X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=flower%2Frational.cc;h=559e1646a0cade47b932d7cfab048f0feb641da8;hb=97a0169312a260933246ab224e4f8b0969871dd5;hp=2d3195514a555f2b0fc10d8da67cd49cb76eb4ff;hpb=c659cb200486c2f908703696a1b2873e78c8160a;p=lilypond.git diff --git a/flower/rational.cc b/flower/rational.cc index 2d3195514a..559e1646a0 100644 --- a/flower/rational.cc +++ b/flower/rational.cc @@ -1,38 +1,68 @@ /* - rational.cc -- implement Rational - - source file of the Flower Library + This file is part of LilyPond, the GNU music typesetter. - (c) 1997--2004 Han-Wen Nienhuys + Copyright (C) 1997--2015 Han-Wen Nienhuys + + LilyPond is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + LilyPond is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with LilyPond. If not, see . */ #include "rational.hh" #include +#include #include +using namespace std; -#include "string-convert.hh" +#include "string-convert.hh" #include "libc-extension.hh" -Rational::operator double () const +double +Rational::to_double () const { - return (double)sign_ * num_ / den_; + if (sign_ == -1 || sign_ == 1 || sign_ == 0) + return (double)sign_ * (double)num_ / (double)den_; + if (sign_ == -2) + return -HUGE_VAL; + else if (sign_ == 2) + return HUGE_VAL; + else + assert (false); + + return 0.0; } #ifdef STREAM_SUPPORT ostream & operator << (ostream &o, Rational r) { - o << r.string (); + o << r.string (); return o; } #endif +Rational +Rational::abs () const +{ + return Rational (num_, den_); +} Rational Rational::trunc_rat () const { - return Rational (num_ - (num_ % den_), den_); + if (is_infinity ()) + return *this; + return Rational ((num_ - (num_ % den_)) * sign_, den_); } Rational::Rational () @@ -41,45 +71,40 @@ Rational::Rational () num_ = den_ = 1; } -Rational::Rational (int n, int d) +Rational::Rational (I64 n, I64 d) { sign_ = ::sign (n) * ::sign (d); - num_ = abs (n); - den_ = abs (d); - normalise (); + num_ = ::abs (n); + den_ = ::abs (d); + normalize (); } -Rational::Rational (int n) +Rational::Rational (I64 n) { sign_ = ::sign (n); - num_ = abs (n); - den_= 1; + num_ = ::abs (n); + den_ = 1; } -static -int gcd (int a, int b) +Rational::Rational (U64 n) { - int t; - while ((t = a % b)) - { - a = b; - b = t; - } - return b; + sign_ = 1; + num_ = n; + den_ = 1; } -#if 0 -static -int lcm (int a, int b) +Rational::Rational (int n) { - return abs (a*b / gcd (a,b)); + sign_ = ::sign (n); + num_ = ::abs (n); + den_ = 1; } -#endif void Rational::set_infinite (int s) { - sign_ = ::sign (s) * 2; + sign_ = ::sign (s) * 2; + num_ = 1; } Rational @@ -106,8 +131,54 @@ Rational::mod_rat (Rational div) const return r; } +/* + copy & paste from scm_gcd (GUILE). + */ +static I64 +gcd (I64 u, I64 v) +{ + I64 result = 0; + if (u == 0) + result = v; + else if (v == 0) + result = u; + else + { + I64 k = 1; + I64 t; + /* Determine a common factor 2^k */ + while (!(1 & (u | v))) + { + k <<= 1; + u >>= 1; + v >>= 1; + } + /* Now, any factor 2^n can be eliminated */ + if (u & 1) + t = -v; + else + { + t = u; +b3: + t = t >> 1; + } + if (!(1 & t)) + goto b3; + if (t > 0) + u = t; + else + v = -t; + t = u - v; + if (t != 0) + goto b3; + result = u * k; + } + + return result; +} + void -Rational::normalise () +Rational::normalize () { if (!sign_) { @@ -126,7 +197,7 @@ Rational::normalise () } else { - int g = gcd (num_ , den_); + I64 g = gcd (num_, den_); num_ /= g; den_ /= g; @@ -145,26 +216,23 @@ Rational::compare (Rational const &r, Rational const &s) return -1; else if (r.sign_ > s.sign_) return 1; - else if (r.is_infinity ()) + else if (r.is_infinity ()) // here s is also infinite with the same sign return 0; - else if (r.sign_ == 0) + else if (r.sign_ == 0) // here s.sign_ is also zero return 0; - else - { - return r.sign_ * ::sign (int (r.num_ * s.den_) - int (s.num_ * r.den_)); - } + return ::sign (r - s); } int compare (Rational const &r, Rational const &s) { - return Rational::compare (r, s ); + return Rational::compare (r, s); } Rational & Rational::operator %= (Rational r) { - *this = r.mod_rat (r); + *this = mod_rat (r); return *this; } @@ -174,25 +242,23 @@ Rational::operator += (Rational r) if (is_infinity ()) ; else if (r.is_infinity ()) + *this = r; + else { - *this = r; - } - else - { - int n = sign_ * num_ *r.den_ + r.sign_ * den_ * r.num_; - int d = den_ * r.den_; - sign_ = ::sign (n) * ::sign (d); - num_ = abs (n); - den_ = abs (d); - normalise (); + I64 lcm = (den_ / gcd (r.den_, den_)) * r.den_; + I64 n = sign_ * num_ * (lcm / den_) + r.sign_ * r.num_ * (lcm / r.den_); + I64 d = lcm; + sign_ = ::sign (n) * ::sign (d); + num_ = ::abs (n); + den_ = ::abs (d); + normalize (); } return *this; } - /* copied from libg++ 2.8.0 - */ +*/ Rational::Rational (double x) { if (x != 0.0) @@ -206,37 +272,36 @@ Rational::Rational (double x) const int FACT = 1 << 20; /* - Thanks to Afie for this too simple idea. + Thanks to Afie for this too simple idea. - do not blindly substitute by libg++ code, since that uses - arbitrary-size integers. The rationals would overflow too - easily. + do not blindly substitute by libg++ code, since that uses + arbitrary-size integers. The rationals would overflow too + easily. */ - num_ = (unsigned int) (mantissa * FACT); - den_ = (unsigned int) FACT; - normalise (); + num_ = (U64) (mantissa * FACT); + den_ = (U64) FACT; + normalize (); if (expt < 0) - den_ <<= -expt; + den_ <<= -expt; else - num_ <<= expt; - normalise (); + num_ <<= expt; + normalize (); } else { num_ = 0; den_ = 1; - sign_ =0; - normalise (); + sign_ = 0; + normalize (); } } - void Rational::invert () { - int r (num_); - num_ = den_; + I64 r (num_); + num_ = den_; den_ = r; } @@ -245,7 +310,7 @@ Rational::operator *= (Rational r) { sign_ *= ::sign (r.sign_); if (r.is_infinity ()) - { + { sign_ = sign () * 2; goto exit_func; } @@ -253,11 +318,11 @@ Rational::operator *= (Rational r) num_ *= r.num_; den_ *= r.den_; - normalise (); - exit_func: + normalize (); +exit_func: return *this; } - + Rational & Rational::operator /= (Rational r) { @@ -271,23 +336,23 @@ Rational::negate () sign_ *= -1; } -Rational& +Rational & Rational::operator -= (Rational r) { r.negate (); return (*this += r); } -String +string Rational::to_string () const { if (is_infinity ()) { - String s (sign_ > 0 ? "" : "-" ); - return String (s + "infinity"); + string s (sign_ > 0 ? "" : "-"); + return string (s + "infinity"); } - String s = ::to_string (num ()); + string s = ::to_string (num ()); if (den () != 1 && num ()) s += "/" + ::to_string (den ()); return s; @@ -296,7 +361,7 @@ Rational::to_string () const int Rational::to_int () const { - return num () / den (); + return (int) (num () / den ()); } int