X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fbeam-quanting.cc;h=929cbc385c482574853f53e032f5fbc2e7b54e1c;hb=136bdc3c4835942f396d57ac78df71d97c43d3e8;hp=890e7abe1fff2e181169693e408a67789fd07130;hpb=3189be8f879384108e2d99fe83c972d68c5215dd;p=lilypond.git diff --git a/lily/beam-quanting.cc b/lily/beam-quanting.cc index 890e7abe1f..929cbc385c 100644 --- a/lily/beam-quanting.cc +++ b/lily/beam-quanting.cc @@ -1,52 +1,70 @@ +/* + beam-quanting.cc -- implement Beam quanting functions + + source file of the GNU LilyPond music typesetter + + (c) 1997--2005 Han-Wen Nienhuys + Jan Nieuwenhuizen +*/ + +#include "beam.hh" + +#include #include -#include "grob.hh" +#include "warn.hh" #include "staff-symbol-referencer.hh" -#include "beam.hh" #include "stem.hh" -#include "paper-def.hh" +#include "output-def.hh" #include "group-interface.hh" #include "align-interface.hh" -const int INTER_QUANT_PENALTY = 1000; -const int SECONDARY_BEAM_DEMERIT = 15; +const int INTER_QUANT_PENALTY = 1000; +const Real SECONDARY_BEAM_DEMERIT = 10.0; const int STEM_LENGTH_DEMERIT_FACTOR = 5; +/* + threshold to combat rounding errors. +*/ +const Real BEAM_EPS = 1e-3; + // possibly ridiculous, but too short stems just won't do const int STEM_LENGTH_LIMIT_PENALTY = 5000; -const int DAMPING_DIRECTIION_PENALTY = 800; +const int DAMPING_DIRECTION_PENALTY = 800; const int MUSICAL_DIRECTION_FACTOR = 400; const int IDEAL_SLOPE_FACTOR = 10; - +const Real ROUND_TO_ZERO_SLOPE = 0.02; static Real -shrink_extra_weight (Real x) +shrink_extra_weight (Real x, Real fac) { - return fabs (x) * ((x < 0) ? 1.5 : 1.0); + return fabs (x) * ((x < 0) ? fac : 1.0); } - struct Quant_score { Real yl; Real yr; Real demerits; -}; +#if DEBUG_QUANTING + String score_card_; +#endif +}; /* TODO: - - - Make all demerits customisable - - One sensible check per demerit (what's this --hwn) + - Make all demerits customisable - - Add demerits for quants per se, as to forbid a specific quant - entirely + - One sensible check per demerit (what's this --hwn) + - Add demerits for quants per se, as to forbid a specific quant + entirely */ -int best_quant_score_idx (Array const & qscores) +int +best_quant_score_idx (Array const &qscores) { Real best = 1e6; int best_idx = -1; @@ -54,39 +72,41 @@ int best_quant_score_idx (Array const & qscores) { if (qscores[i].demerits < best) { - best = qscores [i].demerits ; + best = qscores [i].demerits; best_idx = i; } } return best_idx; } - + MAKE_SCHEME_CALLBACK (Beam, quanting, 1); SCM Beam::quanting (SCM smob) { Grob *me = unsmob_grob (smob); - SCM s = me->get_grob_property ("positions"); - Real yl = gh_scm2double (gh_car (s)); - Real yr = gh_scm2double (gh_cdr (s)); + SCM s = me->get_property ("positions"); + Real yl = scm_to_double (scm_car (s)); + Real yr = scm_to_double (scm_cdr (s)); - Real ss = Staff_symbol_referencer::staff_space (me); - Real thickness = gh_scm2double (me->get_grob_property ("thickness")) / ss; - Real slt = me->paper_l ()->get_var ("linethickness") / ss; + /* + Calculations are relative to a unit-scaled staff, i.e. the quants are + divided by the current staff_space. + */ + Real ss = Staff_symbol_referencer::staff_space (me); + Real thickness = Beam::get_thickness (me) / ss; + Real slt = Staff_symbol_referencer::line_thickness (me) / ss; - SCM sdy = me->get_grob_property ("least-squares-dy"); - Real dy_mus = gh_number_p (sdy) ? gh_scm2double (sdy) : 0.0; - + Real dy_mus = robust_scm2double (me->get_property ("least-squares-dy"), 0); Real straddle = 0.0; Real sit = (thickness - slt) / 2; Real inter = 0.5; Real hang = 1.0 - (thickness - slt) / 2; Real quants [] = {straddle, sit, inter, hang }; - - int num_quants = int (sizeof (quants)/sizeof (Real)); + + int num_quants = int (sizeof (quants) / sizeof (Real)); Array quantsl; Array quantsr; @@ -95,28 +115,26 @@ Beam::quanting (SCM smob) wtk1-fugue2. - (result indexes between 70 and 575) ? --hwn. + (result indexes between 70 and 575) ? --hwn. */ - - /* Do stem computations. These depend on YL and YR linearly, so we can precompute for every stem 2 factors. - */ - Link_array stems= - Pointer_group_interface__extract_grobs (me, (Grob*)0, "stems"); + */ + Link_array stems + = extract_grob_array (me, ly_symbol2scm ("stems")); Array stem_infos; Array base_lengths; - Array stem_xposns; + Array stem_xposns; - Drul_array dirs_found(0,0); + Drul_array dirs_found (0, 0); Grob *common[2]; for (int a = 2; a--;) - common[a] = common_refpoint_of_array (stems, me, Axis(a)); + common[a] = common_refpoint_of_array (stems, me, Axis (a)); - Grob * fvs = first_visible_stem (me); + Grob *fvs = first_visible_stem (me); Grob *lvs = last_visible_stem (me); Real xl = fvs ? fvs->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; Real xr = fvs ? lvs->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; @@ -127,41 +145,47 @@ Beam::quanting (SCM smob) Sometimes my head is screwed on backwards. The stemlength are AFFINE linear in YL and YR. If YL == YR == 0, then we might have stem_y != 0.0, when we're cross staff. - - */ - bool french = to_boolean (me->get_grob_property ("french-beaming")); - for (int i= 0; i < stems.size(); i++) + + */ + for (int i = 0; i < stems.size (); i++) { - Grob*s = stems[i]; - stem_infos.push (Stem::calc_stem_info (s)); + Grob *s = stems[i]; + + Stem_info si (Stem::get_stem_info (s)); + si.scale (1 / ss); + stem_infos.push (si); dirs_found[stem_infos.top ().dir_] = true; - bool f = french && i > 0&& (i < stems.size () -1); + bool f = to_boolean (s->get_property ("french-beaming")) + && s != lvs && s != fvs; + base_lengths.push (calc_stem_y (me, s, common, xl, xr, - Interval (0,0), f)); + Interval (0, 0), f) / ss); stem_xposns.push (s->relative_coordinate (common[X_AXIS], X_AXIS)); } - bool xstaff= false; + bool xstaff = false; if (lvs && fvs) { Grob *commony = fvs->common_refpoint (lvs, Y_AXIS); xstaff = Align_interface::has_interface (commony); } - + Direction ldir = Direction (stem_infos[0].dir_); Direction rdir = Direction (stem_infos.top ().dir_); - bool knee_b = dirs_found[LEFT] && dirs_found[RIGHT]; - + bool is_knee = dirs_found[LEFT] && dirs_found[RIGHT]; int region_size = REGION_SIZE; /* - Knees are harder, lets try some more possibilities for knees. - */ - if (knee_b) + Knees are harder, lets try some more possibilities for knees. + */ + if (is_knee) region_size += 2; - - for (int i = -region_size ; i < region_size; i++) + + /* + Asymetry ? should run to <= region_size ? + */ + for (int i = -region_size; i < region_size; i++) for (int j = 0; j < num_quants; j++) { quantsl.push (i + quants[j] + int (yl)); @@ -169,159 +193,210 @@ Beam::quanting (SCM smob) } Array qscores; - - for (int l =0; l < quantsl.size (); l++) - for (int r =0; r < quantsr.size (); r++) + + for (int l = 0; l < quantsl.size (); l++) + for (int r = 0; r < quantsr.size (); r++) { Quant_score qs; qs.yl = quantsl[l]; qs.yr = quantsr[r]; qs.demerits = 0.0; - + qscores.push (qs); } - /* - This is a longish function, but we don't separate this out into - neat modular separate subfunctions, as the subfunctions would be - called for many values of YL, YR. By precomputing various - parameters outside of the loop, we can save a lot of time. - */ - + /* This is a longish function, but we don't separate this out into + neat modular separate subfunctions, as the subfunctions would be + called for many values of YL, YR. By precomputing various + parameters outside of the loop, we can save a lot of time. */ for (int i = qscores.size (); i--;) { - qscores[i].demerits - += score_slopes_dy (qscores[i].yl, qscores[i].yr, - dy_mus, yr- yl, xstaff); + Real d = score_slopes_dy (qscores[i].yl, qscores[i].yr, + dy_mus, yr- yl, + xr - xl, + xstaff); + qscores[i].demerits += d; + +#if DEBUG_QUANTING + qscores[i].score_card_ += to_string ("S%.2f", d); +#endif } Real rad = Staff_symbol_referencer::staff_radius (me); - int beam_count = get_beam_count (me); - Real beam_translation = beam_count < 4 - ? (2*ss + slt - thickness) / 2.0 - : (3*ss + slt - thickness) / 3.0; + Drul_array edge_beam_counts + (Stem::beam_multiplicity (stems[0]).length () + 1, + Stem::beam_multiplicity (stems.top ()).length () + 1); + + Real beam_translation = get_beam_translation (me) / ss; - Real reasonable_score = (knee_b) ? 200000 : 100; + Real reasonable_score = (is_knee) ? 200000 : 100; for (int i = qscores.size (); i--;) if (qscores[i].demerits < reasonable_score) { - qscores[i].demerits - += score_forbidden_quants (qscores[i].yl, qscores[i].yr, - rad, slt, thickness, beam_translation, - beam_count, ldir, rdir); - } + Real d = score_forbidden_quants (qscores[i].yl, qscores[i].yr, + rad, slt, thickness, beam_translation, + edge_beam_counts, ldir, rdir); + qscores[i].demerits += d; +#if DEBUG_QUANTING + qscores[i].score_card_ += to_string (" F %.2f", d); +#endif + } for (int i = qscores.size (); i--;) if (qscores[i].demerits < reasonable_score) { - qscores[i].demerits - += score_stem_lengths (stems, stem_infos, - base_lengths, stem_xposns, - xl, xr, - knee_b, - qscores[i].yl, qscores[i].yr); - } + Real d = score_stem_lengths (stems, stem_infos, + base_lengths, stem_xposns, + xl, xr, + is_knee, + qscores[i].yl, qscores[i].yr); + qscores[i].demerits += d; +#if DEBUG_QUANTING + qscores[i].score_card_ += to_string (" L %.2f", d); +#endif + } int best_idx = best_quant_score_idx (qscores); - me->set_grob_property ("positions", - gh_cons (gh_double2scm (qscores[best_idx].yl), - gh_double2scm (qscores[best_idx].yr)) - ); + +#if DEBUG_QUANTING + SCM inspect_quants = me->get_property ("inspect-quants"); + if ( to_boolean (me->get_layout ()->lookup_variable (ly_symbol2scm ("debug-beam-quanting"))) + && scm_is_pair (inspect_quants)) + { + Drul_array ins = ly_scm2interval (inspect_quants); + int i = 0; + + Real mindist = 1e6; + for (; i < qscores.size (); i++) + { + Real d = fabs (qscores[i].yl- ins[LEFT]) + fabs (qscores[i].yr - ins[RIGHT]); + if (d < mindist) + { + best_idx = i; + mindist = d; + } + } + if (mindist > 1e5) + programming_error ("can't find quant"); + } +#endif + if (best_idx < 0) + { + warning (_ ("no feasible beam position")); + me->set_property ("positions", ly_interval2scm (Interval (0,0))); + } + else + me->set_property ("positions", + ly_interval2scm (Drul_array (qscores[best_idx].yl, + qscores[best_idx].yr))); #if DEBUG_QUANTING + if (best_idx >= 0 + && to_boolean (me->get_layout ()->lookup_variable (ly_symbol2scm ("debug-beam-quanting")))) + { + qscores[best_idx].score_card_ += to_string ("i%d", best_idx); - // debug quanting - me->set_grob_property ("quant-score", - gh_double2scm (qscores[best_idx].demerits)); - me->set_grob_property ("best-idx", gh_int2scm (best_idx)); + // debug quanting + me->set_property ("quant-score", + scm_makfrom0str (qscores[best_idx].score_card_.to_str0 ())); + } #endif return SCM_UNSPECIFIED; } Real -Beam::score_stem_lengths (Link_arraystems, - Array stem_infos, - Array base_stem_ys, - Array stem_xs, - Real xl, Real xr, - bool knee, +Beam::score_stem_lengths (Link_array const &stems, + Array const &stem_infos, + Array const &base_stem_ys, + Array const &stem_xs, + Real xl, Real xr, + bool knee, Real yl, Real yr) { - Real pen = STEM_LENGTH_LIMIT_PENALTY; - + Real limit_penalty = STEM_LENGTH_LIMIT_PENALTY; Drul_array score (0, 0); Drul_array count (0, 0); - for (int i=0; i < stems.size (); i++) + + for (int i = 0; i < stems.size (); i++) { - Grob* s = stems[i]; - if (Stem::invisible_b (s)) + Grob *s = stems[i]; + if (Stem::is_invisible (s)) continue; Real x = stem_xs[i]; - Real dx = xr-xl; - Real beam_y = yr *(x - xl)/dx + yl * ( xr - x)/dx; + Real dx = xr - xl; + Real beam_y = dx ? yr * (x - xl) / dx + yl * (xr - x) / dx : (yr + yl) / 2; Real current_y = beam_y + base_stem_ys[i]; - + Real length_pen = STEM_LENGTH_DEMERIT_FACTOR; + Stem_info info = stem_infos[i]; Direction d = info.dir_; - score[d] += pen - * (0 >? (d * (info.shortest_y_ - current_y))); + score[d] += limit_penalty * max (0.0, (d * (info.shortest_y_ - current_y))); - Real ideal_score = shrink_extra_weight (d * current_y - d * info.ideal_y_); - - /* + Real ideal_diff = d * (current_y - info.ideal_y_); + Real ideal_score = shrink_extra_weight (ideal_diff, 1.5); - we introduce a power, to make the scoring strictly - convex. Otherwise a symmetric knee beam (up/down/up/down) does - not have an optimum in the middle. - - */ + /* We introduce a power, to make the scoring strictly + convex. Otherwise a symmetric knee beam (up/down/up/down) + does not have an optimum in the middle. */ if (knee) ideal_score = pow (ideal_score, 1.1); - score[d] += STEM_LENGTH_DEMERIT_FACTOR * ideal_score; - count[d] ++; + score[d] += length_pen * ideal_score; + + count[d]++; } - - if(count[LEFT]) - score[LEFT] /= count[LEFT]; - if(count[RIGHT]) - score[RIGHT] /= count[RIGHT]; - return score[LEFT]+score[RIGHT]; + Direction d = DOWN; + do + { + score[d] /= max (count[d], 1); + } + while (flip (&d) != DOWN); + + return score[LEFT] + score[RIGHT]; } Real Beam::score_slopes_dy (Real yl, Real yr, Real dy_mus, Real dy_damp, + Real dx, bool xstaff) { Real dy = yr - yl; - Real dem = 0.0; - if (sign (dy_damp) != sign (dy)) + + /* + DAMPING_DIRECTION_PENALTY is a very harsh measure, while for + complex beaming patterns, horizontal is often a good choice. + + TODO: find a way to incorporate the complexity of the beam in this + penalty. + */ + if (fabs (dy / dx) > ROUND_TO_ZERO_SLOPE + && sign (dy_damp) != sign (dy)) { - dem += DAMPING_DIRECTIION_PENALTY; + dem += DAMPING_DIRECTION_PENALTY; } - dem += MUSICAL_DIRECTION_FACTOR * (0 >? (fabs (dy) - fabs (dy_mus))); + dem += MUSICAL_DIRECTION_FACTOR * max (0.0, (fabs (dy) - fabs (dy_mus))); + Real slope_penalty = IDEAL_SLOPE_FACTOR; - Real slope_penalty = IDEAL_SLOPE_FACTOR; + /* Xstaff beams tend to use extreme slopes to get short stems. We + put in a penalty here. */ + if (xstaff) + slope_penalty *= 10; - /* - Xstaff beams tend to use extreme slopes to get short stems. We - put in a penalty here. - */ - if (xstaff) - slope_penalty *= 10; + /* Huh, why would a too steep beam be better than a too flat one ? */ + dem += shrink_extra_weight (fabs (dy_damp) - fabs (dy), 1.5) + * slope_penalty; - dem += shrink_extra_weight (fabs (dy_damp) - fabs (dy))* slope_penalty; - return dem; + return dem; } static Real @@ -330,101 +405,103 @@ my_modf (Real x) return x - floor (x); } +/* + TODO: The fixed value SECONDARY_BEAM_DEMERIT is probably flawed: + because for 32nd and 64th beams the forbidden quants are relatively + more important than stem lengths. +*/ Real Beam::score_forbidden_quants (Real yl, Real yr, - Real rad, + Real radius, Real slt, Real thickness, Real beam_translation, - int beam_count, + Drul_array beam_counts, Direction ldir, Direction rdir) { Real dy = yr - yl; + Drul_array y (yl, yr); + Drul_array dirs (ldir, rdir); + Real extra_demerit = SECONDARY_BEAM_DEMERIT / (max (beam_counts[LEFT], beam_counts[RIGHT])); + + Direction d = LEFT; Real dem = 0.0; - if (fabs (yl) < rad && fabs ( my_modf (yl) - 0.5) < 1e-3) - dem += INTER_QUANT_PENALTY; - if (fabs (yr) < rad && fabs ( my_modf (yr) - 0.5) < 1e-3) - dem += INTER_QUANT_PENALTY; - // todo: use beam_count of outer stems. - if (beam_count >= 2) + do + { + for (int j = 1; j <= beam_counts[d]; j++) + { + Direction stem_dir = dirs[d]; + + /* + The 2.2 factor is to provide a little leniency for + borderline cases. If we do 2.0, then the upper outer line + will be in the gap of the (2, sit) quant, leading to a + false demerit. + */ + Real gap1 = y[d] - stem_dir * ((j - 1) * beam_translation + thickness / 2 - slt / 2.2); + Real gap2 = y[d] - stem_dir * (j * beam_translation - thickness / 2 + slt / 2.2); + + Interval gap; + gap.add_point (gap1); + gap.add_point (gap2); + + for (Real k = -radius; + k <= radius + BEAM_EPS; k += 1.0) + if (gap.contains (k)) + { + Real dist = min (fabs (gap[UP] - k), fabs (gap[DOWN] - k)); + + /* + this parameter is tuned to grace-stem-length.ly + */ + Real fixed_demerit = 0.4; + + dem += extra_demerit + * (fixed_demerit + + (1 - fixed_demerit) * (dist / gap.length ()) * 2); + } + } + } + while ((flip (&d)) != LEFT); + + if (max (beam_counts[LEFT], beam_counts[RIGHT]) >= 2) { - Real straddle = 0.0; Real sit = (thickness - slt) / 2; Real inter = 0.5; Real hang = 1.0 - (thickness - slt) / 2; - - - if (fabs (yl - ldir * beam_translation) < rad - && fabs (my_modf (yl) - inter) < 1e-3) - dem += SECONDARY_BEAM_DEMERIT; - if (fabs (yr - rdir * beam_translation) < rad - && fabs (my_modf (yr) - inter) < 1e-3) - dem += SECONDARY_BEAM_DEMERIT; - - Real eps = 1e-3; - - /* - Can't we simply compute the distance between the nearest - staffline and the secondary beam? That would get rid of the - silly case analysis here (which is probably not when we have - different beam-thicknesses.) - - --hwn - */ - - // hmm, without Interval/Drul_array, you get ~ 4x same code... - if (fabs (yl - ldir * beam_translation) < rad + inter) - { - if (ldir == UP && dy <= eps - && fabs (my_modf (yl) - sit) < eps) - dem += SECONDARY_BEAM_DEMERIT; - - if (ldir == DOWN && dy >= eps - && fabs (my_modf (yl) - hang) < eps) - dem += SECONDARY_BEAM_DEMERIT; - } - - if (fabs (yr - rdir * beam_translation) < rad + inter) + Direction d = LEFT; + do { - if (rdir == UP && dy >= eps - && fabs (my_modf (yr) - sit) < eps) - dem += SECONDARY_BEAM_DEMERIT; - - if (rdir == DOWN && dy <= eps - && fabs (my_modf (yr) - hang) < eps) - dem += SECONDARY_BEAM_DEMERIT; - } - - if (beam_count >= 3) - { - if (fabs (yl - 2 * ldir * beam_translation) < rad + inter) + if (beam_counts[d] >= 2 + && fabs (y[d] - dirs[d] * beam_translation) < radius + inter) { - if (ldir == UP && dy <= eps - && fabs (my_modf (yl) - straddle) < eps) - dem += SECONDARY_BEAM_DEMERIT; - - if (ldir == DOWN && dy >= eps - && fabs (my_modf (yl) - straddle) < eps) - dem += SECONDARY_BEAM_DEMERIT; - } - - if (fabs (yr - 2 * rdir * beam_translation) < rad + inter) + if (dirs[d] == UP && dy <= BEAM_EPS + && fabs (my_modf (y[d]) - sit) < BEAM_EPS) + dem += extra_demerit; + + if (dirs[d] == DOWN && dy >= BEAM_EPS + && fabs (my_modf (y[d]) - hang) < BEAM_EPS) + dem += extra_demerit; + } + + if (beam_counts[d] >= 3 + && fabs (y[d] - 2 * dirs[d] * beam_translation) < radius + inter) { - if (rdir == UP && dy >= eps - && fabs (my_modf (yr) - straddle) < eps) - dem += SECONDARY_BEAM_DEMERIT; - - if (rdir == DOWN && dy <= eps - && fabs (my_modf (yr) - straddle) < eps) - dem += SECONDARY_BEAM_DEMERIT; + if (dirs[d] == UP && dy <= BEAM_EPS + && fabs (my_modf (y[d]) - straddle) < BEAM_EPS) + dem += extra_demerit; + + if (dirs[d] == DOWN && dy >= BEAM_EPS + && fabs (my_modf (y[d]) - straddle) < BEAM_EPS) + dem += extra_demerit; } } + while (flip (&d) != LEFT); } - + return dem; } -