X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=boost%2Fmath%2Fspecial_functions%2Fbessel.hpp;fp=boost%2Fmath%2Fspecial_functions%2Fbessel.hpp;h=ceca30916354d153bfd30b90639af781bdd63ee4;hb=2d71eb92104693ca9baa5a2e1c23eeca776d8fd3;hp=0000000000000000000000000000000000000000;hpb=da57529b92adbb7ae74a89861cb39fb35ac7c62d;p=rsem.git diff --git a/boost/math/special_functions/bessel.hpp b/boost/math/special_functions/bessel.hpp new file mode 100644 index 0000000..ceca309 --- /dev/null +++ b/boost/math/special_functions/bessel.hpp @@ -0,0 +1,766 @@ +// Copyright (c) 2007, 2013 John Maddock +// Copyright Christopher Kormanyos 2013. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// This header just defines the function entry points, and adds dispatch +// to the right implementation method. Most of the implementation details +// are in separate headers and copyright Xiaogang Zhang. +// +#ifndef BOOST_MATH_BESSEL_HPP +#define BOOST_MATH_BESSEL_HPP + +#ifdef _MSC_VER +# pragma once +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace boost{ namespace math{ + +namespace detail{ + +template +struct sph_bessel_j_small_z_series_term +{ + typedef T result_type; + + sph_bessel_j_small_z_series_term(unsigned v_, T x) + : N(0), v(v_) + { + BOOST_MATH_STD_USING + mult = x / 2; + if(v + 3 > max_factorial::value) + { + term = v * log(mult) - boost::math::lgamma(v+1+T(0.5f), Policy()); + term = exp(term); + } + else + term = pow(mult, T(v)) / boost::math::tgamma(v+1+T(0.5f), Policy()); + mult *= -mult; + } + T operator()() + { + T r = term; + ++N; + term *= mult / (N * T(N + v + 0.5f)); + return r; + } +private: + unsigned N; + unsigned v; + T mult; + T term; +}; + +template +inline T sph_bessel_j_small_z_series(unsigned v, T x, const Policy& pol) +{ + BOOST_MATH_STD_USING // ADL of std names + sph_bessel_j_small_z_series_term s(v, x); + boost::uintmax_t max_iter = policies::get_max_series_iterations(); +#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) + T zero = 0; + T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon(), max_iter, zero); +#else + T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon(), max_iter); +#endif + policies::check_series_iterations("boost::math::sph_bessel_j_small_z_series<%1%>(%1%,%1%)", max_iter, pol); + return result * sqrt(constants::pi() / 4); +} + +template +T cyl_bessel_j_imp(T v, T x, const bessel_no_int_tag& t, const Policy& pol) +{ + BOOST_MATH_STD_USING + static const char* function = "boost::math::bessel_j<%1%>(%1%,%1%)"; + if(x < 0) + { + // better have integer v: + if(floor(v) == v) + { + T r = cyl_bessel_j_imp(v, T(-x), t, pol); + if(iround(v, pol) & 1) + r = -r; + return r; + } + else + return policies::raise_domain_error( + function, + "Got x = %1%, but we need x >= 0", x, pol); + } + + T j, y; + bessel_jy(v, x, &j, &y, need_j, pol); + return j; +} + +template +inline T cyl_bessel_j_imp(T v, T x, const bessel_maybe_int_tag&, const Policy& pol) +{ + BOOST_MATH_STD_USING // ADL of std names. + int ival = detail::iconv(v, pol); + // If v is an integer, use the integer recursion + // method, both that and Steeds method are O(v): + if((0 == v - ival)) + { + return bessel_jn(ival, x, pol); + } + return cyl_bessel_j_imp(v, x, bessel_no_int_tag(), pol); +} + +template +inline T cyl_bessel_j_imp(int v, T x, const bessel_int_tag&, const Policy& pol) +{ + BOOST_MATH_STD_USING + return bessel_jn(v, x, pol); +} + +template +inline T sph_bessel_j_imp(unsigned n, T x, const Policy& pol) +{ + BOOST_MATH_STD_USING // ADL of std names + if(x < 0) + return policies::raise_domain_error( + "boost::math::sph_bessel_j<%1%>(%1%,%1%)", + "Got x = %1%, but function requires x > 0.", x, pol); + // + // Special case, n == 0 resolves down to the sinus cardinal of x: + // + if(n == 0) + return boost::math::sinc_pi(x, pol); + // + // Special case for x == 0: + // + if(x == 0) + return 0; + // + // When x is small we may end up with 0/0, use series evaluation + // instead, especially as it converges rapidly: + // + if(x < 1) + return sph_bessel_j_small_z_series(n, x, pol); + // + // Default case is just a naive evaluation of the definition: + // + return sqrt(constants::pi() / (2 * x)) + * cyl_bessel_j_imp(T(T(n)+T(0.5f)), x, bessel_no_int_tag(), pol); +} + +template +T cyl_bessel_i_imp(T v, T x, const Policy& pol) +{ + // + // This handles all the bessel I functions, note that we don't optimise + // for integer v, other than the v = 0 or 1 special cases, as Millers + // algorithm is at least as inefficient as the general case (the general + // case has better error handling too). + // + BOOST_MATH_STD_USING + if(x < 0) + { + // better have integer v: + if(floor(v) == v) + { + T r = cyl_bessel_i_imp(v, T(-x), pol); + if(iround(v, pol) & 1) + r = -r; + return r; + } + else + return policies::raise_domain_error( + "boost::math::cyl_bessel_i<%1%>(%1%,%1%)", + "Got x = %1%, but we need x >= 0", x, pol); + } + if(x == 0) + { + return (v == 0) ? 1 : 0; + } + if(v == 0.5f) + { + // common special case, note try and avoid overflow in exp(x): + if(x >= tools::log_max_value()) + { + T e = exp(x / 2); + return e * (e / sqrt(2 * x * constants::pi())); + } + return sqrt(2 / (x * constants::pi())) * sinh(x); + } + if(policies::digits() <= 64) + { + if(v == 0) + { + return bessel_i0(x); + } + if(v == 1) + { + return bessel_i1(x); + } + } + if((v > 0) && (x / v < 0.25)) + return bessel_i_small_z_series(v, x, pol); + T I, K; + bessel_ik(v, x, &I, &K, need_i, pol); + return I; +} + +template +inline T cyl_bessel_k_imp(T v, T x, const bessel_no_int_tag& /* t */, const Policy& pol) +{ + static const char* function = "boost::math::cyl_bessel_k<%1%>(%1%,%1%)"; + BOOST_MATH_STD_USING + if(x < 0) + { + return policies::raise_domain_error( + function, + "Got x = %1%, but we need x > 0", x, pol); + } + if(x == 0) + { + return (v == 0) ? policies::raise_overflow_error(function, 0, pol) + : policies::raise_domain_error( + function, + "Got x = %1%, but we need x > 0", x, pol); + } + T I, K; + bessel_ik(v, x, &I, &K, need_k, pol); + return K; +} + +template +inline T cyl_bessel_k_imp(T v, T x, const bessel_maybe_int_tag&, const Policy& pol) +{ + BOOST_MATH_STD_USING + if((floor(v) == v)) + { + return bessel_kn(itrunc(v), x, pol); + } + return cyl_bessel_k_imp(v, x, bessel_no_int_tag(), pol); +} + +template +inline T cyl_bessel_k_imp(int v, T x, const bessel_int_tag&, const Policy& pol) +{ + return bessel_kn(v, x, pol); +} + +template +inline T cyl_neumann_imp(T v, T x, const bessel_no_int_tag&, const Policy& pol) +{ + static const char* function = "boost::math::cyl_neumann<%1%>(%1%,%1%)"; + + BOOST_MATH_INSTRUMENT_VARIABLE(v); + BOOST_MATH_INSTRUMENT_VARIABLE(x); + + if(x <= 0) + { + return (v == 0) && (x == 0) ? + policies::raise_overflow_error(function, 0, pol) + : policies::raise_domain_error( + function, + "Got x = %1%, but result is complex for x <= 0", x, pol); + } + T j, y; + bessel_jy(v, x, &j, &y, need_y, pol); + // + // Post evaluation check for internal overflow during evaluation, + // can occur when x is small and v is large, in which case the result + // is -INF: + // + if(!(boost::math::isfinite)(y)) + return -policies::raise_overflow_error(function, 0, pol); + return y; +} + +template +inline T cyl_neumann_imp(T v, T x, const bessel_maybe_int_tag&, const Policy& pol) +{ + BOOST_MATH_STD_USING + + BOOST_MATH_INSTRUMENT_VARIABLE(v); + BOOST_MATH_INSTRUMENT_VARIABLE(x); + + if(floor(v) == v) + { + if(asymptotic_bessel_large_x_limit(v, x)) + { + T r = asymptotic_bessel_y_large_x_2(static_cast(abs(v)), x); + if((v < 0) && (itrunc(v, pol) & 1)) + r = -r; + BOOST_MATH_INSTRUMENT_VARIABLE(r); + return r; + } + else + { + T r = bessel_yn(itrunc(v, pol), x, pol); + BOOST_MATH_INSTRUMENT_VARIABLE(r); + return r; + } + } + T r = cyl_neumann_imp(v, x, bessel_no_int_tag(), pol); + BOOST_MATH_INSTRUMENT_VARIABLE(r); + return r; +} + +template +inline T cyl_neumann_imp(int v, T x, const bessel_int_tag&, const Policy& pol) +{ + BOOST_MATH_STD_USING + + BOOST_MATH_INSTRUMENT_VARIABLE(v); + BOOST_MATH_INSTRUMENT_VARIABLE(x); + + if(asymptotic_bessel_large_x_limit(T(v), x)) + { + T r = asymptotic_bessel_y_large_x_2(static_cast(abs(v)), x); + if((v < 0) && (v & 1)) + r = -r; + return r; + } + else + return bessel_yn(v, x, pol); +} + +template +inline T sph_neumann_imp(unsigned v, T x, const Policy& pol) +{ + BOOST_MATH_STD_USING // ADL of std names + static const char* function = "boost::math::sph_neumann<%1%>(%1%,%1%)"; + // + // Nothing much to do here but check for errors, and + // evaluate the function's definition directly: + // + if(x < 0) + return policies::raise_domain_error( + function, + "Got x = %1%, but function requires x > 0.", x, pol); + + if(x < 2 * tools::min_value()) + return -policies::raise_overflow_error(function, 0, pol); + + T result = cyl_neumann_imp(T(T(v)+0.5f), x, bessel_no_int_tag(), pol); + T tx = sqrt(constants::pi() / (2 * x)); + + if((tx > 1) && (tools::max_value() / tx < result)) + return -policies::raise_overflow_error(function, 0, pol); + + return result * tx; +} + +template +inline T cyl_bessel_j_zero_imp(T v, int m, const Policy& pol) +{ + BOOST_MATH_STD_USING // ADL of std names, needed for floor. + + static const char* function = "boost::math::cyl_bessel_j_zero<%1%>(%1%, int)"; + + const T half_epsilon(boost::math::tools::epsilon() / 2U); + + // Handle non-finite order. + if (!(boost::math::isfinite)(v) ) + { + return policies::raise_domain_error(function, "Order argument is %1%, but must be finite >= 0 !", v, pol); + } + + // Handle negative rank. + if(m < 0) + { + // Zeros of Jv(x) with negative rank are not defined and requesting one raises a domain error. + return policies::raise_domain_error(function, "Requested the %1%'th zero, but the rank must be positive !", m, pol); + } + + // Get the absolute value of the order. + const bool order_is_negative = (v < 0); + const T vv((!order_is_negative) ? v : T(-v)); + + // Check if the order is very close to zero or very close to an integer. + const bool order_is_zero = (vv < half_epsilon); + const bool order_is_integer = ((vv - floor(vv)) < half_epsilon); + + if(m == 0) + { + if(order_is_zero) + { + // The zero'th zero of J0(x) is not defined and requesting it raises a domain error. + return policies::raise_domain_error(function, "Requested the %1%'th zero of J0, but the rank must be > 0 !", m, pol); + } + + // The zero'th zero of Jv(x) for v < 0 is not defined + // unless the order is a negative integer. + if(order_is_negative && (!order_is_integer)) + { + // For non-integer, negative order, requesting the zero'th zero raises a domain error. + return policies::raise_domain_error(function, "Requested the %1%'th zero of Jv for negative, non-integer order, but the rank must be > 0 !", m, pol); + } + + // The zero'th zero does exist and its value is zero. + return T(0); + } + + // Set up the initial guess for the upcoming root-finding. + // If the order is a negative integer, then use the corresponding + // positive integer for the order. + const T guess_root = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess((order_is_integer ? vv : v), m, pol); + + // Select the maximum allowed iterations from the policy. + boost::uintmax_t number_of_iterations = policies::get_max_root_iterations(); + + // Select the desired number of binary digits of precision. + // Account for the radix of number representations having non-two radix! + const int my_digits2 = policies::digits(); + + const T delta_lo = ((guess_root > 0.2F) ? T(0.2) : T(guess_root / 2U)); + + // Perform the root-finding using Newton-Raphson iteration from Boost.Math. + const T jvm = + boost::math::tools::newton_raphson_iterate( + boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::function_object_jv_and_jv_prime((order_is_integer ? vv : v), order_is_zero, pol), + guess_root, + T(guess_root - delta_lo), + T(guess_root + 0.2F), + my_digits2, + number_of_iterations); + + if(number_of_iterations >= policies::get_max_root_iterations()) + { + policies::raise_evaluation_error(function, "Unable to locate root in a reasonable time:" + " Current best guess is %1%", jvm, Policy()); + } + + return jvm; +} + +template +inline T cyl_neumann_zero_imp(T v, int m, const Policy& pol) +{ + BOOST_MATH_STD_USING // ADL of std names, needed for floor. + + static const char* function = "boost::math::cyl_neumann_zero<%1%>(%1%, int)"; + + // Handle non-finite order. + if (!(boost::math::isfinite)(v) ) + { + return policies::raise_domain_error(function, "Order argument is %1%, but must be finite >= 0 !", v, pol); + } + + // Handle negative rank. + if(m < 0) + { + return policies::raise_domain_error(function, "Requested the %1%'th zero, but the rank must be positive !", m, pol); + } + + const T half_epsilon(boost::math::tools::epsilon() / 2U); + + // Get the absolute value of the order. + const bool order_is_negative = (v < 0); + const T vv((!order_is_negative) ? v : T(-v)); + + const bool order_is_integer = ((vv - floor(vv)) < half_epsilon); + + // For negative integers, use reflection to positive integer order. + if(order_is_negative && order_is_integer) + return boost::math::detail::cyl_neumann_zero_imp(vv, m, pol); + + // Check if the order is very close to a negative half-integer. + const T delta_half_integer(vv - (floor(vv) + 0.5F)); + + const bool order_is_negative_half_integer = + (order_is_negative && ((delta_half_integer > -half_epsilon) && (delta_half_integer < +half_epsilon))); + + // The zero'th zero of Yv(x) for v < 0 is not defined + // unless the order is a negative integer. + if((m == 0) && (!order_is_negative_half_integer)) + { + // For non-integer, negative order, requesting the zero'th zero raises a domain error. + return policies::raise_domain_error(function, "Requested the %1%'th zero of Yv for negative, non-half-integer order, but the rank must be > 0 !", m, pol); + } + + // For negative half-integers, use the corresponding + // spherical Bessel function of positive half-integer order. + if(order_is_negative_half_integer) + return boost::math::detail::cyl_bessel_j_zero_imp(vv, m, pol); + + // Set up the initial guess for the upcoming root-finding. + // If the order is a negative integer, then use the corresponding + // positive integer for the order. + const T guess_root = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(v, m, pol); + + // Select the maximum allowed iterations from the policy. + boost::uintmax_t number_of_iterations = policies::get_max_root_iterations(); + + // Select the desired number of binary digits of precision. + // Account for the radix of number representations having non-two radix! + const int my_digits2 = policies::digits(); + + const T delta_lo = ((guess_root > 0.2F) ? T(0.2) : T(guess_root / 2U)); + + // Perform the root-finding using Newton-Raphson iteration from Boost.Math. + const T yvm = + boost::math::tools::newton_raphson_iterate( + boost::math::detail::bessel_zero::cyl_neumann_zero_detail::function_object_yv_and_yv_prime(v, pol), + guess_root, + T(guess_root - delta_lo), + T(guess_root + 0.2F), + my_digits2, + number_of_iterations); + + if(number_of_iterations >= policies::get_max_root_iterations()) + { + policies::raise_evaluation_error(function, "Unable to locate root in a reasonable time:" + " Current best guess is %1%", yvm, Policy()); + } + + return yvm; +} + +} // namespace detail + +template +inline typename detail::bessel_traits::result_type cyl_bessel_j(T1 v, T2 x, const Policy& /* pol */) +{ + BOOST_FPU_EXCEPTION_GUARD + typedef typename detail::bessel_traits::result_type result_type; + typedef typename detail::bessel_traits::optimisation_tag tag_type; + typedef typename policies::evaluation::type value_type; + typedef typename policies::normalise< + Policy, + policies::promote_float, + policies::promote_double, + policies::discrete_quantile<>, + policies::assert_undefined<> >::type forwarding_policy; + return policies::checked_narrowing_cast(detail::cyl_bessel_j_imp(v, static_cast(x), tag_type(), forwarding_policy()), "boost::math::cyl_bessel_j<%1%>(%1%,%1%)"); +} + +template +inline typename detail::bessel_traits >::result_type cyl_bessel_j(T1 v, T2 x) +{ + return cyl_bessel_j(v, x, policies::policy<>()); +} + +template +inline typename detail::bessel_traits::result_type sph_bessel(unsigned v, T x, const Policy& /* pol */) +{ + BOOST_FPU_EXCEPTION_GUARD + typedef typename detail::bessel_traits::result_type result_type; + typedef typename policies::evaluation::type value_type; + typedef typename policies::normalise< + Policy, + policies::promote_float, + policies::promote_double, + policies::discrete_quantile<>, + policies::assert_undefined<> >::type forwarding_policy; + return policies::checked_narrowing_cast(detail::sph_bessel_j_imp(v, static_cast(x), forwarding_policy()), "boost::math::sph_bessel<%1%>(%1%,%1%)"); +} + +template +inline typename detail::bessel_traits >::result_type sph_bessel(unsigned v, T x) +{ + return sph_bessel(v, x, policies::policy<>()); +} + +template +inline typename detail::bessel_traits::result_type cyl_bessel_i(T1 v, T2 x, const Policy& /* pol */) +{ + BOOST_FPU_EXCEPTION_GUARD + typedef typename detail::bessel_traits::result_type result_type; + typedef typename policies::evaluation::type value_type; + typedef typename policies::normalise< + Policy, + policies::promote_float, + policies::promote_double, + policies::discrete_quantile<>, + policies::assert_undefined<> >::type forwarding_policy; + return policies::checked_narrowing_cast(detail::cyl_bessel_i_imp(v, static_cast(x), forwarding_policy()), "boost::math::cyl_bessel_i<%1%>(%1%,%1%)"); +} + +template +inline typename detail::bessel_traits >::result_type cyl_bessel_i(T1 v, T2 x) +{ + return cyl_bessel_i(v, x, policies::policy<>()); +} + +template +inline typename detail::bessel_traits::result_type cyl_bessel_k(T1 v, T2 x, const Policy& /* pol */) +{ + BOOST_FPU_EXCEPTION_GUARD + typedef typename detail::bessel_traits::result_type result_type; + typedef typename detail::bessel_traits::optimisation_tag tag_type; + typedef typename policies::evaluation::type value_type; + typedef typename policies::normalise< + Policy, + policies::promote_float, + policies::promote_double, + policies::discrete_quantile<>, + policies::assert_undefined<> >::type forwarding_policy; + return policies::checked_narrowing_cast(detail::cyl_bessel_k_imp(v, static_cast(x), tag_type(), forwarding_policy()), "boost::math::cyl_bessel_k<%1%>(%1%,%1%)"); +} + +template +inline typename detail::bessel_traits >::result_type cyl_bessel_k(T1 v, T2 x) +{ + return cyl_bessel_k(v, x, policies::policy<>()); +} + +template +inline typename detail::bessel_traits::result_type cyl_neumann(T1 v, T2 x, const Policy& /* pol */) +{ + BOOST_FPU_EXCEPTION_GUARD + typedef typename detail::bessel_traits::result_type result_type; + typedef typename detail::bessel_traits::optimisation_tag tag_type; + typedef typename policies::evaluation::type value_type; + typedef typename policies::normalise< + Policy, + policies::promote_float, + policies::promote_double, + policies::discrete_quantile<>, + policies::assert_undefined<> >::type forwarding_policy; + return policies::checked_narrowing_cast(detail::cyl_neumann_imp(v, static_cast(x), tag_type(), forwarding_policy()), "boost::math::cyl_neumann<%1%>(%1%,%1%)"); +} + +template +inline typename detail::bessel_traits >::result_type cyl_neumann(T1 v, T2 x) +{ + return cyl_neumann(v, x, policies::policy<>()); +} + +template +inline typename detail::bessel_traits::result_type sph_neumann(unsigned v, T x, const Policy& /* pol */) +{ + BOOST_FPU_EXCEPTION_GUARD + typedef typename detail::bessel_traits::result_type result_type; + typedef typename policies::evaluation::type value_type; + typedef typename policies::normalise< + Policy, + policies::promote_float, + policies::promote_double, + policies::discrete_quantile<>, + policies::assert_undefined<> >::type forwarding_policy; + return policies::checked_narrowing_cast(detail::sph_neumann_imp(v, static_cast(x), forwarding_policy()), "boost::math::sph_neumann<%1%>(%1%,%1%)"); +} + +template +inline typename detail::bessel_traits >::result_type sph_neumann(unsigned v, T x) +{ + return sph_neumann(v, x, policies::policy<>()); +} + +template +inline typename detail::bessel_traits::result_type cyl_bessel_j_zero(T v, int m, const Policy& /* pol */) +{ + BOOST_FPU_EXCEPTION_GUARD + typedef typename detail::bessel_traits::result_type result_type; + typedef typename policies::evaluation::type value_type; + typedef typename policies::normalise< + Policy, + policies::promote_float, + policies::promote_double, + policies::discrete_quantile<>, + policies::assert_undefined<> >::type forwarding_policy; + BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits::is_integer, "Order must be a floating-point type."); + return policies::checked_narrowing_cast(detail::cyl_bessel_j_zero_imp(v, m, forwarding_policy()), "boost::math::cyl_bessel_j_zero<%1%>(%1%,%1%)"); +} + +template +inline typename detail::bessel_traits >::result_type cyl_bessel_j_zero(T v, int m) +{ + BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits::is_integer, "Order must be a floating-point type."); + return cyl_bessel_j_zero >(v, m, policies::policy<>()); +} + +template +inline OutputIterator cyl_bessel_j_zero(T v, + int start_index, + unsigned number_of_zeros, + OutputIterator out_it, + const Policy& pol) +{ + BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits::is_integer, "Order must be a floating-point type."); + for(unsigned i = 0; i < number_of_zeros; ++i) + { + *out_it = boost::math::cyl_bessel_j_zero(v, start_index + i, pol); + ++out_it; + } + return out_it; +} + +template +inline OutputIterator cyl_bessel_j_zero(T v, + int start_index, + unsigned number_of_zeros, + OutputIterator out_it) +{ + return cyl_bessel_j_zero(v, start_index, number_of_zeros, out_it, policies::policy<>()); +} + +template +inline typename detail::bessel_traits::result_type cyl_neumann_zero(T v, int m, const Policy& /* pol */) +{ + BOOST_FPU_EXCEPTION_GUARD + typedef typename detail::bessel_traits::result_type result_type; + typedef typename policies::evaluation::type value_type; + typedef typename policies::normalise< + Policy, + policies::promote_float, + policies::promote_double, + policies::discrete_quantile<>, + policies::assert_undefined<> >::type forwarding_policy; + BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits::is_integer, "Order must be a floating-point type."); + return policies::checked_narrowing_cast(detail::cyl_neumann_zero_imp(v, m, forwarding_policy()), "boost::math::cyl_neumann_zero<%1%>(%1%,%1%)"); +} + +template +inline typename detail::bessel_traits >::result_type cyl_neumann_zero(T v, int m) +{ + BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits::is_integer, "Order must be a floating-point type."); + return cyl_neumann_zero >(v, m, policies::policy<>()); +} + +template +inline OutputIterator cyl_neumann_zero(T v, + int start_index, + unsigned number_of_zeros, + OutputIterator out_it, + const Policy& pol) +{ + BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits::is_integer, "Order must be a floating-point type."); + for(unsigned i = 0; i < number_of_zeros; ++i) + { + *out_it = boost::math::cyl_neumann_zero(v, start_index + i, pol); + ++out_it; + } + return out_it; +} + +template +inline OutputIterator cyl_neumann_zero(T v, + int start_index, + unsigned number_of_zeros, + OutputIterator out_it) +{ + return cyl_neumann_zero(v, start_index, number_of_zeros, out_it, policies::policy<>()); +} + +} // namespace math +} // namespace boost + +#endif // BOOST_MATH_BESSEL_HPP + +