X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;f=R%2Fplot.phylo.R;h=3fd0637295d84063afd81cbe2bea7d5509bbe7d4;hb=2653eb671caf9234635e44b895ef48b377a89a78;hp=3235300d08ff0ea0b9b2746565c9ecbde4f8c30e;hpb=5432a54c18f69a73d7f46899a60897e2d92fb857;p=ape.git diff --git a/R/plot.phylo.R b/R/plot.phylo.R index 3235300..3fd0637 100644 --- a/R/plot.phylo.R +++ b/R/plot.phylo.R @@ -1,26 +1,50 @@ -## plot.phylo.R (2008-02-28) +## plot.phylo.R (2012-03-22) ## Plot Phylogenies -## Copyright 2002-2008 Emmanuel Paradis +## Copyright 2002-2012 Emmanuel Paradis ## This file is part of the R-package `ape'. ## See the file ../COPYING for licensing issues. -plot.phylo <- function(x, type = "phylogram", use.edge.length = TRUE, - node.pos = NULL, show.tip.label = TRUE, - show.node.label = FALSE, edge.color = "black", - edge.width = 1, font = 3, cex = par("cex"), - adj = NULL, srt = 0, no.margin = FALSE, - root.edge = FALSE, label.offset = 0, underscore = FALSE, - x.lim = NULL, y.lim = NULL, direction = "rightwards", - lab4ut = "horizontal", tip.color = "black", ...) +plot.phylo <- + function(x, type = "phylogram", use.edge.length = TRUE, + node.pos = NULL, show.tip.label = TRUE, + show.node.label = FALSE, edge.color = "black", + edge.width = 1, edge.lty = 1, font = 3, cex = par("cex"), + adj = NULL, srt = 0, no.margin = FALSE, root.edge = FALSE, + label.offset = 0, underscore = FALSE, x.lim = NULL, + y.lim = NULL, direction = "rightwards", lab4ut = "horizontal", + tip.color = "black", plot = TRUE, rotate.tree = 0, ...) { Ntip <- length(x$tip.label) - if (Ntip == 1) stop("found only one tip in the tree!") - Nedge <- dim(x$edge)[1] + if (Ntip == 1) { + warning("found only one tip in the tree") + return(NULL) + } if (any(tabulate(x$edge[, 1]) == 1)) - stop("there are single (non-splitting) nodes in your tree; you may need to use collapse.singles().") + stop("there are single (non-splitting) nodes in your tree; you may need to use collapse.singles()") + + .nodeHeight <- function(Ntip, Nnode, edge, Nedge, yy) + .C("node_height", as.integer(Ntip), as.integer(Nnode), + as.integer(edge[, 1]), as.integer(edge[, 2]), + as.integer(Nedge), as.double(yy), + DUP = FALSE, PACKAGE = "ape")[[6]] + + .nodeDepth <- function(Ntip, Nnode, edge, Nedge) + .C("node_depth", as.integer(Ntip), as.integer(Nnode), + as.integer(edge[, 1]), as.integer(edge[, 2]), + as.integer(Nedge), double(Ntip + Nnode), + DUP = FALSE, PACKAGE = "ape")[[6]] + + .nodeDepthEdgelength <- function(Ntip, Nnode, edge, Nedge, edge.length) + .C("node_depth_edgelength", as.integer(Ntip), + as.integer(Nnode), as.integer(edge[, 1]), + as.integer(edge[, 2]), as.integer(Nedge), + as.double(edge.length), double(Ntip + Nnode), + DUP = FALSE, PACKAGE = "ape")[[7]] + + Nedge <- dim(x$edge)[1] Nnode <- x$Nnode ROOT <- Ntip + 1 type <- match.arg(type, c("phylogram", "cladogram", "fan", @@ -28,171 +52,163 @@ plot.phylo <- function(x, type = "phylogram", use.edge.length = TRUE, direction <- match.arg(direction, c("rightwards", "leftwards", "upwards", "downwards")) if (is.null(x$edge.length)) use.edge.length <- FALSE - if (type == "unrooted" || !use.edge.length) root.edge <- FALSE + + ## the order of the last two conditions is important: + if (type %in% c("unrooted", "radial") || !use.edge.length || + is.null(x$root.edge) || !x$root.edge) root.edge <- FALSE + if (type == "fan" && root.edge) { + warning("drawing root edge with type = 'fan' is not yet supported") + root.edge <- FALSE + } + phyloORclado <- type %in% c("phylogram", "cladogram") horizontal <- direction %in% c("rightwards", "leftwards") + xe <- x$edge # to save if (phyloORclado) { ## we first compute the y-coordinates of the tips. - ## Fix from Klaus Schliep (2007-06-16): - if (!is.null(attr(x, "order"))) - if (attr(x, "order") == "pruningwise") - x <- reorder(x) - ## End of fix + phyOrder <- attr(x, "order") + ## make sure the tree is in cladewise order: + if (is.null(phyOrder) || phyOrder != "cladewise") { + x <- reorder(x) # fix from Klaus Schliep (2007-06-16) + if (!identical(x$edge, xe)) { + ## modified from Li-San Wang's fix (2007-01-23): + ereorder <- match(x$edge[, 2], xe[, 2]) + if (length(edge.color) > 1) { + edge.color <- rep(edge.color, length.out = Nedge) + edge.color <- edge.color[ereorder] + } + if (length(edge.width) > 1) { + edge.width <- rep(edge.width, length.out = Nedge) + edge.width <- edge.width[ereorder] + } + if (length(edge.lty) > 1) { + edge.lty <- rep(edge.lty, length.out = Nedge) + edge.lty <- edge.lty[ereorder] + } + } + } +### By contrats to ape (< 2.4), the arguments edge.color, etc., are +### not elongated before being passed to segments(), except if needed +### to be reordered yy <- numeric(Ntip + Nnode) TIPS <- x$edge[x$edge[, 2] <= Ntip, 2] yy[TIPS] <- 1:Ntip } - edge.color <- rep(edge.color, length.out = Nedge) - edge.width <- rep(edge.width, length.out = Nedge) - ## fix from Li-San Wang (2007-01-23): - xe <- x$edge - x <- reorder(x, order = "pruningwise") - ereorder <- match(x$edge[, 2], xe[, 2]) - edge.color <- edge.color[ereorder] - edge.width <- edge.width[ereorder] - ## End of fix + ## 'z' is the tree in pruningwise order used in calls to .C + z <- reorder(x, order = "pruningwise") + if (phyloORclado) { if (is.null(node.pos)) { node.pos <- 1 if (type == "cladogram" && !use.edge.length) node.pos <- 2 } if (node.pos == 1) - yy <- .C("node_height", as.integer(Ntip), as.integer(Nnode), - as.integer(x$edge[, 1]), as.integer(x$edge[, 2]), - as.integer(Nedge), as.double(yy), - DUP = FALSE, PACKAGE = "ape")[[6]] + yy <- .nodeHeight(Ntip, Nnode, z$edge, Nedge, yy) else { ## node_height_clado requires the number of descendants ## for each node, so we compute `xx' at the same time ans <- .C("node_height_clado", as.integer(Ntip), - as.integer(Nnode), as.integer(x$edge[, 1]), - as.integer(x$edge[, 2]), as.integer(Nedge), + as.integer(Nnode), as.integer(z$edge[, 1]), + as.integer(z$edge[, 2]), as.integer(Nedge), double(Ntip + Nnode), as.double(yy), DUP = FALSE, PACKAGE = "ape") xx <- ans[[6]] - 1 yy <- ans[[7]] } if (!use.edge.length) { - if(node.pos != 2) - xx <- .C("node_depth", as.integer(Ntip), as.integer(Nnode), - as.integer(x$edge[, 1]), as.integer(x$edge[, 2]), - as.integer(Nedge), double(Ntip + Nnode), - DUP = FALSE, PACKAGE = "ape")[[6]] - 1 + if (node.pos != 2) xx <- .nodeDepth(Ntip, Nnode, z$edge, Nedge) - 1 xx <- max(xx) - xx } else { - xx <- .C("node_depth_edgelength", as.integer(Ntip), - as.integer(Nnode), as.integer(x$edge[, 1]), - as.integer(x$edge[, 2]), as.integer(Nedge), - as.double(x$edge.length), double(Ntip + Nnode), - DUP = FALSE, PACKAGE = "ape")[[7]] + xx <- .nodeDepthEdgelength(Ntip, Nnode, z$edge, Nedge, z$edge.length) } - } - if (type == "fan") { + } else { + rotate.tree <- 2 * pi * rotate.tree/360 + switch(type, "fan" = { ## if the tips are not in the same order in tip.label ## and in edge[, 2], we must reorder the angles: we ## use `xx' to store temporarily the angles - TIPS <- xe[which(xe[, 2] <= Ntip), 2] + TIPS <- x$edge[which(x$edge[, 2] <= Ntip), 2] xx <- seq(0, 2*pi*(1 - 1/Ntip), 2*pi/Ntip) theta <- double(Ntip) theta[TIPS] <- xx theta <- c(theta, numeric(Nnode)) - theta <- .C("node_height", as.integer(Ntip), as.integer(Nnode), - as.integer(x$edge[, 1]), as.integer(x$edge[, 2]), - as.integer(Nedge), theta, DUP = FALSE, - PACKAGE = "ape")[[6]] + theta <- .nodeHeight(Ntip, Nnode, z$edge, Nedge, theta) if (use.edge.length) { - r <- .C("node_depth_edgelength", as.integer(Ntip), - as.integer(Nnode), as.integer(x$edge[, 1]), - as.integer(x$edge[, 2]), as.integer(Nedge), - as.double(x$edge.length), double(Ntip + Nnode), - DUP = FALSE, PACKAGE = "ape")[[7]] + r <- .nodeDepthEdgelength(Ntip, Nnode, z$edge, Nedge, z$edge.length) } else { - r <- .C("node_depth", as.integer(Ntip), as.integer(Nnode), - as.integer(x$edge[, 1]), as.integer(x$edge[, 2]), - as.integer(Nedge), double(Ntip + Nnode), - DUP = FALSE, PACKAGE = "ape")[[6]] + r <- .nodeDepth(Ntip, Nnode, z$edge, Nedge) r <- 1/r } + theta <- theta + rotate.tree xx <- r*cos(theta) yy <- r*sin(theta) - - } - if (type == "unrooted") { + }, "unrooted" = { + nb.sp <- .nodeDepth(Ntip, Nnode, z$edge, Nedge) XY <- if (use.edge.length) - unrooted.xy(Ntip, Nnode, x$edge, x$edge.length) + unrooted.xy(Ntip, Nnode, z$edge, z$edge.length, nb.sp, rotate.tree) else - unrooted.xy(Ntip, Nnode, x$edge, rep(1, Nedge)) + unrooted.xy(Ntip, Nnode, z$edge, rep(1, Nedge), nb.sp, rotate.tree) ## rescale so that we have only positive values xx <- XY$M[, 1] - min(XY$M[, 1]) yy <- XY$M[, 2] - min(XY$M[, 2]) - } - if (type == "radial") { - X <- .C("node_depth", as.integer(Ntip), as.integer(Nnode), - as.integer(x$edge[, 1]), as.integer(x$edge[, 2]), - as.integer(Nedge), double(Ntip + Nnode), - DUP = FALSE, PACKAGE = "ape")[[6]] + }, "radial" = { + X <- .nodeDepth(Ntip, Nnode, z$edge, Nedge) X[X == 1] <- 0 ## radius: X <- 1 - X/Ntip ## angle (1st compute the angles for the tips): yy <- c((1:Ntip)*2*pi/Ntip, rep(0, Nnode)) - Y <- .C("node_height", as.integer(Ntip), as.integer(Nnode), - as.integer(x$edge[, 1]), as.integer(x$edge[, 2]), - as.integer(Nedge), as.double(yy), - DUP = FALSE, PACKAGE = "ape")[[6]] - xx <- X * cos(Y) - yy <- X * sin(Y) - } - if (phyloORclado && direction != "rightwards") { - if (direction == "leftwards") { - xx <- -xx - xx <- xx - min(xx) - } + Y <- .nodeHeight(Ntip, Nnode, z$edge, Nedge, yy) + xx <- X * cos(Y + rotate.tree) + yy <- X * sin(Y + rotate.tree) + })} + if (phyloORclado) { if (!horizontal) { tmp <- yy yy <- xx xx <- tmp - min(tmp) + 1 - if (direction == "downwards") { - yy <- -yy - yy <- yy - min(yy) - } } - } - if (phyloORclado && root.edge) { - if (direction == "rightwards") xx <- xx + x$root.edge - if (direction == "upwards") yy <- yy + x$root.edge + if (root.edge) { + if (direction == "rightwards") xx <- xx + x$root.edge + if (direction == "upwards") yy <- yy + x$root.edge + } } if (no.margin) par(mai = rep(0, 4)) if (is.null(x.lim)) { if (phyloORclado) { if (horizontal) { x.lim <- c(0, NA) - tmp <- - if (show.tip.label) nchar(x$tip.label) * 0.018 * max(xx) * cex - else 0 - x.lim[2] <- - if (direction == "leftwards") max(xx[ROOT] + tmp) - else max(xx[1:Ntip] + tmp) + pin1 <- par("pin")[1] # width of the device in inches + strWi <- strwidth(x$tip.label, "inches") # id. for the tip labels + ## 1.04 comes from that we are using a regular axis system + ## with 4% on both sides of the range of x: + xx.tips <- xx[1:Ntip] * 1.04 + ## 'alp' is the conversion coefficient from + ## user coordinates to inches: + alp <- try(uniroot(function(a) max(a*xx.tips + strWi) - pin1, + c(0, 1e6))$root, silent = TRUE) + ## if the above fails, give 1/3 of the device for the tip labels: + if (is.character(alp)) tmp <- max(xx.tips)*1.5 else { + tmp <- if (show.tip.label) max(xx.tips + strWi/alp) else max(xx.tips) + } + x.lim[2] <- tmp } else x.lim <- c(1, Ntip) - } - if (type == "fan") { + } else switch(type, "fan" = { if (show.tip.label) { offset <- max(nchar(x$tip.label) * 0.018 * max(yy) * cex) x.lim <- c(min(xx) - offset, max(xx) + offset) } else x.lim <- c(min(xx), max(xx)) - } - if (type == "unrooted") { + }, "unrooted" = { if (show.tip.label) { offset <- max(nchar(x$tip.label) * 0.018 * max(yy) * cex) x.lim <- c(0 - offset, max(xx) + offset) } else x.lim <- c(0, max(xx)) - } - if (type == "radial") { + }, "radial" = { if (show.tip.label) { offset <- max(nchar(x$tip.label) * 0.03 * cex) x.lim <- c(-1 - offset, 1 + offset) } else x.lim <- c(-1, 1) - } + }) } else if (length(x.lim) == 1) { x.lim <- c(0, x.lim) if (phyloORclado && !horizontal) x.lim[1] <- 1 @@ -203,86 +219,108 @@ plot.phylo <- function(x, type = "phylogram", use.edge.length = TRUE, if (show.tip.label) -1 - max(nchar(x$tip.label) * 0.03 * cex) else -1 } + ## mirror the xx: + if (phyloORclado && direction == "leftwards") xx <- x.lim[2] - xx if (is.null(y.lim)) { if (phyloORclado) { if (horizontal) y.lim <- c(1, Ntip) else { y.lim <- c(0, NA) - tmp <- - if (show.tip.label) nchar(x$tip.label) * 0.018 * max(yy) * cex - else 0 - y.lim[2] <- - if (direction == "downwards") max(yy[ROOT] + tmp) - else max(yy[1:Ntip] + tmp) + pin2 <- par("pin")[2] # height of the device in inches + strWi <- strwidth(x$tip.label, "inches") + ## 1.04 comes from that we are using a regular axis system + ## with 4% on both sides of the range of x: + yy.tips <- yy[1:Ntip] * 1.04 + ## 'alp' is the conversion coefficient from + ## user coordinates to inches: + alp <- try(uniroot(function(a) max(a*yy.tips + strWi) - pin2, + c(0, 1e6))$root, silent = TRUE) + ## if the above fails, give 1/3 of the device for the tip labels: + if (is.character(alp)) tmp <- max(yy.tips)*1.5 else { + tmp <- if (show.tip.label) max(yy.tips + strWi/alp) else max(yy.tips) + } + y.lim[2] <- tmp } - } - if (type == "fan") { + } else switch(type, "fan" = { if (show.tip.label) { offset <- max(nchar(x$tip.label) * 0.018 * max(yy) * cex) y.lim <- c(min(yy) - offset, max(yy) + offset) } else y.lim <- c(min(yy), max(yy)) - } - if (type == "unrooted") { + }, "unrooted" = { if (show.tip.label) { offset <- max(nchar(x$tip.label) * 0.018 * max(yy) * cex) y.lim <- c(0 - offset, max(yy) + offset) } else y.lim <- c(0, max(yy)) - } - if (type == "radial") { + }, "radial" = { if (show.tip.label) { offset <- max(nchar(x$tip.label) * 0.03 * cex) y.lim <- c(-1 - offset, 1 + offset) } else y.lim <- c(-1, 1) - } + }) } else if (length(y.lim) == 1) { y.lim <- c(0, y.lim) if (phyloORclado && horizontal) y.lim[1] <- 1 if (type %in% c("fan", "unrooted") && show.tip.label) - y.lim[1] <- -max(nchar(x$tip.label) * 0.018 * max(yy) * cex) + y.lim[1] <- -max(nchar(x$tip.label) * 0.018 * max(yy) * cex) if (type == "radial") - y.lim[1] <- if (show.tip.label) -1 - max(nchar(x$tip.label) * 0.018 * max(yy) * cex) else -1 + y.lim[1] <- if (show.tip.label) -1 - max(nchar(x$tip.label) * 0.018 * max(yy) * cex) else -1 } + ## mirror the yy: + if (phyloORclado && direction == "downwards") yy <- max(yy) - yy if (phyloORclado && root.edge) { if (direction == "leftwards") x.lim[2] <- x.lim[2] + x$root.edge if (direction == "downwards") y.lim[2] <- y.lim[2] + x$root.edge } + asp <- if (type %in% c("fan", "radial", "unrooted")) 1 else NA # fixes by Klaus Schliep (2008-03-28 and 2010-08-12) + plot(0, type = "n", xlim = x.lim, ylim = y.lim, ann = FALSE, axes = FALSE, asp = asp, ...) - plot(0, type = "n", xlim = x.lim, ylim = y.lim, xlab = "", - ylab = "", xaxt = "n", yaxt = "n", bty = "n", ...) +if (plot) { if (is.null(adj)) - adj <- if (phyloORclado && direction == "leftwards") 1 else 0 - if (phyloORclado) { + adj <- if (phyloORclado && direction == "leftwards") 1 else 0 + if (phyloORclado && show.tip.label) { MAXSTRING <- max(strwidth(x$tip.label, cex = cex)) + loy <- 0 if (direction == "rightwards") { lox <- label.offset + MAXSTRING * 1.05 * adj - loy <- 0 } if (direction == "leftwards") { lox <- -label.offset - MAXSTRING * 1.05 * (1 - adj) - loy <- 0 - xx <- xx + MAXSTRING + ##xx <- xx + MAXSTRING } if (!horizontal) { psr <- par("usr") - MAXSTRING <- MAXSTRING * 1.09 * (psr[4] - psr[3]) / (psr[2] - psr[1]) + MAXSTRING <- MAXSTRING * 1.09 * (psr[4] - psr[3])/(psr[2] - psr[1]) loy <- label.offset + MAXSTRING * 1.05 * adj lox <- 0 srt <- 90 + srt if (direction == "downwards") { loy <- -loy - yy <- yy + MAXSTRING + ##yy <- yy + MAXSTRING srt <- 180 + srt } } } if (type == "phylogram") { phylogram.plot(x$edge, Ntip, Nnode, xx, yy, - horizontal, edge.color, edge.width) + horizontal, edge.color, edge.width, edge.lty) } else { - if (type == "fan") - circular.plot(x$edge, Ntip, Nnode, xx, yy, theta, - r, edge.color, edge.width) - else - cladogram.plot(x$edge, xx, yy, edge.color, edge.width) + if (type == "fan") { + ereorder <- match(z$edge[, 2], x$edge[, 2]) + if (length(edge.color) > 1) { + edge.color <- rep(edge.color, length.out = Nedge) + edge.color <- edge.color[ereorder] + } + if (length(edge.width) > 1) { + edge.width <- rep(edge.width, length.out = Nedge) + edge.width <- edge.width[ereorder] + } + if (length(edge.lty) > 1) { + edge.lty <- rep(edge.lty, length.out = Nedge) + edge.lty <- edge.lty[ereorder] + } + circular.plot(z$edge, Ntip, Nnode, xx, yy, theta, + r, edge.color, edge.width, edge.lty) + } else + cladogram.plot(x$edge, xx, yy, edge.color, edge.width, edge.lty) } if (root.edge) switch(direction, @@ -291,11 +329,13 @@ plot.phylo <- function(x, type = "phylogram", use.edge.length = TRUE, "upwards" = segments(xx[ROOT], 0, xx[ROOT], x$root.edge), "downwards" = segments(xx[ROOT], yy[ROOT], xx[ROOT], yy[ROOT] + x$root.edge)) if (show.tip.label) { + if (is.expression(x$tip.label)) underscore <- TRUE if (!underscore) x$tip.label <- gsub("_", " ", x$tip.label) - if (phyloORclado) { + + if (phyloORclado) text(xx[1:Ntip] + lox, yy[1:Ntip] + loy, x$tip.label, adj = adj, font = font, srt = srt, cex = cex, col = tip.color) - } + if (type == "unrooted") { if (lab4ut == "horizontal") { y.adj <- x.adj <- numeric(Ntip) @@ -307,48 +347,59 @@ plot.phylo <- function(x, type = "phylogram", use.edge.length = TRUE, y.adj[sel] <- strheight(x$tip.label)[sel] / 2 sel <- XY$axe < -pi / 4 & XY$axe > -0.75 * pi y.adj[sel] <- -strheight(x$tip.label)[sel] * 0.75 - text(xx[1:Ntip] + x.adj*cex, yy[1:Ntip] + y.adj*cex, + text(xx[1:Ntip] + x.adj * cex, yy[1:Ntip] + y.adj * cex, x$tip.label, adj = c(adj, 0), font = font, srt = srt, cex = cex, col = tip.color) } else { # if lab4ut == "axial" - adj <- as.numeric(abs(XY$axe) > pi/2) - srt <- 180*XY$axe/pi - srt[as.logical(adj)] <- srt[as.logical(adj)] - 180 - ## temporary check of the values of `srt': - ## set to 0 if "-0.000001 < srt < 0" - sel <- srt > -1e-6 & srt < 0 - if (any(sel)) srt[sel] <- 0 - ## - ## `srt' takes only a single value, so we cannot vectorize this: + adj <- abs(XY$axe) > pi/2 + srt <- 180 * XY$axe / pi + srt[adj] <- srt[adj] - 180 + adj <- as.numeric(adj) + xx.tips <- xx[1:Ntip] + yy.tips <- yy[1:Ntip] + if (label.offset) { + xx.tips <- xx.tips + label.offset * cos(XY$axe) + yy.tips <- yy.tips + label.offset * sin(XY$axe) + } + ## `srt' takes only a single value, so can't vectorize this: + ## (and need to 'elongate' these vectors:) + font <- rep(font, length.out = Ntip) + tip.color <- rep(tip.color, length.out = Ntip) + cex <- rep(cex, length.out = Ntip) for (i in 1:Ntip) - text(xx[i], yy[i], cex = cex, x$tip.label[i], adj = adj[i], - font = font, srt = srt[i], col = tip.color[i]) + text(xx.tips[i], yy.tips[i], cex = cex[i], + x$tip.label[i], adj = adj[i], font = font[i], + srt = srt[i], col = tip.color[i]) } } if (type %in% c("fan", "radial")) { - xx.scaled <- xx[1:Ntip] - if (type == "fan") { # no need if type == "radial" - maxx <- max(xx.scaled) - if (maxx > 1) xx.scaled <- xx.scaled/maxx + xx.tips <- xx[1:Ntip] + yy.tips <- yy[1:Ntip] + ## using atan2 considerably facilitates things compared to acos... + angle <- atan2(yy.tips, xx.tips) # in radians + if (label.offset) { + xx.tips <- xx.tips + label.offset * cos(angle) + yy.tips <- yy.tips + label.offset * sin(angle) } - angle <- acos(xx.scaled)*180/pi - s1 <- angle > 90 & yy[1:Ntip] > 0 - s2 <- angle < 90 & yy[1:Ntip] < 0 - s3 <- angle > 90 & yy[1:Ntip] < 0 - angle[s1] <- angle[s1] + 180 - angle[s2] <- -angle[s2] - angle[s3] <- 180 - angle[s3] - adj <- numeric(Ntip) - adj[xx[1:Ntip] < 0] <- 1 - ## `srt' takes only a single value, so we cannot vectorize this: + s <- xx.tips < 0 + angle <- angle * 180/pi # switch to degrees + angle[s] <- angle[s] + 180 + adj <- as.numeric(s) + ## `srt' takes only a single value, so can't vectorize this: + ## (and need to 'elongate' these vectors:) + font <- rep(font, length.out = Ntip) + tip.color <- rep(tip.color, length.out = Ntip) + cex <- rep(cex, length.out = Ntip) for (i in 1:Ntip) - text(xx[i], yy[i], x$tip.label[i], font = font, cex = cex, - srt = angle[i], adj = adj[i], col = tip.color[i]) + text(xx.tips[i], yy.tips[i], x$tip.label[i], font = font[i], + cex = cex[i], srt = angle[i], adj = adj[i], + col = tip.color[i]) } } if (show.node.label) - text(xx[ROOT:length(xx)] + label.offset, yy[ROOT:length(yy)], - x$node.label, adj = adj, font = font, srt = srt, cex = cex) + text(xx[ROOT:length(xx)] + label.offset, yy[ROOT:length(yy)], + x$node.label, adj = adj, font = font, srt = srt, cex = cex) +} L <- list(type = type, use.edge.length = use.edge.length, node.pos = node.pos, show.tip.label = show.tip.label, show.node.label = show.node.label, font = font, @@ -361,8 +412,8 @@ plot.phylo <- function(x, type = "phylogram", use.edge.length = TRUE, invisible(L) } -phylogram.plot <- function(edge, Ntip, Nnode, xx, yy, - horizontal, edge.color, edge.width) +phylogram.plot <- function(edge, Ntip, Nnode, xx, yy, horizontal, + edge.color, edge.width, edge.lty) { nodes <- (Ntip + 1):(Ntip + Nnode) if (!horizontal) { @@ -373,90 +424,134 @@ phylogram.plot <- function(edge, Ntip, Nnode, xx, yy, ## un trait vertical à chaque noeud... x0v <- xx[nodes] y0v <- y1v <- numeric(Nnode) + ## store the index of each node in the 1st column of edge: + NodeInEdge1 <- vector("list", Nnode) for (i in nodes) { - j <- edge[which(edge[, 1] == i), 2] - y0v[i - Ntip] <- min(yy[j]) - y1v[i - Ntip] <- max(yy[j]) + ii <- i - Ntip + j <- NodeInEdge1[[ii]] <- which(edge[, 1] == i) + tmp <- range(yy[edge[j, 2]]) + y0v[ii] <- tmp[1] + y1v[ii] <- tmp[2] } ## ... et un trait horizontal partant de chaque tip et chaque noeud ## vers la racine - sq <- if (Nnode == 1) 1:Ntip else c(1:Ntip, nodes[-1]) - y0h <- yy[sq] - x1h <- xx[sq] - ## match() is very useful here becoz each element in edge[, 2] is - ## unique (not sure this is so useful in edge[, 1]; needs to be checked) - ## `pos' gives for each element in `sq' its index in edge[, 2] - pos <- match(sq, edge[, 2]) - x0h <- xx[edge[pos, 1]] - - e.w <- unique(edge.width) - if (length(e.w) == 1) width.v <- rep(e.w, Nnode) - else { - width.v <- rep(1, Nnode) - for (i in 1:Nnode) { - br <- edge[which(edge[, 1] == i + Ntip), 2] - width <- unique(edge.width[br]) - if (length(width) == 1) width.v[i] <- width - } - } - e.c <- unique(edge.color) - if (length(e.c) == 1) color.v <- rep(e.c, Nnode) - else { + x0h <- xx[edge[, 1]] + x1h <- xx[edge[, 2]] + y0h <- yy[edge[, 2]] + + nc <- length(edge.color) + nw <- length(edge.width) + nl <- length(edge.lty) + + if (nc + nw + nl == 3) { + color.v <- edge.color + width.v <- edge.width + lty.v <- edge.lty + } else { + Nedge <- dim(edge)[1] + edge.color <- rep(edge.color, length.out = Nedge) + edge.width <- rep(edge.width, length.out = Nedge) + edge.lty <- rep(edge.lty, length.out = Nedge) + DF <- data.frame(edge.color, edge.width, edge.lty, stringsAsFactors = FALSE) color.v <- rep("black", Nnode) + width.v <- rep(1, Nnode) + lty.v <- rep(1, Nnode) for (i in 1:Nnode) { - br <- which(edge[, 1] == i + Ntip) - #br <- edge[which(edge[, 1] == i + Ntip), 2] - color <- unique(edge.color[br]) - if (length(color) == 1) color.v[i] <- color + br <- NodeInEdge1[[i]] + if (length(br) > 2) { + x <- unique(DF[br, 1]) + if (length(x) == 1) color.v[i] <- x + x <- unique(DF[br, 2]) + if (length(x) == 1) width.v[i] <- x + x <- unique(DF[br, 3]) + if (length(x) == 1) lty.v[i] <- x + } else { + A <- br[1] + B <- br[2] + if (any(DF[A, ] != DF[B, ])) { + color.v[i] <- edge.color[B] + width.v[i] <- edge.width[B] + lty.v[i] <- edge.lty[B] + ## add a new line: + y0v <- c(y0v, y0v[i]) + y1v <- c(y1v, yy[i + Ntip]) + x0v <- c(x0v, x0v[i]) + color.v <- c(color.v, edge.color[A]) + width.v <- c(width.v, edge.width[A]) + lty.v <- c(lty.v, edge.lty[A]) + ## shorten the line: + y0v[i] <- yy[i + Ntip] + } else { + color.v[i] <- edge.color[A] + width.v[i] <- edge.width[A] + lty.v[i] <- edge.lty[A] + } + } } } - ## we need to reorder `edge.color' and `edge.width': - edge.width <- edge.width[pos] - edge.color <- edge.color[pos] if (horizontal) { - segments(x0v, y0v, x0v, y1v, col = color.v, lwd = width.v) # draws vertical lines - segments(x0h, y0h, x1h, y0h, col = edge.color, lwd = edge.width) # draws horizontal lines + segments(x0h, y0h, x1h, y0h, col = edge.color, lwd = edge.width, lty = edge.lty) # draws horizontal lines + segments(x0v, y0v, x0v, y1v, col = color.v, lwd = width.v, lty = lty.v) # draws vertical lines } else { - segments(y0v, x0v, y1v, x0v, col = color.v, lwd = width.v) # draws horizontal lines - segments(y0h, x0h, y0h, x1h, col = edge.color, lwd = edge.width) # draws vertical lines + segments(y0h, x0h, y0h, x1h, col = edge.color, lwd = edge.width, lty = edge.lty) # draws vertical lines + segments(y0v, x0v, y1v, x0v, col = color.v, lwd = width.v, lty = lty.v) # draws horizontal lines } } -cladogram.plot <- function(edge, xx, yy, edge.color, edge.width) - segments(xx[edge[, 1]], yy[edge[, 1]], xx[edge[, 2]], yy[edge[, 2]], - col = edge.color, lwd = edge.width) +cladogram.plot <- function(edge, xx, yy, edge.color, edge.width, edge.lty) + segments(xx[edge[, 1]], yy[edge[, 1]], xx[edge[, 2]], yy[edge[, 2]], + col = edge.color, lwd = edge.width, lty = edge.lty) circular.plot <- function(edge, Ntip, Nnode, xx, yy, theta, - r, edge.color, edge.width) + r, edge.color, edge.width, edge.lty) +### 'edge' must be in pruningwise order { r0 <- r[edge[, 1]] r1 <- r[edge[, 2]] theta0 <- theta[edge[, 2]] + costheta0 <- cos(theta0) + sintheta0 <- sin(theta0) - x0 <- r0*cos(theta0) - y0 <- r0*sin(theta0) - x1 <- r1*cos(theta0) - y1 <- r1*sin(theta0) + x0 <- r0 * costheta0 + y0 <- r0 * sintheta0 + x1 <- r1 * costheta0 + y1 <- r1 * sintheta0 - segments(x0, y0, x1, y1, col = edge.color, lwd = edge.width) + segments(x0, y0, x1, y1, col = edge.color, lwd = edge.width, lty = edge.lty) tmp <- which(diff(edge[, 1]) != 0) start <- c(1, tmp + 1) - end <- c(tmp, dim(edge)[1]) + Nedge <- dim(edge)[1] + end <- c(tmp, Nedge) + + ## function dispatching the features to the arcs + foo <- function(edge.feat, default) { + if (length(edge.feat) == 1) return(rep(edge.feat, Nnode)) + else { + edge.feat <- rep(edge.feat, length.out = Nedge) + feat.arc <- rep(default, Nnode) + for (k in 1:Nnode) { + tmp <- edge.feat[start[k]] + if (tmp == edge.feat[end[k]]) feat.arc[k] <- tmp + } + } + feat.arc + } + co <- foo(edge.color, "black") + lw <- foo(edge.width, 1) + ly <- foo(edge.lty, 1) for (k in 1:Nnode) { i <- start[k] j <- end[k] X <- rep(r[edge[i, 1]], 100) Y <- seq(theta[edge[i, 2]], theta[edge[j, 2]], length.out = 100) - co <- if (edge.color[i] == edge.color[j]) edge.color[i] else "black" - lw <- if (edge.width[i] == edge.width[j]) edge.width[i] else 1 - lines(X*cos(Y), X*sin(Y), col = co, lwd = lw) + lines(X*cos(Y), X*sin(Y), col = co[k], lwd = lw[k], lty = ly[k]) } } -unrooted.xy <- function(Ntip, Nnode, edge, edge.length) +unrooted.xy <- function(Ntip, Nnode, edge, edge.length, nb.sp, rotate.tree) { foo <- function(node, ANGLE, AXIS) { ind <- which(edge[, 1] == node) @@ -471,21 +566,15 @@ unrooted.xy <- function(Ntip, Nnode, edge, edge.length) yy[sons[i]] <<- h*sin(beta) + yy[node] } for (i in sons) - if (i > Ntip) foo(i, angle[i], axis[i]) + if (i > Ntip) foo(i, angle[i], axis[i]) } - root <- Ntip + 1 Nedge <- dim(edge)[1] yy <- xx <- numeric(Ntip + Nnode) - nb.sp <- .C("node_depth", as.integer(Ntip), as.integer(Nnode), - as.integer(edge[, 1]), as.integer(edge[, 2]), - as.integer(Nedge), double(Ntip + Nnode), - DUP = FALSE, PACKAGE = "ape")[[6]] ## `angle': the angle allocated to each node wrt their nb of tips ## `axis': the axis of each branch axis <- angle <- numeric(Ntip + Nnode) ## start with the root... - ## xx[root] <- yy[root] <- 0 # already set! - foo(root, 2*pi, 0) + foo(Ntip + 1L, 2*pi, 0 + rotate.tree) M <- cbind(xx, yy) axe <- axis[1:Ntip] # the axis of the terminal branches (for export) @@ -517,3 +606,78 @@ plot.multiPhylo <- function(x, layout = 1, ...) } for (i in 1:length(x)) plot(x[[i]], ...) } + +trex <- function(phy, title = TRUE, subbg = "lightyellow3", + return.tree = FALSE, ...) +{ + lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv) + devmain <- dev.cur() # where the main tree is plotted + + restore <- function() { + dev.set(devmain) + assign("last_plot.phylo", lastPP, envir = .PlotPhyloEnv) + } + + on.exit(restore()) + NEW <- TRUE + cat("Click close to a node. Right-click to exit.\n") + repeat { + x <- identify.phylo(phy, quiet = TRUE) + if (is.null(x)) return(invisible(NULL)) else { + x <- x$nodes + if (is.null(x)) cat("Try again!\n") else { + if (NEW) { + dev.new() + par(bg = subbg) + devsub <- dev.cur() + NEW <- FALSE + } else dev.set(devsub) + + tr <- extract.clade(phy, x) + plot(tr, ...) + if (is.character(title)) title(title) + else if (title) { + tl <- + if (is.null(phy$node.label)) + paste("From node #", x, sep = "") + else paste("From", phy$node.label[x - Ntip(phy)]) + title(tl) + } + if (return.tree) return(tr) + restore() + } + } + } +} + +kronoviz <- function(x, layout = length(x), horiz = TRUE, ...) +{ + par(mar = rep(0.5, 4), oma = rep(2, 4)) + rts <- sapply(x, function(x) branching.times(x)[1]) + maxrts <- max(rts) + lim <- cbind(rts - maxrts, rts) + Ntree <- length(x) + Ntips <- sapply(x, Ntip) + if (horiz) { + nrow <- layout + w <- 1 + h <- Ntips + } else { + nrow <- 1 + w <- Ntips + h <- 1 + } + layout(matrix(1:layout, nrow), widths = w, heights = h) + if (layout > Ntree && !par("ask")) { + par(ask = TRUE) + on.exit(par(ask = FALSE)) + } + if (horiz) { + for (i in 1:Ntree) + plot(x[[i]], x.lim = lim[i, ], ...) + } else { + for (i in 1:Ntree) + plot(x[[i]], y.lim = lim[i, ], direction = "u", ...) + } + axisPhylo(if (horiz) 1 else 4) # better if the deepest tree is last ;) +}