X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fbeam-quanting.cc;h=cf933d500bc3d3071d1386fdb172e8391bb51465;hb=5b4b0d6e9a197e8f9eb085b7c2ad78b8be3e5cfc;hp=d8d97cba92dd974781c594fe738e3c34194fa92c;hpb=28976d28a04cfb9abe97af7214d7dce11f732604;p=lilypond.git diff --git a/lily/beam-quanting.cc b/lily/beam-quanting.cc index d8d97cba92..cf933d500b 100644 --- a/lily/beam-quanting.cc +++ b/lily/beam-quanting.cc @@ -1,46 +1,57 @@ /* beam-quanting.cc -- implement Beam quanting functions - + source file of the GNU LilyPond music typesetter - - (c) 1997--2004 Han-Wen Nienhuys - Jan Nieuwenhuizen - - + (c) 1997--2008 Han-Wen Nienhuys + Jan Nieuwenhuizen */ +#include "beam.hh" +#include +using namespace std; -#include - -#include "warn.hh" #include "grob.hh" +#include "align-interface.hh" +#include "international.hh" +#include "output-def.hh" +#include "pointer-group-interface.hh" #include "staff-symbol-referencer.hh" -#include "beam.hh" #include "stem.hh" -#include "paper-def.hh" -#include "group-interface.hh" -#include "align-interface.hh" +#include "warn.hh" +#include "main.hh" -const int INTER_QUANT_PENALTY = 1000; -const Real SECONDARY_BEAM_DEMERIT = 10.0; -const int STEM_LENGTH_DEMERIT_FACTOR = 5; +Real +get_detail (SCM alist, SCM sym, Real def) +{ + SCM entry = scm_assq (sym, alist); -/* - threshold to combat rounding errors. - */ -const Real BEAM_EPS = 1e-3; + if (scm_is_pair (entry)) + return robust_scm2double (scm_cdr (entry), def); + return def; +} -// possibly ridiculous, but too short stems just won't do -const int STEM_LENGTH_LIMIT_PENALTY = 5000; -const int DAMPING_DIRECTION_PENALTY = 800; -const int MUSICAL_DIRECTION_FACTOR = 400; -const int IDEAL_SLOPE_FACTOR = 10; -const Real ROUND_TO_ZERO_SLOPE = 0.02; -const int ROUND_TO_ZERO_POINTS = 4; +void +Beam_quant_parameters::fill (Grob *him) +{ + SCM details = him->get_property ("details"); -extern bool debug_beam_quanting_flag; + /* + TODO: The default values should be copied to define-grobs.scm. + */ + INTER_QUANT_PENALTY = get_detail (details, ly_symbol2scm ("inter-quant-penalty"), 1000.0); + SECONDARY_BEAM_DEMERIT = get_detail (details, ly_symbol2scm ("secondary-beam-demerit"), 10.0); + STEM_LENGTH_DEMERIT_FACTOR = get_detail (details, ly_symbol2scm ("stem-length-demerit-factor"), 5); + REGION_SIZE = get_detail (details, ly_symbol2scm ("region-size"), 2); + BEAM_EPS = get_detail (details, ly_symbol2scm ("beam-eps"), 1e-3); + STEM_LENGTH_LIMIT_PENALTY = get_detail (details, ly_symbol2scm ("stem-length-limit-penalty"), 5000); + DAMPING_DIRECTION_PENALTY = get_detail (details, ly_symbol2scm ("damping-direction-penalty"), 800); + HINT_DIRECTION_PENALTY = get_detail (details, ly_symbol2scm ("hint-direction-penalty"), 20); + MUSICAL_DIRECTION_FACTOR = get_detail (details, ly_symbol2scm ("musical-direction-factor"), 400); + IDEAL_SLOPE_FACTOR = get_detail (details, ly_symbol2scm ("ideal-slope-factor"), 10); + ROUND_TO_ZERO_SLOPE = get_detail (details, ly_symbol2scm ("round-to-zero-slope"), 0.02); +} static Real shrink_extra_weight (Real x, Real fac) @@ -48,337 +59,336 @@ shrink_extra_weight (Real x, Real fac) return fabs (x) * ((x < 0) ? fac : 1.0); } - struct Quant_score { Real yl; Real yr; Real demerits; -#if DEBUG_QUANTING - String score_card_; +#if DEBUG_BEAM_SCORING + string score_card_; #endif }; - /* TODO: - - - Make all demerits customisable - - One sensible check per demerit (what's this --hwn) + - Make all demerits customisable - - Add demerits for quants per se, as to forbid a specific quant - entirely + - One sensible check per demerit (what's this --hwn) + - Add demerits for quants per se, as to forbid a specific quant + entirely */ -int best_quant_score_idx (Array const & qscores) +int +best_quant_score_idx (vector const &qscores) { Real best = 1e6; int best_idx = -1; - for (int i = qscores.size (); i--;) + for (vsize i = qscores.size (); i--;) { if (qscores[i].demerits < best) { - best = qscores [i].demerits ; + best = qscores [i].demerits; best_idx = i; } } return best_idx; } - -MAKE_SCHEME_CALLBACK (Beam, quanting, 1); + +MAKE_SCHEME_CALLBACK (Beam, quanting, 2); SCM -Beam::quanting (SCM smob) +Beam::quanting (SCM smob, SCM posns) { Grob *me = unsmob_grob (smob); - SCM s = me->get_property ("positions"); - Real yl = ly_scm2double (ly_car (s)); - Real yr = ly_scm2double (ly_cdr (s)); + Beam_quant_parameters parameters; + parameters.fill (me); + Real yl = scm_to_double (scm_car (posns)); + Real yr = scm_to_double (scm_cdr (posns)); /* Calculations are relative to a unit-scaled staff, i.e. the quants are divided by the current staff_space. - - */ + */ Real ss = Staff_symbol_referencer::staff_space (me); - Real thickness = Beam::get_thickness (me) / ss ; + Real thickness = Beam::get_thickness (me) / ss; Real slt = Staff_symbol_referencer::line_thickness (me) / ss; - SCM sdy = me->get_property ("least-squares-dy"); - Real dy_mus = is_number (sdy) ? ly_scm2double (sdy) : 0.0; - + Real dy_mus = robust_scm2double (me->get_property ("least-squares-dy"), 0); Real straddle = 0.0; Real sit = (thickness - slt) / 2; Real inter = 0.5; Real hang = 1.0 - (thickness - slt) / 2; Real quants [] = {straddle, sit, inter, hang }; - - int num_quants = int (sizeof (quants)/sizeof (Real)); - Array quantsl; - Array quantsr; + + int num_quants = int (sizeof (quants) / sizeof (Real)); + vector quantsl; + vector quantsr; /* going to REGION_SIZE == 2, yields another 0.6 second with wtk1-fugue2. - - (result indexes between 70 and 575) ? --hwn. + (result indexes between 70 and 575) ? --hwn. */ - - /* Do stem computations. These depend on YL and YR linearly, so we can precompute for every stem 2 factors. - */ - Link_array stems= - Pointer_group_interface__extract_grobs (me, (Grob*)0, "stems"); - Array stem_infos; - Array base_lengths; - Array stem_xposns; + */ + vector stems + = extract_grob_array (me, "stems"); + vector stem_infos; + vector base_lengths; + vector stem_xposns; - Drul_array dirs_found (0,0); + Drul_array dirs_found (0, 0); Grob *common[2]; for (int a = 2; a--;) common[a] = common_refpoint_of_array (stems, me, Axis (a)); - Grob * fvs = first_visible_stem (me); - Grob *lvs = last_visible_stem (me); + Grob *fvs = first_normal_stem (me); + Grob *lvs = last_normal_stem (me); Real xl = fvs ? fvs->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; Real xr = fvs ? lvs->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; /* - We store some info to quickly interpolate. - - Sometimes my head is screwed on backwards. The stemlength are - AFFINE linear in YL and YR. If YL == YR == 0, then we might have + We store some info to quickly interpolate. The stemlength are + affine linear in YL and YR. If YL == YR == 0, then we might have stem_y != 0.0, when we're cross staff. - - */ - for (int i= 0; i < stems.size (); i++) + + */ + for (vsize i = 0; i < stems.size (); i++) { - Grob*s = stems[i]; + Grob *s = stems[i]; Stem_info si (Stem::get_stem_info (s)); si.scale (1 / ss); - stem_infos.push (si); - dirs_found[stem_infos.top ().dir_] = true; + stem_infos.push_back (si); + dirs_found[stem_infos.back ().dir_] = true; bool f = to_boolean (s->get_property ("french-beaming")) - && s != lvs && s != fvs; + && s != lvs && s != fvs; - base_lengths.push (calc_stem_y (me, s, common, xl, xr, - Interval (0,0), f) / ss); - stem_xposns.push (s->relative_coordinate (common[X_AXIS], X_AXIS)); - } + if (Stem::is_normal_stem (s)) + { + base_lengths.push_back (calc_stem_y (me, s, common, xl, xr, CENTER, + Interval (0, 0), f) / ss); + } + else + { + base_lengths.push_back (0); + } - bool xstaff= false; - if (lvs && fvs) - { - Grob *commony = fvs->common_refpoint (lvs, Y_AXIS); - xstaff = Align_interface::has_interface (commony); + stem_xposns.push_back (s->relative_coordinate (common[X_AXIS], X_AXIS)); } - + bool xstaff = Align_interface::has_interface (common[Y_AXIS]); + Direction ldir = Direction (stem_infos[0].dir_); - Direction rdir = Direction (stem_infos.top ().dir_); + Direction rdir = Direction (stem_infos.back ().dir_); bool is_knee = dirs_found[LEFT] && dirs_found[RIGHT]; + int region_size = (int) parameters.REGION_SIZE; - int region_size = REGION_SIZE; /* - Knees are harder, lets try some more possibilities for knees. - */ + Knees are harder, lets try some more possibilities for knees. + */ if (is_knee) region_size += 2; /* Asymetry ? should run to <= region_size ? - */ - for (int i = -region_size ; i < region_size; i++) + */ + for (int i = -region_size; i < region_size; i++) for (int j = 0; j < num_quants; j++) { - quantsl.push (i + quants[j] + int (yl)); - quantsr.push (i + quants[j] + int (yr)); + quantsl.push_back (i + quants[j] + int (yl)); + quantsr.push_back (i + quants[j] + int (yr)); } - Array qscores; - - for (int l =0; l < quantsl.size (); l++) - for (int r =0; r < quantsr.size (); r++) + vector qscores; + + for (vsize l = 0; l < quantsl.size (); l++) + for (vsize r = 0; r < quantsr.size (); r++) { Quant_score qs; qs.yl = quantsl[l]; qs.yr = quantsr[r]; qs.demerits = 0.0; - - qscores.push (qs); + + qscores.push_back (qs); } /* This is a longish function, but we don't separate this out into neat modular separate subfunctions, as the subfunctions would be called for many values of YL, YR. By precomputing various parameters outside of the loop, we can save a lot of time. */ - for (int i = qscores.size (); i--;) + for (vsize i = qscores.size (); i--;) { - Real d = score_slopes_dy (qscores[i].yl, qscores[i].yr, - dy_mus, yr- yl, - xr - xl, - xstaff); + Real d = score_slopes_dy (qscores[i].yl, qscores[i].yr, + dy_mus, yr- yl, + xr - xl, + xstaff, ¶meters); qscores[i].demerits += d; -#if DEBUG_QUANTING - qscores[i].score_card_ += to_string ("S%.2f",d); +#if DEBUG_BEAM_SCORING + qscores[i].score_card_ += to_string ("S%.2f", d); #endif } Real rad = Staff_symbol_referencer::staff_radius (me); - - - Drul_array edge_beam_counts - (Stem::beam_multiplicity (stems[0]).length () + 1, - Stem::beam_multiplicity (stems.top ()).length () + 1); - + (Stem::beam_multiplicity (stems[0]).length () + 1, + Stem::beam_multiplicity (stems.back ()).length () + 1); + Real beam_translation = get_beam_translation (me) / ss; Real reasonable_score = (is_knee) ? 200000 : 100; - for (int i = qscores.size (); i--;) + for (vsize i = qscores.size (); i--;) if (qscores[i].demerits < reasonable_score) { Real d = score_forbidden_quants (qscores[i].yl, qscores[i].yr, - rad, slt, thickness, beam_translation, - edge_beam_counts, ldir, rdir); + rad, slt, thickness, beam_translation, + edge_beam_counts, ldir, rdir, ¶meters); qscores[i].demerits += d; -#if DEBUG_QUANTING +#if DEBUG_BEAM_SCORING qscores[i].score_card_ += to_string (" F %.2f", d); #endif } - for (int i = qscores.size (); i--;) + for (vsize i = qscores.size (); i--;) if (qscores[i].demerits < reasonable_score) { - Real d=score_stem_lengths (stems, stem_infos, - base_lengths, stem_xposns, - xl, xr, - is_knee, - qscores[i].yl, qscores[i].yr); - qscores[i].demerits += d; - -#if DEBUG_QUANTING + Real d = score_stem_lengths (stems, stem_infos, + base_lengths, stem_xposns, + xl, xr, + is_knee, + qscores[i].yl, qscores[i].yr, ¶meters); + qscores[i].demerits += d; + +#if DEBUG_BEAM_SCORING qscores[i].score_card_ += to_string (" L %.2f", d); #endif } int best_idx = best_quant_score_idx (qscores); - -#if DEBUG_QUANTING +#if DEBUG_BEAM_SCORING SCM inspect_quants = me->get_property ("inspect-quants"); - if (debug_beam_quanting_flag - && is_pair (inspect_quants)) + if (to_boolean (me->layout ()->lookup_variable (ly_symbol2scm ("debug-beam-scoring"))) + && scm_is_pair (inspect_quants)) { Drul_array ins = ly_scm2interval (inspect_quants); - int i = 0; - Real mindist = 1e6; - for (; i < qscores.size (); i ++) + for (vsize i = 0; i < qscores.size (); i++) { - Real d =fabs (qscores[i].yl- ins[LEFT]) + fabs (qscores[i].yr - ins[RIGHT]); + Real d = fabs (qscores[i].yl- ins[LEFT]) + fabs (qscores[i].yr - ins[RIGHT]); if (d < mindist) { best_idx = i; - mindist= d; + mindist = d; } } if (mindist > 1e5) - programming_error ("Could not find quant."); + programming_error ("cannot find quant"); } #endif + + Interval final_positions; + if (best_idx < 0) + { + warning (_ ("no feasible beam position")); + final_positions = Interval (0, 0); + } + else + { + final_positions = Drul_array (qscores[best_idx].yl, + qscores[best_idx].yr); + } - me->set_property ("positions", - ly_interval2scm (Drul_array (qscores[best_idx].yl, - qscores[best_idx].yr))); -#if DEBUG_QUANTING - if (debug_beam_quanting_flag) +#if DEBUG_BEAM_SCORING + if (best_idx >= 0 + && to_boolean (me->layout ()->lookup_variable (ly_symbol2scm ("debug-beam-scoring")))) { qscores[best_idx].score_card_ += to_string ("i%d", best_idx); - + // debug quanting me->set_property ("quant-score", - scm_makfrom0str (qscores[best_idx].score_card_.to_str0 ())); + ly_string2scm (qscores[best_idx].score_card_)); } #endif - return SCM_UNSPECIFIED; + return ly_interval2scm (final_positions); } Real -Beam::score_stem_lengths (Link_array const &stems, - Array const &stem_infos, - Array const &base_stem_ys, - Array const &stem_xs, - Real xl, Real xr, - bool knee, - Real yl, Real yr) +Beam::score_stem_lengths (vector const &stems, + vector const &stem_infos, + vector const &base_stem_ys, + vector const &stem_xs, + Real xl, Real xr, + bool knee, + Real yl, Real yr, + + Beam_quant_parameters const *parameters) { - Real limit_penalty = STEM_LENGTH_LIMIT_PENALTY; + Real limit_penalty = parameters->STEM_LENGTH_LIMIT_PENALTY; Drul_array score (0, 0); Drul_array count (0, 0); - - for (int i=0; i < stems.size (); i++) + + for (vsize i = 0; i < stems.size (); i++) { - Grob* s = stems[i]; - if (Stem::is_invisible (s)) + Grob *s = stems[i]; + if (!Stem::is_normal_stem (s)) continue; Real x = stem_xs[i]; - Real dx = xr-xl; - Real beam_y = dx ? yr *(x - xl)/dx + yl * ( xr - x)/dx : (yr + yl)/2; + Real dx = xr - xl; + Real beam_y = dx ? yr * (x - xl) / dx + yl * (xr - x) / dx : (yr + yl) / 2; Real current_y = beam_y + base_stem_ys[i]; - Real length_pen = STEM_LENGTH_DEMERIT_FACTOR; - + Real length_pen = parameters->STEM_LENGTH_DEMERIT_FACTOR; + Stem_info info = stem_infos[i]; Direction d = info.dir_; - score[d] += limit_penalty * (0 >? (d * (info.shortest_y_ - current_y))); - + score[d] += limit_penalty * max (0.0, (d * (info.shortest_y_ - current_y))); + Real ideal_diff = d * (current_y - info.ideal_y_); Real ideal_score = shrink_extra_weight (ideal_diff, 1.5); - + /* We introduce a power, to make the scoring strictly convex. Otherwise a symmetric knee beam (up/down/up/down) does not have an optimum in the middle. */ if (knee) ideal_score = pow (ideal_score, 1.1); - + score[d] += length_pen * ideal_score; - count[d] ++; + count[d]++; } Direction d = DOWN; do - { - score[d] /= (count[d] >? 1); - } + score[d] /= max (count[d], 1); while (flip (&d) != DOWN); - return score[LEFT]+score[RIGHT]; + return score[LEFT] + score[RIGHT]; } Real Beam::score_slopes_dy (Real yl, Real yr, Real dy_mus, Real dy_damp, Real dx, - bool xstaff) + bool xstaff, + + Beam_quant_parameters const *parameters) { Real dy = yr - yl; Real dem = 0.0; @@ -389,42 +399,35 @@ Beam::score_slopes_dy (Real yl, Real yr, TODO: find a way to incorporate the complexity of the beam in this penalty. - */ - if (fabs (dy/dx) > ROUND_TO_ZERO_SLOPE - && sign (dy_damp) != sign (dy)) + */ + if (sign (dy_damp) != sign (dy)) { - dem += DAMPING_DIRECTION_PENALTY; + if (!dy) + { + if (fabs (dy_damp / dx) > parameters->ROUND_TO_ZERO_SLOPE) + dem += parameters->DAMPING_DIRECTION_PENALTY; + else + dem += parameters->HINT_DIRECTION_PENALTY; + } + else + dem += parameters->DAMPING_DIRECTION_PENALTY; } + + dem += parameters->MUSICAL_DIRECTION_FACTOR + * max (0.0, (fabs (dy) - fabs (dy_mus))); - dem += MUSICAL_DIRECTION_FACTOR * (0 >? (fabs (dy) - fabs (dy_mus))); - - - Real slope_penalty = IDEAL_SLOPE_FACTOR; + Real slope_penalty = parameters->IDEAL_SLOPE_FACTOR; - /* Xstaff beams tend to use extreme slopes to get short stems. We - put in a penalty here. */ - if (xstaff) - slope_penalty *= 10; + /* Xstaff beams tend to use extreme slopes to get short stems. We + put in a penalty here. */ + if (xstaff) + slope_penalty *= 10; - /* Huh, why would a too steep beam be better than a too flat one ? */ - dem += shrink_extra_weight (fabs (dy_damp) - fabs (dy), 1.5) - * slope_penalty; + /* Huh, why would a too steep beam be better than a too flat one ? */ + dem += shrink_extra_weight (fabs (dy_damp) - fabs (dy), 1.5) + * slope_penalty; -#if 0 - /* - almost zero slopes look like errors in horizontal beams. - */ - /* - This causes too much problems, because horizontal depends on - horizontal spacing details. These errors should be dealt with - through concaveness. --hwn. - */ - if (fabs (dy) > 1e-3 - && fabs (dy / dx) < ROUND_TO_ZERO_SLOPE) - dem += ROUND_TO_ZERO_POINTS; -#endif - - return dem; + return dem; } static Real @@ -433,11 +436,10 @@ my_modf (Real x) return x - floor (x); } - /* TODO: The fixed value SECONDARY_BEAM_DEMERIT is probably flawed: - because for 32nd and 64th beams the forbidden quants are relatively - more important than stem lengths. + because for 32nd and 64th beams the forbidden quants are relatively + more important than stem lengths. */ Real Beam::score_forbidden_quants (Real yl, Real yr, @@ -445,92 +447,95 @@ Beam::score_forbidden_quants (Real yl, Real yr, Real slt, Real thickness, Real beam_translation, Drul_array beam_counts, - Direction ldir, Direction rdir) + Direction ldir, Direction rdir, + + Beam_quant_parameters const *parameters) { Real dy = yr - yl; - Drul_array y (yl,yr); - Drul_array dirs (ldir,rdir); - - Real extra_demerit = SECONDARY_BEAM_DEMERIT / (beam_counts[LEFT] >? beam_counts[RIGHT]); + Drul_array y (yl, yr); + Drul_array dirs (ldir, rdir); - /* - Inside the staff, inter quants are forbidden. - */ - Real dem = 0.0; - Direction d = LEFT; - do - { - if (fabs (y[d]) <= (radius + 0.5) && fabs (my_modf (y[d]) - 0.5) < BEAM_EPS) - dem += INTER_QUANT_PENALTY; - } - while ((flip (&d))!= LEFT); + Real extra_demerit = parameters->SECONDARY_BEAM_DEMERIT / (max (beam_counts[LEFT], beam_counts[RIGHT])); + Direction d = LEFT; + Real dem = 0.0; + Real eps = parameters->BEAM_EPS; do { for (int j = 1; j <= beam_counts[d]; j++) { - /* - see if the outer staffline falls in a beam-gap - - This test is too weak; we should really check all lines. - */ Direction stem_dir = dirs[d]; - Real gap1 = y[d] - stem_dir * ((j-1) * beam_translation + thickness / 2 - slt/2 ); - Real gap2 = y[d] - stem_dir * (j * beam_translation - thickness / 2 + slt/2); + + /* + The 2.2 factor is to provide a little leniency for + borderline cases. If we do 2.0, then the upper outer line + will be in the gap of the (2, sit) quant, leading to a + false demerit. + */ + Real gap1 = y[d] - stem_dir * ((j - 1) * beam_translation + thickness / 2 - slt / 2.2); + Real gap2 = y[d] - stem_dir * (j * beam_translation - thickness / 2 + slt / 2.2); Interval gap; gap.add_point (gap1); gap.add_point (gap2); - for (Real k = - radius ; - k <= radius + BEAM_EPS; k += 1.0) + for (Real k = -radius; + k <= radius + eps; k += 1.0) if (gap.contains (k)) - dem += extra_demerit; + { + Real dist = min (fabs (gap[UP] - k), fabs (gap[DOWN] - k)); + + /* + this parameter is tuned to grace-stem-length.ly + */ + Real fixed_demerit = 0.4; + + dem += extra_demerit + * (fixed_demerit + + (1 - fixed_demerit) * (dist / gap.length ()) * 2); + } } } - while ((flip (&d))!= LEFT); - + while ((flip (&d)) != LEFT); - if ((beam_counts[LEFT] >? beam_counts[RIGHT]) >= 2) + if (max (beam_counts[LEFT], beam_counts[RIGHT]) >= 2) { Real straddle = 0.0; Real sit = (thickness - slt) / 2; Real inter = 0.5; Real hang = 1.0 - (thickness - slt) / 2; - Direction d = LEFT; do { if (beam_counts[d] >= 2 && fabs (y[d] - dirs[d] * beam_translation) < radius + inter) { - if (dirs[d] == UP && dy <= BEAM_EPS - && fabs (my_modf (y[d]) - sit) < BEAM_EPS) + if (dirs[d] == UP && dy <= eps + && fabs (my_modf (y[d]) - sit) < eps) dem += extra_demerit; - - if (dirs[d] == DOWN && dy >= BEAM_EPS - && fabs (my_modf (y[d]) - hang) < BEAM_EPS) + + if (dirs[d] == DOWN && dy >= eps + && fabs (my_modf (y[d]) - hang) < eps) dem += extra_demerit; } if (beam_counts[d] >= 3 && fabs (y[d] - 2 * dirs[d] * beam_translation) < radius + inter) { - if (dirs[d] == UP && dy <= BEAM_EPS - && fabs (my_modf (y[d]) - straddle) < BEAM_EPS) + if (dirs[d] == UP && dy <= eps + && fabs (my_modf (y[d]) - straddle) < eps) dem += extra_demerit; - - if (dirs[d] == DOWN && dy >= BEAM_EPS - && fabs (my_modf (y[d]) - straddle) < BEAM_EPS) + + if (dirs[d] == DOWN && dy >= eps + && fabs (my_modf (y[d]) - straddle) < eps) dem += extra_demerit; } } while (flip (&d) != LEFT); } - + return dem; } -