X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=lily%2Fbeam-concave.cc;h=48d45c859945eaa87ded018191bb9ab421b7b640;hb=5144f52804a78e5eb02007f0d6e5857a46f78a6b;hp=ee351d0a26739d2fba275b4615cd108b3bfad33b;hpb=9e69cb84d6ee5b0a861cd97869b10e3bdf0c833c;p=lilypond.git diff --git a/lily/beam-concave.cc b/lily/beam-concave.cc index ee351d0a26..48d45c8599 100644 --- a/lily/beam-concave.cc +++ b/lily/beam-concave.cc @@ -1,5 +1,24 @@ +/* + beam-concave.cc -- implement Concaveness for beams. + + source file of the GNU LilyPond music typesetter + + (c) 2004 Han-Wen Nienhuys + +*/ + /* Determine whether a beam is concave. + + A beam is concave when the middle notes get closer to the + beam than the left and right edge notes. + + This is determined in two ways: by looking at the positions of the + middle notes, or by looking at the deviation of the inside notes + compared to the line connecting first and last. + + The tricky thing is what to do with beams with chords. There are no + real guidelines in this case. */ #include "pointer-group-interface.hh" @@ -23,7 +42,7 @@ is_concave_single_notes (vector const &positions, Direction beam_dir) /* notes above and below the interval covered by 1st and last note. */ - for (vsize i = 1; i < positions.size () - 1; i++) + for (vsize i = 1; i + 1 < positions.size (); i++) { above = above || (positions[i] > covering[UP]); below = below || (positions[i] < covering[DOWN]); @@ -36,7 +55,7 @@ is_concave_single_notes (vector const &positions, Direction beam_dir) */ int dy = positions.back () - positions[0]; int closest = max (beam_dir * positions.back (), beam_dir * positions[0]); - for (vsize i = 2; !concave && i < positions.size () - 1; i++) + for (vsize i = 2; !concave && i + 1 < positions.size (); i++) { int inner_dy = positions[i] - positions[i - 1]; if (sign (inner_dy) != sign (dy) @@ -46,7 +65,7 @@ is_concave_single_notes (vector const &positions, Direction beam_dir) } bool all_closer = true; - for (vsize i = 1; all_closer && i < positions.size () - 1; i++) + for (vsize i = 1; all_closer && i + 1 < positions.size (); i++) { all_closer = all_closer && (beam_dir * positions[i] > closest); @@ -62,7 +81,7 @@ calc_positions_concaveness (vector const &positions, Direction beam_dir) Real dy = positions.back () - positions[0]; Real slope = dy / Real (positions.size () - 1); Real concaveness = 0.0; - for (vsize i = 1; i < positions.size () - 1; i++) + for (vsize i = 1; i + 1 < positions.size (); i++) { Real line_y = slope * i + positions[0]; @@ -96,17 +115,17 @@ Beam::calc_concaveness (SCM smob) Direction beam_dir = CENTER; for (vsize i = stems.size (); i--;) { - if (Stem::is_invisible (stems[i])) - stems.erase (stems.begin () + i); - else + if (Stem::is_normal_stem (stems[i])) { if (Direction dir = get_grob_direction (stems[i])) beam_dir = dir; } + else + stems.erase (stems.begin () + i); } if (stems.size () <= 2) - return SCM_UNSPECIFIED; + return scm_from_int (0); vector close_positions; vector far_positions; @@ -118,7 +137,6 @@ Beam::calc_concaveness (SCM smob) Hmmm.. wait, for the beams in the last measure of morgenlied, this doesn't look so good. Let's try the heads farthest from the beam. - */ Interval posns = Stem::head_positions (stems[i]); @@ -128,7 +146,7 @@ Beam::calc_concaveness (SCM smob) Real concaveness = 0.0; - if (is_concave_single_notes (far_positions, beam_dir)) + if (is_concave_single_notes (beam_dir == UP ? close_positions : far_positions, beam_dir)) { concaveness = 10000; }