X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fbeam-quanting.cc;h=d2b3dc576e3bd05cec03f6e056f1174f75472b0a;hb=c89be8cc5794d62769a35719e68fddf0a8448faa;hp=9576f33cce5545647f835750b8720537b64a3b23;hpb=85eda92e72d32cf47860a28931ba511f8343d898;p=lilypond.git diff --git a/lily/beam-quanting.cc b/lily/beam-quanting.cc index 9576f33cce..d2b3dc576e 100644 --- a/lily/beam-quanting.cc +++ b/lily/beam-quanting.cc @@ -3,20 +3,18 @@ source file of the GNU LilyPond music typesetter - (c) 1997--2003 Han-Wen Nienhuys + (c) 1997--2004 Han-Wen Nienhuys Jan Nieuwenhuizen */ - - #include -#include "grob.hh" +#include "warn.hh" #include "staff-symbol-referencer.hh" #include "beam.hh" #include "stem.hh" -#include "paper-def.hh" +#include "output-def.hh" #include "group-interface.hh" #include "align-interface.hh" @@ -24,12 +22,17 @@ const int INTER_QUANT_PENALTY = 1000; const Real SECONDARY_BEAM_DEMERIT = 10.0; const int STEM_LENGTH_DEMERIT_FACTOR = 5; +/* + threshold to combat rounding errors. + */ +const Real BEAM_EPS = 1e-3; + // possibly ridiculous, but too short stems just won't do const int STEM_LENGTH_LIMIT_PENALTY = 5000; -const int DAMPING_DIRECTIION_PENALTY = 800; +const int DAMPING_DIRECTION_PENALTY = 800; const int MUSICAL_DIRECTION_FACTOR = 400; const int IDEAL_SLOPE_FACTOR = 10; - +const Real ROUND_TO_ZERO_SLOPE = 0.02; static Real shrink_extra_weight (Real x, Real fac) @@ -43,6 +46,10 @@ struct Quant_score Real yl; Real yr; Real demerits; + +#if DEBUG_QUANTING + String score_card_; +#endif }; @@ -58,7 +65,8 @@ struct Quant_score */ -int best_quant_score_idx (Array const & qscores) +int +best_quant_score_idx (Array const & qscores) { Real best = 1e6; int best_idx = -1; @@ -71,6 +79,13 @@ int best_quant_score_idx (Array const & qscores) } } + if (best_idx < 0) + { + programming_error ("Huh? No best beam quant score?"); + best_idx = 0; + } + + return best_idx; } @@ -80,23 +95,28 @@ Beam::quanting (SCM smob) { Grob *me = unsmob_grob (smob); - SCM s = me->get_grob_property ("positions"); - Real yl = gh_scm2double (gh_car (s)); - Real yr = gh_scm2double (gh_cdr (s)); + SCM s = me->get_property ("positions"); + Real yl = scm_to_double (scm_car (s)); + Real yr = scm_to_double (scm_cdr (s)); - Real ss = Staff_symbol_referencer::staff_space (me); - Real thickness = gh_scm2double (me->get_grob_property ("thickness")) / ss; - Real slt = me->get_paper ()->get_realvar (ly_symbol2scm ("linethickness")) / ss; + /* + Calculations are relative to a unit-scaled staff, i.e. the quants are + divided by the current staff_space. + + */ + Real ss = Staff_symbol_referencer::staff_space (me); + Real thickness = Beam::get_thickness (me) / ss ; + Real slt = Staff_symbol_referencer::line_thickness (me) / ss; - SCM sdy = me->get_grob_property ("least-squares-dy"); - Real dy_mus = gh_number_p (sdy) ? gh_scm2double (sdy) : 0.0; - + Real dy_mus = robust_scm2double (me->get_property ("least-squares-dy"), 0); Real straddle = 0.0; Real sit = (thickness - slt) / 2; Real inter = 0.5; Real hang = 1.0 - (thickness - slt) / 2; Real quants [] = {straddle, sit, inter, hang }; + + int num_quants = int (sizeof (quants)/sizeof (Real)); Array quantsl; @@ -117,16 +137,16 @@ Beam::quanting (SCM smob) Do stem computations. These depend on YL and YR linearly, so we can precompute for every stem 2 factors. */ - Link_array stems= + Link_array stems = Pointer_group_interface__extract_grobs (me, (Grob*)0, "stems"); Array stem_infos; Array base_lengths; Array stem_xposns; - Drul_array dirs_found(0,0); + Drul_array dirs_found (0,0); Grob *common[2]; for (int a = 2; a--;) - common[a] = common_refpoint_of_array (stems, me, Axis(a)); + common[a] = common_refpoint_of_array (stems, me, Axis (a)); Grob * fvs = first_visible_stem (me); Grob *lvs = last_visible_stem (me); @@ -141,21 +161,24 @@ Beam::quanting (SCM smob) stem_y != 0.0, when we're cross staff. */ - for (int i= 0; i < stems.size(); i++) + for (int i = 0; i < stems.size (); i++) { Grob*s = stems[i]; - stem_infos.push (Stem::get_stem_info (s)); + + Stem_info si (Stem::get_stem_info (s)); + si.scale (1 / ss); + stem_infos.push (si); dirs_found[stem_infos.top ().dir_] = true; - bool f = to_boolean (s->get_grob_property ("french-beaming")) + bool f = to_boolean (s->get_property ("french-beaming")) && s != lvs && s != fvs; base_lengths.push (calc_stem_y (me, s, common, xl, xr, - Interval (0,0), f)); + Interval (0,0), f) / ss); stem_xposns.push (s->relative_coordinate (common[X_AXIS], X_AXIS)); } - bool xstaff= false; + bool xstaff = false; if (lvs && fvs) { Grob *commony = fvs->common_refpoint (lvs, Y_AXIS); @@ -164,14 +187,14 @@ Beam::quanting (SCM smob) Direction ldir = Direction (stem_infos[0].dir_); Direction rdir = Direction (stem_infos.top ().dir_); - bool knee_b = dirs_found[LEFT] && dirs_found[RIGHT]; + bool is_knee = dirs_found[LEFT] && dirs_found[RIGHT]; int region_size = REGION_SIZE; /* Knees are harder, lets try some more possibilities for knees. */ - if (knee_b) + if (is_knee) region_size += 2; /* @@ -186,8 +209,8 @@ Beam::quanting (SCM smob) Array qscores; - for (int l =0; l < quantsl.size (); l++) - for (int r =0; r < quantsr.size (); r++) + for (int l = 0; l < quantsl.size (); l++) + for (int r = 0; r < quantsr.size (); r++) { Quant_score qs; qs.yl = quantsl[l]; @@ -203,48 +226,94 @@ Beam::quanting (SCM smob) parameters outside of the loop, we can save a lot of time. */ for (int i = qscores.size (); i--;) { - qscores[i].demerits - += score_slopes_dy (qscores[i].yl, qscores[i].yr, - dy_mus, yr- yl, xstaff); + Real d = score_slopes_dy (qscores[i].yl, qscores[i].yr, + dy_mus, yr- yl, + xr - xl, + xstaff); + qscores[i].demerits += d; + +#if DEBUG_QUANTING + qscores[i].score_card_ += to_string ("S%.2f",d); +#endif } Real rad = Staff_symbol_referencer::staff_radius (me); - int beam_count = get_beam_count (me); - Real beam_translation = get_beam_translation (me); - Real reasonable_score = (knee_b) ? 200000 : 100; + + + Drul_array edge_beam_counts + (Stem::beam_multiplicity (stems[0]).length () + 1, + Stem::beam_multiplicity (stems.top ()).length () + 1); + + Real beam_translation = get_beam_translation (me) / ss; + + Real reasonable_score = (is_knee) ? 200000 : 100; for (int i = qscores.size (); i--;) if (qscores[i].demerits < reasonable_score) { - qscores[i].demerits - += score_forbidden_quants (qscores[i].yl, qscores[i].yr, + Real d = score_forbidden_quants (qscores[i].yl, qscores[i].yr, rad, slt, thickness, beam_translation, - beam_count, ldir, rdir); + edge_beam_counts, ldir, rdir); + qscores[i].demerits += d; + +#if DEBUG_QUANTING + qscores[i].score_card_ += to_string (" F %.2f", d); +#endif } for (int i = qscores.size (); i--;) if (qscores[i].demerits < reasonable_score) { - qscores[i].demerits - += score_stem_lengths (stems, stem_infos, + Real d = score_stem_lengths (stems, stem_infos, base_lengths, stem_xposns, xl, xr, - knee_b, + is_knee, qscores[i].yl, qscores[i].yr); + qscores[i].demerits += d; + +#if DEBUG_QUANTING + qscores[i].score_card_ += to_string (" L %.2f", d); +#endif } int best_idx = best_quant_score_idx (qscores); - me->set_grob_property ("positions", - gh_cons (gh_double2scm (qscores[best_idx].yl), - gh_double2scm (qscores[best_idx].yr)) - ); #if DEBUG_QUANTING + SCM inspect_quants = me->get_property ("inspect-quants"); + if (to_boolean (me->get_layout ()->lookup_variable (ly_symbol2scm ("debug-beam-quanting"))) + && scm_is_pair (inspect_quants)) + { + Drul_array ins = ly_scm2interval (inspect_quants); - // debug quanting - me->set_grob_property ("quant-score", - gh_double2scm (qscores[best_idx].demerits)); - me->set_grob_property ("best-idx", scm_int2num (best_idx)); + int i = 0; + + Real mindist = 1e6; + for (; i < qscores.size (); i ++) + { + Real d = fabs (qscores[i].yl- ins[LEFT]) + fabs (qscores[i].yr - ins[RIGHT]); + if (d < mindist) + { + best_idx = i; + mindist = d; + } + } + if (mindist > 1e5) + programming_error ("Could not find quant."); + } +#endif + + me->set_property ("positions", + ly_interval2scm (Drul_array (qscores[best_idx].yl, + qscores[best_idx].yr))); +#if DEBUG_QUANTING + if (to_boolean (me->get_layout ()->lookup_variable (ly_symbol2scm ("debug-beam-quanting")))) + { + qscores[best_idx].score_card_ += to_string ("i%d", best_idx); + + // debug quanting + me->set_property ("quant-score", + scm_makfrom0str (qscores[best_idx].score_card_.to_str0 ())); + } #endif return SCM_UNSPECIFIED; @@ -263,10 +332,10 @@ Beam::score_stem_lengths (Link_array const &stems, Drul_array score (0, 0); Drul_array count (0, 0); - for (int i=0; i < stems.size (); i++) + for (int i = 0; i < stems.size (); i++) { Grob* s = stems[i]; - if (Stem::invisible_b (s)) + if (Stem::is_invisible (s)) continue; Real x = stem_xs[i]; @@ -307,14 +376,23 @@ Beam::score_stem_lengths (Link_array const &stems, Real Beam::score_slopes_dy (Real yl, Real yr, Real dy_mus, Real dy_damp, + Real dx, bool xstaff) { Real dy = yr - yl; - Real dem = 0.0; - if (sign (dy_damp) != sign (dy)) + + /* + DAMPING_DIRECTION_PENALTY is a very harsh measure, while for + complex beaming patterns, horizontal is often a good choice. + + TODO: find a way to incorporate the complexity of the beam in this + penalty. + */ + if (fabs (dy/dx) > ROUND_TO_ZERO_SLOPE + && sign (dy_damp) != sign (dy)) { - dem += DAMPING_DIRECTIION_PENALTY; + dem += DAMPING_DIRECTION_PENALTY; } dem += MUSICAL_DIRECTION_FACTOR * (0 >? (fabs (dy) - fabs (dy_mus))); @@ -330,9 +408,11 @@ Beam::score_slopes_dy (Real yl, Real yr, /* Huh, why would a too steep beam be better than a too flat one ? */ dem += shrink_extra_weight (fabs (dy_damp) - fabs (dy), 1.5) * slope_penalty; + return dem; } + static Real my_modf (Real x) { @@ -350,95 +430,94 @@ Beam::score_forbidden_quants (Real yl, Real yr, Real radius, Real slt, Real thickness, Real beam_translation, - int beam_count, + Drul_array beam_counts, Direction ldir, Direction rdir) { Real dy = yr - yl; - - Real extra_demerit = SECONDARY_BEAM_DEMERIT / beam_count; + Drul_array y (yl,yr); + Drul_array dirs (ldir,rdir); + Real extra_demerit = SECONDARY_BEAM_DEMERIT / (beam_counts[LEFT] >? beam_counts[RIGHT]); + + Direction d = LEFT; Real dem = 0.0; - for (int i = 0; i < 2; i++) + + + do { - Real y = i? yl : yr; - if (fabs (y) <= (radius + 0.5) && fabs ( my_modf (y) - 0.5) < 1e-3) - dem += INTER_QUANT_PENALTY; + for (int j = 1; j <= beam_counts[d]; j++) + { + Direction stem_dir = dirs[d]; + + /* + The 2.2 factor is to provide a little leniency for + borderline cases. If we do 2.0, then the upper outer line + will be in the gap of the (2,sit) quant, leading to a + false demerit. + */ + Real gap1 = y[d] - stem_dir * ((j-1) * beam_translation + thickness / 2 - slt/2.2 ); + Real gap2 = y[d] - stem_dir * (j * beam_translation - thickness / 2 + slt/2.2); + + Interval gap; + gap.add_point (gap1); + gap.add_point (gap2); + + for (Real k = - radius ; + k <= radius + BEAM_EPS; k += 1.0) + if (gap.contains (k)) + { + Real dist = fabs (gap[UP]-k) = 2) + if ((beam_counts[LEFT] >? beam_counts[RIGHT]) >= 2) { Real straddle = 0.0; Real sit = (thickness - slt) / 2; Real inter = 0.5; Real hang = 1.0 - (thickness - slt) / 2; - if (fabs (yl - ldir * beam_translation) < radius - && fabs (my_modf (yl) - inter) < 1e-3) - dem += extra_demerit; - if (fabs (yr - rdir * beam_translation) < radius - && fabs (my_modf (yr) - inter) < 1e-3) - dem += extra_demerit; - - Real eps = 1e-3; - - /* - Can't we simply compute the distance between the nearest - staffline and the secondary beam? That would get rid of the - silly case analysis here (which is probably not valid when we - have different beam-thicknesses.) - --hwn - */ - - - // hmm, without Interval/Drul_array, you get ~ 4x same code... - if (fabs (yl - ldir * beam_translation) < radius + inter) + Direction d = LEFT; + do { - if (ldir == UP && dy <= eps - && fabs (my_modf (yl) - sit) < eps) - dem += extra_demerit; - - if (ldir == DOWN && dy >= eps - && fabs (my_modf (yl) - hang) < eps) - dem += extra_demerit; - } - - if (fabs (yr - rdir * beam_translation) < radius + inter) - { - if (rdir == UP && dy >= eps - && fabs (my_modf (yr) - sit) < eps) - dem += extra_demerit; - - if (rdir == DOWN && dy <= eps - && fabs (my_modf (yr) - hang) < eps) - dem += extra_demerit; - } - - if (beam_count >= 3) - { - if (fabs (yl - 2 * ldir * beam_translation) < radius + inter) + if (beam_counts[d] >= 2 + && fabs (y[d] - dirs[d] * beam_translation) < radius + inter) { - if (ldir == UP && dy <= eps - && fabs (my_modf (yl) - straddle) < eps) + if (dirs[d] == UP && dy <= BEAM_EPS + && fabs (my_modf (y[d]) - sit) < BEAM_EPS) dem += extra_demerit; - - if (ldir == DOWN && dy >= eps - && fabs (my_modf (yl) - straddle) < eps) + + if (dirs[d] == DOWN && dy >= BEAM_EPS + && fabs (my_modf (y[d]) - hang) < BEAM_EPS) dem += extra_demerit; } - - if (fabs (yr - 2 * rdir * beam_translation) < radius + inter) + + if (beam_counts[d] >= 3 + && fabs (y[d] - 2 * dirs[d] * beam_translation) < radius + inter) { - if (rdir == UP && dy >= eps - && fabs (my_modf (yr) - straddle) < eps) + if (dirs[d] == UP && dy <= BEAM_EPS + && fabs (my_modf (y[d]) - straddle) < BEAM_EPS) dem += extra_demerit; - if (rdir == DOWN && dy <= eps - && fabs (my_modf (yr) - straddle) < eps) + if (dirs[d] == DOWN && dy >= BEAM_EPS + && fabs (my_modf (y[d]) - straddle) < BEAM_EPS) dem += extra_demerit; } } + while (flip (&d) != LEFT); } return dem;