thickness_) / 2; Real inter = 0.5; - Real hang = 1.0 - (beam_thickness - slt) / 2; - - Direction d = LEFT; - do - { - if (beam_counts[d] >= 2 - && fabs (y[d] - dirs[d] * beam_translation) < radius + inter) - { - if (dirs[d] == UP && dy <= eps - && fabs (my_modf (y[d]) - sit) < eps) - dem += extra_demerit; - - if (dirs[d] == DOWN && dy >= eps - && fabs (my_modf (y[d]) - hang) < eps) - dem += extra_demerit; - } + Real hang = 1.0 - (beam_thickness_ - line_thickness_) / 2; + + for (LEFT_and_RIGHT (d)) + { + if (edge_beam_counts_[d] >= 2 + && fabs (config->y[d] - edge_dirs_[d] * beam_translation_) < staff_radius_ + inter) + { + // TODO up/down symmetry. + if (edge_dirs_[d] == UP && dy <= eps + && fabs (my_modf (config->y[d]) - sit) < eps) + dem += extra_demerit; + + if (edge_dirs_[d] == DOWN && dy >= eps + && fabs (my_modf (config->y[d]) - hang) < eps) + dem += extra_demerit; + } + + if (edge_beam_counts_[d] >= 3 + && fabs (config->y[d] - 2 * edge_dirs_[d] * beam_translation_) < staff_radius_ + inter) + { + // TODO up/down symmetry. + if (edge_dirs_[d] == UP && dy <= eps + && fabs (my_modf (config->y[d]) - straddle) < eps) + dem += extra_demerit; + + if (edge_dirs_[d] == DOWN && dy >= eps + && fabs (my_modf (config->y[d]) - straddle) < eps) + dem += extra_demerit; + } + } + } - if (beam_counts[d] >= 3 - && fabs (y[d] - 2 * dirs[d] * beam_translation) < radius + inter) - { - if (dirs[d] == UP && dy <= eps - && fabs (my_modf (y[d]) - straddle) < eps) - dem += extra_demerit; + config->add (dem, "Fs"); +} - if (dirs[d] == DOWN && dy >= eps - && fabs (my_modf (y[d]) - straddle) < eps) - dem += extra_demerit; - } - } - while (flip (&d) != LEFT); +void +Beam_scoring_problem::score_collisions (Beam_configuration *config) const +{ + Real demerits = 0.0; + for (vsize i = 0; i < collisions_.size (); i++) + { + Interval collision_y = collisions_[i].y_; + Real x = collisions_[i].x_; + + Real center_beam_y = y_at (x, config); + Interval beam_y = center_beam_y + collisions_[i].beam_y_; + + Real dist = infinity_f; + if (!intersection (beam_y, collision_y).is_empty ()) + dist = 0.0; + else + dist = min (beam_y.distance (collision_y[DOWN]), + beam_y.distance (collision_y[UP])); + + + Real scale_free + = max (parameters_.COLLISION_PADDING - dist, 0.0) + / parameters_.COLLISION_PADDING; + Real collision_demerit = collisions_[i].base_penalty_ * + pow (scale_free, 3) * parameters_.COLLISION_PENALTY; + + if (collision_demerit > 0) { + demerits += collision_demerit; + } } - return dem; + config->add (demerits, "C"); } -