X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=bcftools%2Fprob1.c;h=4804e6e24c3c6787f2ca3a18fb6e83687f379ed4;hb=f528e7da717a1a2a6ab2672c7c55f37d315452f3;hp=1acd49b48295d4d315f52c2f3969bd6c3b66e36f;hpb=b65b44f2a48848bfcc1c1f2e738251819bcbb518;p=samtools.git diff --git a/bcftools/prob1.c b/bcftools/prob1.c index 1acd49b..4804e6e 100644 --- a/bcftools/prob1.c +++ b/bcftools/prob1.c @@ -2,11 +2,16 @@ #include #include #include +#include +#include #include "prob1.h" -#define MC_AVG_ERR 0.007 +#include "kseq.h" +KSTREAM_INIT(gzFile, gzread, 16384) + #define MC_MAX_EM_ITER 16 #define MC_EM_EPS 1e-4 +#define MC_DEF_INDEL 0.15 unsigned char seq_nt4_table[256] = { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, @@ -28,78 +33,166 @@ unsigned char seq_nt4_table[256] = { }; struct __bcf_p1aux_t { - int n, M; + int n, M, n1, is_indel; + uint8_t *ploidy; // haploid or diploid ONLY double *q2p, *pdg; // pdg -> P(D|g) - double *phi; + double *phi, *phi_indel; double *z, *zswap; // aux for afs + double *z1, *z2, *phi1, *phi2; // only calculated when n1 is set + double t, t1, t2; double *afs, *afs1; // afs: accumulative AFS; afs1: site posterior distribution const uint8_t *PL; // point to PL int PL_len; }; -void bcf_p1_init_prior(bcf_p1aux_t *ma, int type, double theta) +void bcf_p1_indel_prior(bcf_p1aux_t *ma, double x) +{ + int i; + for (i = 0; i < ma->M; ++i) + ma->phi_indel[i] = ma->phi[i] * x; + ma->phi_indel[ma->M] = 1. - ma->phi[ma->M] * x; +} + +static void init_prior(int type, double theta, int M, double *phi) { int i; if (type == MC_PTYPE_COND2) { - for (i = 0; i <= ma->M; ++i) - ma->phi[i] = 2. * (i + 1) / (ma->M + 1) / (ma->M + 2); + for (i = 0; i <= M; ++i) + phi[i] = 2. * (i + 1) / (M + 1) / (M + 2); } else if (type == MC_PTYPE_FLAT) { - for (i = 0; i <= ma->M; ++i) - ma->phi[i] = 1. / (ma->M + 1); + for (i = 0; i <= M; ++i) + phi[i] = 1. / (M + 1); } else { double sum; - for (i = 0, sum = 0.; i < ma->M; ++i) - sum += (ma->phi[i] = theta / (ma->M - i)); - ma->phi[ma->M] = 1. - sum; + for (i = 0, sum = 0.; i < M; ++i) + sum += (phi[i] = theta / (M - i)); + phi[M] = 1. - sum; + } +} + +void bcf_p1_init_prior(bcf_p1aux_t *ma, int type, double theta) +{ + init_prior(type, theta, ma->M, ma->phi); + bcf_p1_indel_prior(ma, MC_DEF_INDEL); +} + +void bcf_p1_init_subprior(bcf_p1aux_t *ma, int type, double theta) +{ + if (ma->n1 <= 0 || ma->n1 >= ma->M) return; + init_prior(type, theta, 2*ma->n1, ma->phi1); + init_prior(type, theta, 2*(ma->n - ma->n1), ma->phi2); +} + +int bcf_p1_read_prior(bcf_p1aux_t *ma, const char *fn) +{ + gzFile fp; + kstring_t s; + kstream_t *ks; + long double sum; + int dret, k; + memset(&s, 0, sizeof(kstring_t)); + fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r"); + ks = ks_init(fp); + memset(ma->phi, 0, sizeof(double) * (ma->M + 1)); + while (ks_getuntil(ks, '\n', &s, &dret) >= 0) { + if (strstr(s.s, "[afs] ") == s.s) { + char *p = s.s + 6; + for (k = 0; k <= ma->M; ++k) { + int x; + double y; + x = strtol(p, &p, 10); + if (x != k && (errno == EINVAL || errno == ERANGE)) return -1; + ++p; + y = strtod(p, &p); + if (y == 0. && (errno == EINVAL || errno == ERANGE)) return -1; + ma->phi[ma->M - k] += y; + } + } } + ks_destroy(ks); + gzclose(fp); + free(s.s); + for (sum = 0., k = 0; k <= ma->M; ++k) sum += ma->phi[k]; + fprintf(stderr, "[prior]"); + for (k = 0; k <= ma->M; ++k) ma->phi[k] /= sum; + for (k = 0; k <= ma->M; ++k) fprintf(stderr, " %d:%.3lg", k, ma->phi[ma->M - k]); + fputc('\n', stderr); + for (sum = 0., k = 1; k < ma->M; ++k) sum += ma->phi[ma->M - k] * (2.* k * (ma->M - k) / ma->M / (ma->M - 1)); + fprintf(stderr, "[%s] heterozygosity=%lf, ", __func__, (double)sum); + for (sum = 0., k = 1; k <= ma->M; ++k) sum += k * ma->phi[ma->M - k] / ma->M; + fprintf(stderr, "theta=%lf\n", (double)sum); + bcf_p1_indel_prior(ma, MC_DEF_INDEL); + return 0; } -bcf_p1aux_t *bcf_p1_init(int n) // FIXME: assuming diploid +bcf_p1aux_t *bcf_p1_init(int n, uint8_t *ploidy) { bcf_p1aux_t *ma; int i; ma = calloc(1, sizeof(bcf_p1aux_t)); + ma->n1 = -1; ma->n = n; ma->M = 2 * n; + if (ploidy) { + ma->ploidy = malloc(n); + memcpy(ma->ploidy, ploidy, n); + for (i = 0, ma->M = 0; i < n; ++i) ma->M += ploidy[i]; + if (ma->M == 2 * n) { + free(ma->ploidy); + ma->ploidy = 0; + } + } ma->q2p = calloc(256, sizeof(double)); ma->pdg = calloc(3 * ma->n, sizeof(double)); ma->phi = calloc(ma->M + 1, sizeof(double)); - ma->z = calloc(2 * ma->n + 1, sizeof(double)); - ma->zswap = calloc(2 * ma->n + 1, sizeof(double)); - ma->afs = calloc(2 * ma->n + 1, sizeof(double)); - ma->afs1 = calloc(2 * ma->n + 1, sizeof(double)); + ma->phi_indel = calloc(ma->M + 1, sizeof(double)); + ma->phi1 = calloc(ma->M + 1, sizeof(double)); + ma->phi2 = calloc(ma->M + 1, sizeof(double)); + ma->z = calloc(ma->M + 1, sizeof(double)); + ma->zswap = calloc(ma->M + 1, sizeof(double)); + ma->z1 = calloc(ma->M + 1, sizeof(double)); // actually we do not need this large + ma->z2 = calloc(ma->M + 1, sizeof(double)); + ma->afs = calloc(ma->M + 1, sizeof(double)); + ma->afs1 = calloc(ma->M + 1, sizeof(double)); for (i = 0; i < 256; ++i) ma->q2p[i] = pow(10., -i / 10.); bcf_p1_init_prior(ma, MC_PTYPE_FULL, 1e-3); // the simplest prior return ma; } +int bcf_p1_set_n1(bcf_p1aux_t *b, int n1) +{ + if (n1 == 0 || n1 >= b->n) return -1; + if (b->M != b->n * 2) { + fprintf(stderr, "[%s] unable to set `n1' when there are haploid samples.\n", __func__); + return -1; + } + b->n1 = n1; + return 0; +} + void bcf_p1_destroy(bcf_p1aux_t *ma) { if (ma) { - free(ma->q2p); free(ma->pdg); - free(ma->phi); - free(ma->z); free(ma->zswap); + free(ma->ploidy); free(ma->q2p); free(ma->pdg); + free(ma->phi); free(ma->phi_indel); free(ma->phi1); free(ma->phi2); + free(ma->z); free(ma->zswap); free(ma->z1); free(ma->z2); free(ma->afs); free(ma->afs1); free(ma); } } -#define char2int(s) (((int)s[0])<<8|s[1]) - static int cal_pdg(const bcf1_t *b, bcf_p1aux_t *ma) { - int i, j, k; + int i, j; long *p, tmp; p = alloca(b->n_alleles * sizeof(long)); memset(p, 0, sizeof(long) * b->n_alleles); for (j = 0; j < ma->n; ++j) { const uint8_t *pi = ma->PL + j * ma->PL_len; double *pdg = ma->pdg + j * 3; - pdg[0] = ma->q2p[pi[b->n_alleles]]; pdg[1] = ma->q2p[pi[1]]; pdg[2] = ma->q2p[pi[0]]; - for (i = k = 0; i < b->n_alleles; ++i) { - p[i] += (int)pi[k]; - k += b->n_alleles - i; - } + pdg[0] = ma->q2p[pi[2]]; pdg[1] = ma->q2p[pi[1]]; pdg[2] = ma->q2p[pi[0]]; + for (i = 0; i < b->n_alleles; ++i) + p[i] += (int)pi[(i+1)*(i+2)/2-1]; } for (i = 0; i < b->n_alleles; ++i) p[i] = p[i]<<4 | i; for (i = 1; i < b->n_alleles; ++i) // insertion sort @@ -129,69 +222,175 @@ int bcf_p1_call_gt(const bcf_p1aux_t *ma, double f0, int k) { double sum, g[3]; double max, f3[3], *pdg = ma->pdg + k * 3; - int q, i, max_i; - f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0; + int q, i, max_i, ploidy; + ploidy = ma->ploidy? ma->ploidy[k] : 2; + if (ploidy == 2) { + f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0; + } else { + f3[0] = 1. - f0; f3[1] = 0; f3[2] = f0; + } for (i = 0, sum = 0.; i < 3; ++i) sum += (g[i] = pdg[i] * f3[i]); - for (i = 0, max = -1., max_i = 0; i < 3; ++i) { + for (i = 0, max = -1., max_i = 0; i <= ploidy; ++i) { g[i] /= sum; if (g[i] > max) max = g[i], max_i = i; } max = 1. - max; if (max < 1e-308) max = 1e-308; - q = (int)(-3.434 * log(max) + .499); + q = (int)(-4.343 * log(max) + .499); if (q > 99) q = 99; return q<<2|max_i; } #define TINY 1e-20 -static void mc_cal_y(bcf_p1aux_t *ma) +static void mc_cal_y_core(bcf_p1aux_t *ma, int beg) { - double *z[2], *tmp, *pdg, last_min, last_max; - int k, j; + double *z[2], *tmp, *pdg; + int _j, last_min, last_max; + assert(beg == 0 || ma->M == ma->n*2); z[0] = ma->z; z[1] = ma->zswap; pdg = ma->pdg; - z[0][0] = 1.; z[0][1] = z[0][2] = 0.; + memset(z[0], 0, sizeof(double) * (ma->M + 1)); + memset(z[1], 0, sizeof(double) * (ma->M + 1)); + z[0][0] = 1.; last_min = last_max = 0; - for (j = 0; j < ma->n; ++j) { - int _min = last_min, _max = last_max; - double p[3], sum; - pdg = ma->pdg + j * 3; - p[0] = pdg[0]; p[1] = 2. * pdg[1]; p[2] = pdg[2]; -// for (; _min < _max && z[0][_min] < TINY; ++_min) z[1][_min] = 0.; -// for (; _max > _min && z[0][_max] < TINY; --_max) z[1][_max] = 0.; - _max += 2; - if (_min == 0) - k = 0, z[1][k] = (2*j+2-k)*(2*j-k+1) * p[0] * z[0][k]; - if (_min <= 1) - k = 1, z[1][k] = (2*j+2-k)*(2*j-k+1) * p[0] * z[0][k] + k*(2*j+2-k) * p[1] * z[0][k-1]; - for (k = _min < 2? 2 : _min; k <= _max; ++k) - z[1][k] = (2*j+2-k)*(2*j-k+1) * p[0] * z[0][k] - + k*(2*j+2-k) * p[1] * z[0][k-1] - + k*(k-1)* p[2] * z[0][k-2]; - for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; - for (k = _min; k <= _max; ++k) z[1][k] /= sum; - if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; - tmp = z[0]; z[0] = z[1]; z[1] = tmp; - last_min = _min; last_max = _max; + ma->t = 0.; + if (ma->M == ma->n * 2) { + for (_j = beg; _j < ma->n; ++_j) { + int k, j = _j - beg, _min = last_min, _max = last_max; + double p[3], sum; + pdg = ma->pdg + _j * 3; + p[0] = pdg[0]; p[1] = 2. * pdg[1]; p[2] = pdg[2]; + for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.; + for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.; + _max += 2; + if (_min == 0) + k = 0, z[1][k] = (2*j+2-k)*(2*j-k+1) * p[0] * z[0][k]; + if (_min <= 1) + k = 1, z[1][k] = (2*j+2-k)*(2*j-k+1) * p[0] * z[0][k] + k*(2*j+2-k) * p[1] * z[0][k-1]; + for (k = _min < 2? 2 : _min; k <= _max; ++k) + z[1][k] = (2*j+2-k)*(2*j-k+1) * p[0] * z[0][k] + + k*(2*j+2-k) * p[1] * z[0][k-1] + + k*(k-1)* p[2] * z[0][k-2]; + for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; + ma->t += log(sum / ((2. * j + 2) * (2. * j + 1))); + for (k = _min; k <= _max; ++k) z[1][k] /= sum; + if (_min >= 1) z[1][_min-1] = 0.; + if (_min >= 2) z[1][_min-2] = 0.; + if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; + if (_j == ma->n1 - 1) { // set pop1; ma->n1==-1 when unset + ma->t1 = ma->t; + memcpy(ma->z1, z[1], sizeof(double) * (ma->n1 * 2 + 1)); + } + tmp = z[0]; z[0] = z[1]; z[1] = tmp; + last_min = _min; last_max = _max; + } + } else { // this block is very similar to the block above; these two might be merged in future + int j, M = 0; + for (j = 0; j < ma->n; ++j) { + int k, M0, _min = last_min, _max = last_max; + double p[3], sum; + pdg = ma->pdg + j * 3; + for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.; + for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.; + M0 = M; + M += ma->ploidy[j]; + if (ma->ploidy[j] == 1) { + p[0] = pdg[0]; p[1] = pdg[2]; + _max++; + if (_min == 0) k = 0, z[1][k] = (M0+1-k) * p[0] * z[0][k]; + for (k = _min < 1? 1 : _min; k <= _max; ++k) + z[1][k] = (M0+1-k) * p[0] * z[0][k] + k * p[1] * z[0][k-1]; + for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; + ma->t += log(sum / M); + for (k = _min; k <= _max; ++k) z[1][k] /= sum; + if (_min >= 1) z[1][_min-1] = 0.; + if (j < ma->n - 1) z[1][_max+1] = 0.; + } else if (ma->ploidy[j] == 2) { + p[0] = pdg[0]; p[1] = 2 * pdg[1]; p[2] = pdg[2]; + _max += 2; + if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k]; + if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1]; + for (k = _min < 2? 2 : _min; k <= _max; ++k) + z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2]; + for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; + ma->t += log(sum / (M * (M - 1.))); + for (k = _min; k <= _max; ++k) z[1][k] /= sum; + if (_min >= 1) z[1][_min-1] = 0.; + if (_min >= 2) z[1][_min-2] = 0.; + if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; + } + tmp = z[0]; z[0] = z[1]; z[1] = tmp; + last_min = _min; last_max = _max; + } } if (z[0] != ma->z) memcpy(ma->z, z[0], sizeof(double) * (ma->M + 1)); } -static double mc_cal_afs(bcf_p1aux_t *ma) +static void mc_cal_y(bcf_p1aux_t *ma) +{ + if (ma->n1 > 0 && ma->n1 < ma->n && ma->M == ma->n * 2) { // NB: ma->n1 is ineffective when there are haploid samples + int k; + long double x; + memset(ma->z1, 0, sizeof(double) * (2 * ma->n1 + 1)); + memset(ma->z2, 0, sizeof(double) * (2 * (ma->n - ma->n1) + 1)); + ma->t1 = ma->t2 = 0.; + mc_cal_y_core(ma, ma->n1); + ma->t2 = ma->t; + memcpy(ma->z2, ma->z, sizeof(double) * (2 * (ma->n - ma->n1) + 1)); + mc_cal_y_core(ma, 0); + // rescale z + x = expl(ma->t - (ma->t1 + ma->t2)); + for (k = 0; k <= ma->M; ++k) ma->z[k] *= x; + } else mc_cal_y_core(ma, 0); +} + +static void contrast(bcf_p1aux_t *ma, double pc[4]) // mc_cal_y() must be called before hand +{ + int k, n1 = ma->n1, n2 = ma->n - ma->n1; + long double sum1, sum2; + pc[0] = pc[1] = pc[2] = pc[3] = -1.; + if (n1 <= 0 || n2 <= 0) return; + for (k = 0, sum1 = 0.; k <= 2*n1; ++k) sum1 += ma->phi1[k] * ma->z1[k]; + for (k = 0, sum2 = 0.; k <= 2*n2; ++k) sum2 += ma->phi2[k] * ma->z2[k]; + pc[2] = ma->phi1[2*n1] * ma->z1[2*n1] / sum1; + pc[3] = ma->phi2[2*n2] * ma->z2[2*n2] / sum2; + for (k = 2; k < 4; ++k) { + pc[k] = pc[k] > .5? -(-4.343 * log(1. - pc[k] + TINY) + .499) : -4.343 * log(pc[k] + TINY) + .499; + pc[k] = (int)pc[k]; + if (pc[k] > 99) pc[k] = 99; + if (pc[k] < -99) pc[k] = -99; + } + pc[0] = ma->phi2[2*n2] * ma->z2[2*n2] / sum2 * (1. - ma->phi1[2*n1] * ma->z1[2*n1] / sum1); + pc[1] = ma->phi1[2*n1] * ma->z1[2*n1] / sum1 * (1. - ma->phi2[2*n2] * ma->z2[2*n2] / sum2); + pc[0] = pc[0] == 1.? 99 : (int)(-4.343 * log(1. - pc[0]) + .499); + pc[1] = pc[1] == 1.? 99 : (int)(-4.343 * log(1. - pc[1]) + .499); +} + +static double mc_cal_afs(bcf_p1aux_t *ma, double *p_ref_folded, double *p_var_folded) { int k; - long double sum = 0.; + long double sum = 0., sum2; + double *phi = ma->is_indel? ma->phi_indel : ma->phi; memset(ma->afs1, 0, sizeof(double) * (ma->M + 1)); mc_cal_y(ma); + // compute AFS for (k = 0, sum = 0.; k <= ma->M; ++k) - sum += (long double)ma->phi[k] * ma->z[k]; + sum += (long double)phi[k] * ma->z[k]; for (k = 0; k <= ma->M; ++k) { - ma->afs1[k] = ma->phi[k] * ma->z[k] / sum; + ma->afs1[k] = phi[k] * ma->z[k] / sum; if (isnan(ma->afs1[k]) || isinf(ma->afs1[k])) return -1.; } + // compute folded variant probability + for (k = 0, sum = 0.; k <= ma->M; ++k) + sum += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k]; + for (k = 1, sum2 = 0.; k < ma->M; ++k) + sum2 += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k]; + *p_var_folded = sum2 / sum; + *p_ref_folded = (phi[k] + phi[ma->M - k]) / 2. * (ma->z[ma->M] + ma->z[0]) / sum; + // the expected frequency for (k = 0, sum = 0.; k <= ma->M; ++k) { ma->afs[k] += ma->afs1[k]; sum += k * ma->afs1[k]; @@ -199,39 +398,14 @@ static double mc_cal_afs(bcf_p1aux_t *ma) return sum / ma->M; } -static long double p1_cal_g3(bcf_p1aux_t *p1a, double g[3]) -{ - long double pd = 0., g2[3]; - int i, k; - memset(g2, 0, sizeof(long double) * 3); - for (k = 0; k < p1a->M; ++k) { - double f = (double)k / p1a->M, f3[3], g1[3]; - long double z = 1.; - g1[0] = g1[1] = g1[2] = 0.; - f3[0] = (1. - f) * (1. - f); f3[1] = 2. * f * (1. - f); f3[2] = f * f; - for (i = 0; i < p1a->n; ++i) { - double *pdg = p1a->pdg + i * 3; - double x = pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2]; - z *= x; - g1[0] += pdg[0] * f3[0] / x; - g1[1] += pdg[1] * f3[1] / x; - g1[2] += pdg[2] * f3[2] / x; - } - pd += p1a->phi[k] * z; - for (i = 0; i < 3; ++i) - g2[i] += p1a->phi[k] * z * g1[i]; - } - for (i = 0; i < 3; ++i) g[i] = g2[i] / pd; - return pd; -} - -int bcf_p1_cal(bcf1_t *b, bcf_p1aux_t *ma, bcf_p1rst_t *rst) +int bcf_p1_cal(const bcf1_t *b, bcf_p1aux_t *ma, bcf_p1rst_t *rst) { int i, k; long double sum = 0.; + ma->is_indel = bcf_is_indel(b); // set PL and PL_len for (i = 0; i < b->n_gi; ++i) { - if (b->gi[i].fmt == char2int("PL")) { + if (b->gi[i].fmt == bcf_str2int("PL", 2)) { ma->PL = (uint8_t*)b->gi[i].data; ma->PL_len = b->gi[i].len; break; @@ -240,8 +414,11 @@ int bcf_p1_cal(bcf1_t *b, bcf_p1aux_t *ma, bcf_p1rst_t *rst) if (b->n_alleles < 2) return -1; // FIXME: find a better solution // rst->rank0 = cal_pdg(b, ma); - rst->f_exp = mc_cal_afs(ma); + rst->f_exp = mc_cal_afs(ma, &rst->p_ref_folded, &rst->p_var_folded); rst->p_ref = ma->afs1[ma->M]; + for (k = 0, sum = 0.; k < ma->M; ++k) + sum += ma->afs1[k]; + rst->p_var = (double)sum; // calculate f_flat and f_em for (k = 0, sum = 0.; k <= ma->M; ++k) sum += (long double)ma->z[k]; @@ -259,7 +436,21 @@ int bcf_p1_cal(bcf1_t *b, bcf_p1aux_t *ma, bcf_p1rst_t *rst) flast = rst->f_em; } } - p1_cal_g3(ma, rst->g); + { // estimate equal-tail credible interval (95% level) + int l, h; + double p; + for (i = 0, p = 0.; i < ma->M; ++i) + if (p + ma->afs1[i] > 0.025) break; + else p += ma->afs1[i]; + l = i; + for (i = ma->M-1, p = 0.; i >= 0; --i) + if (p + ma->afs1[i] > 0.025) break; + else p += ma->afs1[i]; + h = i; + rst->cil = (double)(ma->M - h) / ma->M; rst->cih = (double)(ma->M - l) / ma->M; + } + rst->g[0] = rst->g[1] = rst->g[2] = -1.; + contrast(ma, rst->pc); return 0; }