X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fbeam-quanting.cc;h=1315c2dba720813d0ed4cc4cd4f8147446a34e86;hb=e3a15ec3c1951dd16f6ee71fbd79870d9e2fb3a0;hp=04ee4217cea944cceed7eefe84b81d7c734529bf;hpb=ac94780f53268682e00c7fd186e1f9d0520ca25c;p=lilypond.git diff --git a/lily/beam-quanting.cc b/lily/beam-quanting.cc index 04ee4217ce..6b495b3794 100644 --- a/lily/beam-quanting.cc +++ b/lily/beam-quanting.cc @@ -1,338 +1,622 @@ /* - beam-quanting.cc -- implement Beam quanting functions - - source file of the GNU LilyPond music typesetter - - (c) 1997--2003 Han-Wen Nienhuys + This file is part of LilyPond, the GNU music typesetter. + + Copyright (C) 1997--2011 Han-Wen Nienhuys Jan Nieuwenhuizen - -*/ + LilyPond is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + LilyPond is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + You should have received a copy of the GNU General Public License + along with LilyPond. If not, see . +*/ + +#include "beam-scoring-problem.hh" -#include +#include +#include +#include +using namespace std; +#include "align-interface.hh" +#include "beam.hh" +#include "direction.hh" +#include "directional-element-interface.hh" #include "grob.hh" +#include "international.hh" +#include "main.hh" +#include "output-def.hh" +#include "pointer-group-interface.hh" #include "staff-symbol-referencer.hh" -#include "beam.hh" +#include "stencil.hh" #include "stem.hh" -#include "paper-def.hh" -#include "group-interface.hh" -#include "align-interface.hh" +#include "warn.hh" -const int INTER_QUANT_PENALTY = 1000; -const int SECONDARY_BEAM_DEMERIT = 15; -const int STEM_LENGTH_DEMERIT_FACTOR = 5; +Real +get_detail (SCM alist, SCM sym, Real def) +{ + SCM entry = scm_assq (sym, alist); -// possibly ridiculous, but too short stems just won't do -const int STEM_LENGTH_LIMIT_PENALTY = 5000; -const int DAMPING_DIRECTIION_PENALTY = 800; -const int MUSICAL_DIRECTION_FACTOR = 400; -const int IDEAL_SLOPE_FACTOR = 10; + if (scm_is_pair (entry)) + return robust_scm2double (scm_cdr (entry), def); + return def; +} +void +Beam_quant_parameters::fill (Grob *him) +{ + SCM details = him->get_property ("details"); + + // General + BEAM_EPS = get_detail (details, ly_symbol2scm ("beam-eps"), 1e-3); + REGION_SIZE = get_detail (details, ly_symbol2scm ("region-size"), 2); + + // forbidden quants + SECONDARY_BEAM_DEMERIT = get_detail (details, ly_symbol2scm ("secondary-beam-demerit"), 10.0); + STEM_LENGTH_DEMERIT_FACTOR = get_detail (details, ly_symbol2scm ("stem-length-demerit-factor"), 5); + HORIZONTAL_INTER_QUANT_PENALTY = get_detail (details, ly_symbol2scm ("horizontal-inter-quant"), 500); + + STEM_LENGTH_LIMIT_PENALTY = get_detail (details, ly_symbol2scm ("stem-length-limit-penalty"), 5000); + DAMPING_DIRECTION_PENALTY = get_detail (details, ly_symbol2scm ("damping-direction-penalty"), 800); + HINT_DIRECTION_PENALTY = get_detail (details, ly_symbol2scm ("hint-direction-penalty"), 20); + MUSICAL_DIRECTION_FACTOR = get_detail (details, ly_symbol2scm ("musical-direction-factor"), 400); + IDEAL_SLOPE_FACTOR = get_detail (details, ly_symbol2scm ("ideal-slope-factor"), 10); + ROUND_TO_ZERO_SLOPE = get_detail (details, ly_symbol2scm ("round-to-zero-slope"), 0.02); + + // Collisions + COLLISION_PENALTY = get_detail (details, ly_symbol2scm ("collision-penalty"), 500); + COLLISION_PADDING = get_detail (details, ly_symbol2scm ("collision-padding"), 0.5); + STEM_COLLISION_FACTOR = get_detail (details, ly_symbol2scm ("stem-collision-factor"), 0.1); +} +// Add x if x is positive, add |x|*fac if x is negative. static Real shrink_extra_weight (Real x, Real fac) { return fabs (x) * ((x < 0) ? fac : 1.0); } +/****************************************************************/ -struct Quant_score +Beam_configuration::Beam_configuration () { - Real yl; - Real yr; - Real demerits; -}; + y = Interval (0.0, 0.0); + demerits = 0.0; + next_scorer_todo = ORIGINAL_DISTANCE; +} +bool Beam_configuration::done () const +{ + return next_scorer_todo >= NUM_SCORERS; +} -/* - TODO: +void Beam_configuration::add (Real demerit, const string &reason) +{ + demerits += demerit; + +#if DEBUG_BEAM_SCORING + if (demerit) + score_card_ += to_string (" %s %.2f", reason.c_str (), demerit); +#endif +} - - Make all demerits customisable +Beam_configuration* Beam_configuration::new_config (Interval start, + Interval offset) +{ + Beam_configuration* qs = new Beam_configuration; + qs->y = Interval (int (start[LEFT]) + offset[LEFT], + int (start[RIGHT]) + offset[RIGHT]); + + // This orders the sequence so we try combinations closest to the + // the ideal offset first. + Real start_score = abs (offset[RIGHT]) + abs (offset[LEFT]); + qs->demerits = start_score / 1000.0; + qs->next_scorer_todo = ORIGINAL_DISTANCE + 1; + + return qs; +} - - One sensible check per demerit (what's this --hwn) +Real +Beam_scoring_problem::y_at (Real x, Beam_configuration const* p) const { + return p->y[LEFT] + (x - x_span[LEFT]) * p->y.delta() / x_span.delta(); +} - - Add demerits for quants per se, as to forbid a specific quant - entirely +/****************************************************************/ -*/ +/* + TODO: -int best_quant_score_idx (Array const & qscores) -{ - Real best = 1e6; - int best_idx = -1; - for (int i = qscores.size (); i--;) - { - if (qscores[i].demerits < best) - { - best = qscores [i].demerits ; - best_idx = i; - } - } + - Make all demerits customisable + + - Add demerits for quants per se, as to forbid a specific quant + entirely +*/ - return best_idx; +// This is a temporary hack to see how much we can gain by using a +// priority queue on the beams to score. +static int score_count = 0; +LY_DEFINE (ly_beam_score_count, "ly:beam-score-count", 0, 0, 0, + (), + "count number of beam scores.") { + return scm_from_int (score_count); } - -MAKE_SCHEME_CALLBACK (Beam, quanting, 1); -SCM -Beam::quanting (SCM smob) + +void Beam_scoring_problem::add_collision (Real x, Interval y, + Real score_factor) { - Grob *me = unsmob_grob (smob); + if (edge_dirs[LEFT] == edge_dirs[RIGHT]) { + Direction d = edge_dirs[LEFT]; - SCM s = me->get_grob_property ("positions"); - Real yl = gh_scm2double (gh_car (s)); - Real yr = gh_scm2double (gh_cdr (s)); + Real quant_range_y = quant_range[LEFT][-d] + + (x - x_span[LEFT]) * (quant_range[RIGHT][-d] - quant_range[LEFT][-d]) / x_span.delta(); - Real ss = Staff_symbol_referencer::staff_space (me); - Real thickness = gh_scm2double (me->get_grob_property ("thickness")) / ss; - Real slt = me->get_paper ()->get_var ("linethickness") / ss; + if (d*(quant_range_y - minmax(d, y[UP], y[DOWN])) > 0) { + return; + } + } + Beam_collision c; + c.beam_y_.set_empty (); - SCM sdy = me->get_grob_property ("least-squares-dy"); - Real dy_mus = gh_number_p (sdy) ? gh_scm2double (sdy) : 0.0; - - Real straddle = 0.0; - Real sit = (thickness - slt) / 2; - Real inter = 0.5; - Real hang = 1.0 - (thickness - slt) / 2; - Real quants [] = {straddle, sit, inter, hang }; + for (vsize j = 0; j < segments_.size (); j++) + { + if (segments_[j].horizontal_.contains(x)) + c.beam_y_.add_point (segments_[j].vertical_count_ * beam_translation); + if (segments_[j].horizontal_[LEFT] > x) + break; + } + c.beam_y_.widen (0.5 * beam_thickness); - int num_quants = int (sizeof (quants)/sizeof (Real)); - Array quantsl; - Array quantsr; + c.x_ = x; + c.y_ = y; + c.base_penalty_ = score_factor; + collisions_.push_back (c); +} - /* - going to REGION_SIZE == 2, yields another 0.6 second with - wtk1-fugue2. +void Beam_scoring_problem::init_collisions (vector grobs) +{ + Grob* common_x = NULL; + segments_ = Beam::get_beam_segments (beam, &common_x); + vector_sort (segments_, beam_segment_less); + if (common[X_AXIS] != common_x) + { + programming_error ("Disagree on common x. Skipping collisions in beam scoring."); + return; + } + set stems; + for (vsize i = 0; i < grobs.size (); i++) { + Box b; - (result indexes between 70 and 575) ? --hwn. + for (Axis a = X_AXIS; a < NO_AXES; incr (a)) + b[a] = grobs[i]->extent(common[a], a); - */ + Real width = b[X_AXIS].length(); + Real width_factor = sqrt(width / staff_space); + Direction d = LEFT; + do + add_collision (b[X_AXIS][d], b[Y_AXIS], width_factor); + while (flip (&d) != LEFT); + + Grob* stem = unsmob_grob (grobs[i]->get_object ("stem")); + if (stem && Stem::has_interface (stem) && Stem::is_normal_stem (stem)) + { + stems.insert (stem); + } + } - /* - Do stem computations. These depend on YL and YR linearly, so we can - precompute for every stem 2 factors. - */ - Link_array stems= - Pointer_group_interface__extract_grobs (me, (Grob*)0, "stems"); - Array stem_infos; - Array base_lengths; - Array stem_xposns; - - Drul_array dirs_found(0,0); - Grob *common[2]; + for (set::const_iterator it(stems.begin ()); it != stems.end (); it++) + { + Grob *s = *it; + Real x = s->extent (common[X_AXIS], X_AXIS).center(); + + Direction stem_dir = get_grob_direction (*it); + Interval y; + y.set_full (); + y[-stem_dir] = Stem::chord_start_y (*it) + (*it)->relative_coordinate (common[Y_AXIS], Y_AXIS) + - beam->relative_coordinate (common[Y_AXIS], Y_AXIS); + + Real factor = parameters.STEM_COLLISION_FACTOR; + if (!unsmob_grob (s->get_object ("beam")) + && !Stem::flag (s).is_empty ()) + factor = 1.0; + add_collision (x, y, factor); + } +} + +void Beam_scoring_problem::init_stems () +{ + extract_grob_set (beam, "covered-grobs", collisions); + extract_grob_set (beam, "stems", stems); for (int a = 2; a--;) - common[a] = common_refpoint_of_array (stems, me, Axis(a)); - - Grob * fvs = first_visible_stem (me); - Grob *lvs = last_visible_stem (me); - Real xl = fvs ? fvs->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; - Real xr = fvs ? lvs->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; - - /* - We store some info to quickly interpolate. - - Sometimes my head is screwed on backwards. The stemlength are - AFFINE linear in YL and YR. If YL == YR == 0, then we might have - stem_y != 0.0, when we're cross staff. - - */ - bool french = to_boolean (me->get_grob_property ("french-beaming")); - for (int i= 0; i < stems.size(); i++) { - Grob*s = stems[i]; - stem_infos.push (Stem::get_stem_info (s)); - dirs_found[stem_infos.top ().dir_] = true; - - bool f = french && i > 0&& (i < stems.size () -1); - base_lengths.push (calc_stem_y (me, s, common, xl, xr, - Interval (0,0), f)); - stem_xposns.push (s->relative_coordinate (common[X_AXIS], X_AXIS)); + common[a] = common_refpoint_of_array (stems, beam, Axis (a)); + common[a] = common_refpoint_of_array (collisions, common[a], Axis (a)); } - - bool xstaff= false; - if (lvs && fvs) + + Drul_array edge_stems(Beam::first_normal_stem (beam), + Beam::last_normal_stem (beam)); + Direction d = LEFT; + do + x_span[d] = edge_stems[d] ? edge_stems[d]->relative_coordinate (common[X_AXIS], X_AXIS) : 0.0; + while (flip (&d) != LEFT); + + Drul_array dirs_found (0, 0); + for (vsize i = 0; i < stems.size (); i++) + { + Grob *s = stems[i]; + if (!Stem::is_normal_stem (s)) + continue; + + Stem_info si (Stem::get_stem_info (s)); + si.scale (1 / staff_space); + stem_infos.push_back (si); + dirs_found[si.dir_] = true; + + bool f = to_boolean (s->get_property ("french-beaming")) + && s != edge_stems[LEFT] && s != edge_stems[RIGHT]; + + Real y = Beam::calc_stem_y (beam, s, common, x_span[LEFT], x_span[RIGHT], CENTER, + Interval (0, 0), f); + base_lengths.push_back (y / staff_space); + stem_xpositions.push_back (s->relative_coordinate (common[X_AXIS], X_AXIS)); + } + + edge_dirs = Drul_array (CENTER, CENTER); + if (stem_infos.size ()) { - Grob *commony = fvs->common_refpoint (lvs, Y_AXIS); - xstaff = Align_interface::has_interface (commony); + edge_dirs = Drul_array (stem_infos[0].dir_, + stem_infos.back().dir_); } + + is_xstaff = Align_interface::has_interface (common[Y_AXIS]); + is_knee = dirs_found[LEFT] && dirs_found[RIGHT]; - Direction ldir = Direction (stem_infos[0].dir_); - Direction rdir = Direction (stem_infos.top ().dir_); - bool knee_b = dirs_found[LEFT] && dirs_found[RIGHT]; + staff_radius = Staff_symbol_referencer::staff_radius (beam); + edge_beam_counts = Drul_array + (Stem::beam_multiplicity (stems[0]).length () + 1, + Stem::beam_multiplicity (stems.back ()).length () + 1); + // TODO - why are we dividing by staff_space? + beam_translation = Beam::get_beam_translation (beam) / staff_space; - int region_size = REGION_SIZE; + d = LEFT; + do + { + quant_range[d].set_full (); + if (!edge_stems[d]) + continue; + + Real stem_offset = edge_stems[d]->relative_coordinate (common[Y_AXIS], Y_AXIS) + - beam->relative_coordinate (common[Y_AXIS], Y_AXIS); + Interval heads = Stem::head_positions(edge_stems[d]) * 0.5 * staff_space; + + Direction ed = edge_dirs[d]; + heads.widen(0.5 * staff_space + + (edge_beam_counts[d] - 1) * beam_translation + beam_thickness * .5); + quant_range[d][-ed] = heads[ed] + stem_offset; + } + while (flip (&d) != LEFT); + + init_collisions (collisions); +} + +Beam_scoring_problem::Beam_scoring_problem (Grob *me, Drul_array ys) +{ + beam = me; + unquanted_y = ys; + /* - Knees are harder, lets try some more possibilities for knees. - */ - if (knee_b) + Calculations are relative to a unit-scaled staff, i.e. the quants are + divided by the current staff_space. + */ + staff_space = Staff_symbol_referencer::staff_space (me); + beam_thickness = Beam::get_beam_thickness (me) / staff_space; + line_thickness = Staff_symbol_referencer::line_thickness (me) / staff_space; + + // This is the least-squares DY, corrected for concave beams. + musical_dy = robust_scm2double (me->get_property ("least-squares-dy"), 0); + + parameters.fill (me); + init_stems (); +} + +void +Beam_scoring_problem::generate_quants (vector *scores) const +{ + int region_size = (int) parameters.REGION_SIZE; + + // Knees and collisions are harder, lets try some more possibilities + if (is_knee) + region_size += 2; + if (collisions_.size ()) region_size += 2; + + Real straddle = 0.0; + Real sit = (beam_thickness - line_thickness) / 2; + Real inter = 0.5; + Real hang = 1.0 - (beam_thickness - line_thickness) / 2; + Real base_quants [] = {straddle, sit, inter, hang}; + int num_base_quants = int (sizeof (base_quants) / sizeof (Real)); /* Asymetry ? should run to <= region_size ? - */ - for (int i = -region_size ; i < region_size; i++) - for (int j = 0; j < num_quants; j++) + */ + vector unshifted_quants; + for (int i = -region_size; i < region_size; i++) + for (int j = 0; j < num_base_quants; j++) { - quantsl.push (i + quants[j] + int (yl)); - quantsr.push (i + quants[j] + int (yr)); + unshifted_quants.push_back (i + base_quants[j]); } - Array qscores; - - for (int l =0; l < quantsl.size (); l++) - for (int r =0; r < quantsr.size (); r++) + for (vsize i = 0; i < unshifted_quants.size (); i++) + for (vsize j = 0; j < unshifted_quants.size (); j++) { - Quant_score qs; - qs.yl = quantsl[l]; - qs.yr = quantsr[r]; - qs.demerits = 0.0; - - qscores.push (qs); + Beam_configuration *c = + Beam_configuration::new_config (unquanted_y, + Interval (unshifted_quants[i], + unshifted_quants[j])); + + Direction d = LEFT; + do + { + if (!quant_range[d].contains (c->y[d])) + { + delete c; + c = NULL; + break; + } + } + while (flip (&d) != LEFT); + if (c) + scores->push_back (c); } + +} + - /* This is a longish function, but we don't separate this out into - neat modular separate subfunctions, as the subfunctions would be - called for many values of YL, YR. By precomputing various - parameters outside of the loop, we can save a lot of time. */ - for (int i = qscores.size (); i--;) +void Beam_scoring_problem::one_scorer (Beam_configuration* config) const +{ + score_count ++; + switch (config->next_scorer_todo) { + case SLOPE_IDEAL: + score_slope_ideal (config); + break; + case SLOPE_DIRECTION: + score_slope_direction (config); + break; + case SLOPE_MUSICAL: + score_slope_musical (config); + break; + case FORBIDDEN: + score_forbidden_quants (config); + break; + case STEM_LENGTHS: + score_stem_lengths (config); + break; + case COLLISIONS: + score_collisions (config); + break; + case HORIZONTAL_INTER: + score_horizontal_inter_quants (config); + break; + + case NUM_SCORERS: + case ORIGINAL_DISTANCE: + default: + assert (false); + } + config->next_scorer_todo++; +} + + +Beam_configuration * +Beam_scoring_problem::force_score (SCM inspect_quants, const vector &configs) const +{ + Drul_array ins = ly_scm2interval (inspect_quants); + Real mindist = 1e6; + Beam_configuration *best = NULL; + for (vsize i = 0; i < configs.size (); i++) { - qscores[i].demerits - += score_slopes_dy (qscores[i].yl, qscores[i].yr, - dy_mus, yr- yl, xstaff); + Real d = fabs (configs[i]->y[LEFT]- ins[LEFT]) + fabs (configs[i]->y[RIGHT] - ins[RIGHT]); + if (d < mindist) + { + best = configs[i]; + mindist = d; + } } + if (mindist > 1e5) + programming_error ("cannot find quant"); - Real rad = Staff_symbol_referencer::staff_radius (me); - int beam_count = get_beam_count (me); - Real beam_translation = get_beam_translation (me); + while (!best->done ()) + one_scorer (best); + + return best; +} - Real reasonable_score = (knee_b) ? 200000 : 100; - for (int i = qscores.size (); i--;) - if (qscores[i].demerits < reasonable_score) - { - qscores[i].demerits - += score_forbidden_quants (qscores[i].yl, qscores[i].yr, - rad, slt, thickness, beam_translation, - beam_count, ldir, rdir); - } +Drul_array +Beam_scoring_problem::solve () const { + vector configs; + generate_quants (&configs); - // ; /* silly gdb thinks best_idx is inside for loop. */ - for (int i = qscores.size (); i--;) - if (qscores[i].demerits < reasonable_score) - { - qscores[i].demerits - += score_stem_lengths (stems, stem_infos, - base_lengths, stem_xposns, - xl, xr, - knee_b, - qscores[i].yl, qscores[i].yr); - } + Beam_configuration *best = NULL; + + bool debug = + to_boolean (beam->layout ()->lookup_variable (ly_symbol2scm ("debug-beam-scoring"))); + SCM inspect_quants = beam->get_property ("inspect-quants"); + if (scm_is_pair (inspect_quants)) + { + debug = true; + best = force_score (inspect_quants, configs); + } + else + { + std::priority_queue, + Beam_configuration_less> queue; + for (vsize i = 0; i < configs.size(); i++) + queue.push(configs[i]); - // ; /* silly gdb thinks best_idx is inside for loop. */ - int best_idx = best_quant_score_idx (qscores); - me->set_grob_property ("positions", - gh_cons (gh_double2scm (qscores[best_idx].yl), - gh_double2scm (qscores[best_idx].yr)) - ); + /* + TODO + + It would be neat if we generated new configurations on the + fly, depending on the best complete score so far, eg. + + if (best->done()) { + if (best->demerits < sqrt(queue.size()) + break; + while (best->demerits > sqrt(queue.size()) { + generate and insert new configuration + } + } + + that would allow us to do away with region_size altogether. + */ + while (true) { + best = queue.top (); + if (best->done ()) + break; + + queue.pop (); + one_scorer (best); + queue.push (best); + } + } -#if DEBUG_QUANTING + Interval final_positions = best->y; - // debug quanting - me->set_grob_property ("quant-score", - gh_double2scm (qscores[best_idx].demerits)); - me->set_grob_property ("best-idx", scm_int2num (best_idx)); +#if DEBUG_BEAM_SCORING + if (debug) + { + // debug quanting + int completed = 0; + for (vsize i = 0; i < configs.size (); i++) + { + if (configs[i]->done ()) + completed++; + } + + string card = best->score_card_ + to_string (" c%d/%d", completed, configs.size()); + beam->set_property ("annotation", ly_string2scm (card)); + } #endif - return SCM_UNSPECIFIED; + junk_pointers (configs); + return final_positions; } -Real -Beam::score_stem_lengths (Link_array const &stems, - Array const &stem_infos, - Array const &base_stem_ys, - Array const &stem_xs, - Real xl, Real xr, - bool knee, - Real yl, Real yr) +void +Beam_scoring_problem::score_stem_lengths (Beam_configuration* config) const { - Real limit_penalty = STEM_LENGTH_LIMIT_PENALTY; + Real limit_penalty = parameters.STEM_LENGTH_LIMIT_PENALTY; Drul_array score (0, 0); Drul_array count (0, 0); - - for (int i=0; i < stems.size (); i++) + + for (vsize i = 0; i < stem_xpositions.size (); i++) { - Grob* s = stems[i]; - if (Stem::invisible_b (s)) - continue; - - Real x = stem_xs[i]; - Real dx = xr-xl; - Real beam_y = yr *(x - xl)/dx + yl * ( xr - x)/dx; - Real current_y = beam_y + base_stem_ys[i]; - Real length_pen = STEM_LENGTH_DEMERIT_FACTOR; - + Real x = stem_xpositions[i]; + Real dx = x_span.delta (); + Real beam_y = dx + ? config->y[RIGHT] * (x - x_span[LEFT]) / dx + config->y[LEFT] * (x_span[RIGHT] - x) / dx + : (config->y[RIGHT] + config->y[LEFT]) / 2; + Real current_y = beam_y + base_lengths[i]; + Real length_pen = parameters.STEM_LENGTH_DEMERIT_FACTOR; + Stem_info info = stem_infos[i]; Direction d = info.dir_; - score[d] += limit_penalty * (0 >? (d * (info.shortest_y_ - current_y))); - + score[d] += limit_penalty * max (0.0, (d * (info.shortest_y_ - current_y))); + Real ideal_diff = d * (current_y - info.ideal_y_); Real ideal_score = shrink_extra_weight (ideal_diff, 1.5); - + /* We introduce a power, to make the scoring strictly convex. Otherwise a symmetric knee beam (up/down/up/down) does not have an optimum in the middle. */ - if (knee) + if (is_knee) ideal_score = pow (ideal_score, 1.1); - - score[d] += length_pen * ideal_score; - count[d] ++; + score[d] += length_pen * ideal_score; + count[d]++; } + /* Divide by number of stems, to make the measure scale-free. */ Direction d = DOWN; do - { - if(count[d]) - score[d] /= count[d]; - } + score[d] /= max (count[d], 1); while (flip (&d) != DOWN); - return score[LEFT]+score[RIGHT]; + config->add (score[LEFT] + score[RIGHT], "L"); } -Real -Beam::score_slopes_dy (Real yl, Real yr, - Real dy_mus, Real dy_damp, - bool xstaff) +void +Beam_scoring_problem::score_slope_direction (Beam_configuration *config) const { - Real dy = yr - yl; - + Real dy = config->y.delta (); + Real damped_dy = unquanted_y.delta(); Real dem = 0.0; - if (sign (dy_damp) != sign (dy)) + /* + DAMPING_DIRECTION_PENALTY is a very harsh measure, while for + complex beaming patterns, horizontal is often a good choice. + + TODO: find a way to incorporate the complexity of the beam in this + penalty. + */ + if (sign (damped_dy) != sign (dy)) { - dem += DAMPING_DIRECTIION_PENALTY; + if (!dy) + { + if (fabs (damped_dy / x_span.delta ()) > parameters.ROUND_TO_ZERO_SLOPE) + dem += parameters.DAMPING_DIRECTION_PENALTY; + else + dem += parameters.HINT_DIRECTION_PENALTY; + } + else + dem += parameters.DAMPING_DIRECTION_PENALTY; } - dem += MUSICAL_DIRECTION_FACTOR * (0 >? (fabs (dy) - fabs (dy_mus))); + config->add (dem, "Sd"); +} + +// Score for going against the direction of the musical pattern +void +Beam_scoring_problem::score_slope_musical (Beam_configuration *config) const +{ + Real dy = config->y.delta (); + Real dem = parameters.MUSICAL_DIRECTION_FACTOR + * max (0.0, (fabs (dy) - fabs (musical_dy))); + config->add (dem, "Sm"); +} +// Score deviation from calculated ideal slope. +void +Beam_scoring_problem::score_slope_ideal (Beam_configuration *config) const +{ + Real dy = config->y.delta (); + Real damped_dy = unquanted_y.delta(); + Real dem = 0.0; + + Real slope_penalty = parameters.IDEAL_SLOPE_FACTOR; - Real slope_penalty = IDEAL_SLOPE_FACTOR; + /* Xstaff beams tend to use extreme slopes to get short stems. We + put in a penalty here. */ + if (is_xstaff) + slope_penalty *= 10; - /* Xstaff beams tend to use extreme slopes to get short stems. We - put in a penalty here. */ - if (xstaff) - slope_penalty *= 10; + /* Huh, why would a too steep beam be better than a too flat one ? */ + dem += shrink_extra_weight (fabs (damped_dy) - fabs (dy), 1.5) + * slope_penalty; - /* Huh, why would a too steep beam be better than a too flat one ? */ - dem += shrink_extra_weight (fabs (dy_damp) - fabs (dy), 1.5) - * slope_penalty; - return dem; + config->add (dem, "Si"); } static Real @@ -341,102 +625,143 @@ my_modf (Real x) return x - floor (x); } -Real -Beam::score_forbidden_quants (Real yl, Real yr, - Real rad, - Real slt, - Real thickness, Real beam_translation, - int beam_count, - Direction ldir, Direction rdir) +// TODO - there is some overlap with forbidden quants, but for +// horizontal beams, it is much more serious to have stafflines +// appearing in the wrong place, so we have a separate scorer. +void +Beam_scoring_problem::score_horizontal_inter_quants (Beam_configuration *config) const { - Real dy = yr - yl; + if (config->y.delta() == 0.0 && abs (config->y[LEFT]) < staff_radius * staff_space) + { + Real yshift = config->y[LEFT] - 0.5 * staff_space; + if (abs (round(yshift) - yshift) < 0.01 * staff_space) + config->add (parameters.HORIZONTAL_INTER_QUANT_PENALTY, "H"); + } +} +/* + TODO: The fixed value SECONDARY_BEAM_DEMERIT is probably flawed: + because for 32nd and 64th beams the forbidden quants are relatively + more important than stem lengths. +*/ +void +Beam_scoring_problem::score_forbidden_quants (Beam_configuration *config) const +{ + Real dy = config->y.delta (); + + Real extra_demerit = parameters.SECONDARY_BEAM_DEMERIT / + max (edge_beam_counts[LEFT], edge_beam_counts[RIGHT]); + + Direction d = LEFT; Real dem = 0.0; - for (int i = 0; i < 2; i++) + Real eps = parameters.BEAM_EPS; + + do { - Real y = i? yl : yr; - if (fabs (y) <= (rad + 0.5) && fabs ( my_modf (y) - 0.5) < 1e-3) - dem += INTER_QUANT_PENALTY; + for (int j = 1; j <= edge_beam_counts[d]; j++) + { + Direction stem_dir = edge_dirs[d]; + + /* + The 2.2 factor is to provide a little leniency for + borderline cases. If we do 2.0, then the upper outer line + will be in the gap of the (2, sit) quant, leading to a + false demerit. + */ + Real gap1 = config->y[d] - stem_dir * ((j - 1) * beam_translation + beam_thickness / 2 - line_thickness / 2.2); + Real gap2 = config->y[d] - stem_dir * (j * beam_translation - beam_thickness / 2 + line_thickness / 2.2); + + Interval gap; + gap.add_point (gap1); + gap.add_point (gap2); + + for (Real k = -staff_radius; + k <= staff_radius + eps; k += 1.0) + if (gap.contains (k)) + { + Real dist = min (fabs (gap[UP] - k), fabs (gap[DOWN] - k)); + + /* + this parameter is tuned to grace-stem-length.ly + */ + Real fixed_demerit = 0.4; + + dem += extra_demerit + * (fixed_demerit + + (1 - fixed_demerit) * (dist / gap.length ()) * 2); + } + } } + while ((flip (&d)) != LEFT); - // todo: use beam_count of outer stems. - if (beam_count >= 2) + if (max (edge_beam_counts[LEFT], edge_beam_counts[RIGHT]) >= 2) { Real straddle = 0.0; - Real sit = (thickness - slt) / 2; + Real sit = (beam_thickness - line_thickness) / 2; Real inter = 0.5; - Real hang = 1.0 - (thickness - slt) / 2; - - - if (fabs (yl - ldir * beam_translation) < rad - && fabs (my_modf (yl) - inter) < 1e-3) - dem += SECONDARY_BEAM_DEMERIT; - if (fabs (yr - rdir * beam_translation) < rad - && fabs (my_modf (yr) - inter) < 1e-3) - dem += SECONDARY_BEAM_DEMERIT; - - Real eps = 1e-3; - - /* - Can't we simply compute the distance between the nearest - staffline and the secondary beam? That would get rid of the - silly case analysis here (which is probably not valid when we - have different beam-thicknesses.) - - --hwn - */ - - - // hmm, without Interval/Drul_array, you get ~ 4x same code... - if (fabs (yl - ldir * beam_translation) < rad + inter) - { - if (ldir == UP && dy <= eps - && fabs (my_modf (yl) - sit) < eps) - dem += SECONDARY_BEAM_DEMERIT; - - if (ldir == DOWN && dy >= eps - && fabs (my_modf (yl) - hang) < eps) - dem += SECONDARY_BEAM_DEMERIT; - } + Real hang = 1.0 - (beam_thickness - line_thickness) / 2; - if (fabs (yr - rdir * beam_translation) < rad + inter) - { - if (rdir == UP && dy >= eps - && fabs (my_modf (yr) - sit) < eps) - dem += SECONDARY_BEAM_DEMERIT; - - if (rdir == DOWN && dy <= eps - && fabs (my_modf (yr) - hang) < eps) - dem += SECONDARY_BEAM_DEMERIT; - } - - if (beam_count >= 3) + Direction d = LEFT; + do { - if (fabs (yl - 2 * ldir * beam_translation) < rad + inter) + if (edge_beam_counts[d] >= 2 + && fabs (config->y[d] - edge_dirs[d] * beam_translation) < staff_radius + inter) { - if (ldir == UP && dy <= eps - && fabs (my_modf (yl) - straddle) < eps) - dem += SECONDARY_BEAM_DEMERIT; - - if (ldir == DOWN && dy >= eps - && fabs (my_modf (yl) - straddle) < eps) - dem += SECONDARY_BEAM_DEMERIT; + // TODO up/down symmetry. + if (edge_dirs[d] == UP && dy <= eps + && fabs (my_modf (config->y[d]) - sit) < eps) + dem += extra_demerit; + + if (edge_dirs[d] == DOWN && dy >= eps + && fabs (my_modf (config->y[d]) - hang) < eps) + dem += extra_demerit; } - - if (fabs (yr - 2 * rdir * beam_translation) < rad + inter) + + if (edge_beam_counts[d] >= 3 + && fabs (config->y[d] - 2 * edge_dirs[d] * beam_translation) < staff_radius + inter) { - if (rdir == UP && dy >= eps - && fabs (my_modf (yr) - straddle) < eps) - dem += SECONDARY_BEAM_DEMERIT; - - if (rdir == DOWN && dy <= eps - && fabs (my_modf (yr) - straddle) < eps) - dem += SECONDARY_BEAM_DEMERIT; + // TODO up/down symmetry. + if (edge_dirs[d] == UP && dy <= eps + && fabs (my_modf (config->y[d]) - straddle) < eps) + dem += extra_demerit; + + if (edge_dirs[d] == DOWN && dy >= eps + && fabs (my_modf (config->y[d]) - straddle) < eps) + dem += extra_demerit; } } + while (flip (&d) != LEFT); } - - return dem; + + config->add (dem, "F"); } - +void +Beam_scoring_problem::score_collisions (Beam_configuration *config) const +{ + Real demerits = 0.0; + for (vsize i = 0; i < collisions_.size (); i++) + { + Interval collision_y = collisions_[i].y_; + Real x = collisions_[i].x_; + + Real center_beam_y = y_at (x, config); + Interval beam_y = center_beam_y + collisions_[i].beam_y_; + + Real dist = infinity_f; + if (!intersection (beam_y, collision_y).is_empty ()) + dist = 0.0; + else + dist = min (beam_y.distance (collision_y[DOWN]), + beam_y.distance (collision_y[UP])); + + Real scale_free = + max (parameters.COLLISION_PADDING - dist, 0.0)/ + parameters.COLLISION_PADDING; + demerits += + collisions_[i].base_penalty_ * + pow (scale_free, 3) * parameters.COLLISION_PENALTY; + } + + config->add (demerits, "C"); +}