X-Git-Url: https://git.donarmstrong.com/?a=blobdiff_plain;ds=sidebyside;f=lily%2Fbeam.cc;h=627ffac0f0f06b4a934ee98c7bbfb994ed4f3f6d;hb=1d63a3985005a45af468e5c9656de3d17fbb4ee3;hp=1cb48dade12133fa2e0dfc56ffe4a35d17014f3c;hpb=bc95f4434f760d41191341ab4508b2064eb19025;p=lilypond.git diff --git a/lily/beam.cc b/lily/beam.cc index 1cb48dade1..627ffac0f0 100644 --- a/lily/beam.cc +++ b/lily/beam.cc @@ -1,7 +1,7 @@ /* This file is part of LilyPond, the GNU music typesetter. - Copyright (C) 1997--2010 Han-Wen Nienhuys + Copyright (C) 1997--2011 Han-Wen Nienhuys Jan Nieuwenhuizen LilyPond is free software: you can redistribute it and/or modify @@ -37,22 +37,25 @@ #include "beam.hh" +#include "beam-scoring-problem.hh" #include "beaming-pattern.hh" #include "directional-element-interface.hh" -#include "main.hh" +#include "grob-array.hh" #include "international.hh" #include "interval-set.hh" #include "item.hh" #include "least-squares.hh" #include "lookup.hh" +#include "main.hh" #include "misc.hh" +#include "note-head.hh" #include "output-def.hh" #include "pointer-group-interface.hh" +#include "rhythmic-head.hh" #include "spanner.hh" #include "staff-symbol-referencer.hh" #include "stem.hh" #include "warn.hh" -#include "grob-array.hh" #if DEBUG_BEAM_SCORING #include "text-interface.hh" // debug output. @@ -73,6 +76,12 @@ Beam_stem_segment::Beam_stem_segment () dir_ = CENTER; } +bool +beam_segment_less (Beam_segment const& a, Beam_segment const& b) +{ + return a.horizontal_[LEFT] < b.horizontal_[LEFT]; +} + Beam_segment::Beam_segment () { vertical_count_ = 0; @@ -329,6 +338,7 @@ operator <(Beam_stem_segment const &a, typedef map > Position_stem_segments_map; +// TODO - should store result in a property? vector Beam::get_beam_segments (Grob *me_grob, Grob **common) { @@ -580,35 +590,76 @@ Beam::print (SCM grob) Direction feather_dir = to_dir (me->get_property ("grow-direction")); + Interval placements = robust_scm2interval (me->get_property ("normalized-endpoints"), Interval (0.0, 0.0)); + Stencil the_beam; + + int extreme = (segments[0].vertical_count_ == 0 + ? segments[0].vertical_count_ + : segments.back ().vertical_count_); + for (vsize i = 0; i < segments.size (); i ++) { Real local_slope = slope; + /* + Makes local slope proportional to the ratio of the length of this beam + to the total length. + */ if (feather_dir) - { - local_slope += feather_dir * segments[i].vertical_count_ * beam_dy / span.length (); - } + local_slope += (feather_dir * segments[i].vertical_count_ + * beam_dy + * placements.length () + / span.length ()); Stencil b = Lookup::beam (local_slope, segments[i].horizontal_.length (), beam_thickness, blot); b.translate_axis (segments[i].horizontal_[LEFT], X_AXIS); + Real multiplier = feather_dir ? placements[LEFT] : 1.0; + + Interval weights (1 - multiplier, multiplier); + + if (feather_dir != LEFT) + weights.swap (); + + // we need two translations: the normal one and + // the one of the lowest segment + int idx[] = {i, extreme}; + Real translations[2]; + + for (int j = 0; j < 2; j++) + translations[j] = slope + * (segments[idx[j]].horizontal_[LEFT] - span.linear_combination (CENTER)) + + pos.linear_combination (CENTER) + + beam_dy * segments[idx[j]].vertical_count_; + + Real weighted_average = translations[0] * weights[LEFT] + translations[1] * weights[RIGHT]; + + /* + Tricky. The manipulation of the variable `weighted_average' below ensures + that beams with a RIGHT grow direction will start from the position of the + lowest segment at 0, and this error will decrease and decrease over the + course of the beam. Something with a LEFT grow direction, on the other + hand, will always start in the correct place but progressively accrue + error at broken places. This code shifts beams up given where they are + in the total span length (controlled by the variable `multiplier'). To + better understand what it does, try commenting it out: you'll see that + all of the RIGHT growing beams immediately start too low and get better + over line breaks, whereas all of the LEFT growing beams start just right + and get worse over line breaks. + */ + Real factor = Interval (multiplier, 1 - multiplier).linear_combination (feather_dir); + + if (segments[0].vertical_count_ < 0 && feather_dir) + weighted_average += beam_dy * (segments.size () - 1) * factor; + + b.translate_axis (weighted_average, Y_AXIS); - b.translate_axis (local_slope - * (segments[i].horizontal_[LEFT] - span.linear_combination (feather_dir)) - + pos.linear_combination (feather_dir) - + beam_dy * segments[i].vertical_count_, Y_AXIS); the_beam.add_stencil (b); + } #if (DEBUG_BEAM_SCORING) SCM annotation = me->get_property ("annotation"); - if (!scm_is_string (annotation)) - { - SCM debug = me->layout ()->lookup_variable (ly_symbol2scm ("debug-beam-scoring")); - if (to_boolean (debug)) - annotation = me->get_property ("quant-score"); - } - if (scm_is_string (annotation)) { extract_grob_set (me, "stems", stems); @@ -621,10 +672,13 @@ Beam::print (SCM grob) string str; SCM properties = Font_interface::text_font_alist_chain (me); + properties = scm_cons(scm_acons (ly_symbol2scm ("font-size"), scm_from_int (-5), SCM_EOL), + properties); + Direction stem_dir = stems.size () ? to_dir (stems[0]->get_property ("direction")) : UP; Stencil score = *unsmob_stencil (Text_interface::interpret_markup - (me->layout ()->self_scm (), properties, annotation)); + (me->layout ()->self_scm (), properties, annotation)); if (!score.is_empty ()) { @@ -1031,6 +1085,19 @@ Beam::calc_least_squares_positions (SCM smob, SCM /* posns */) return ly_interval2scm (pos); } + +// Assuming V is not empty, pick a 'reasonable' point inside V. +static Real +point_in_interval (Interval v, Real dist) +{ + if (isinf (v[DOWN])) + return v[UP] - dist; + else if (isinf (v[UP])) + return v[DOWN] + dist; + else + return v.center (); +} + /* We can't combine with previous function, since check concave and slope damping comes first. @@ -1043,41 +1110,43 @@ SCM Beam::shift_region_to_valid (SCM grob, SCM posns) { Grob *me = unsmob_grob (grob); + /* Code dup. */ vector x_posns; extract_grob_set (me, "stems", stems); - Grob *commonx = common_refpoint_of_array (stems, me, X_AXIS); - Grob *commony = common_refpoint_of_array (stems, me, Y_AXIS); + extract_grob_set (me, "covered-grobs", covered); + Grob *common[NO_AXES] = { me, me }; + for (Axis a = X_AXIS; a < NO_AXES; incr (a)) { + common[a] = common_refpoint_of_array (stems, me, a); + common[a] = common_refpoint_of_array (covered, common[a], a); + } Grob *fvs = first_normal_stem (me); if (!fvs) return posns; - - Real x0 = fvs->relative_coordinate (commonx, X_AXIS); + Interval x_span; + x_span[LEFT] = fvs->relative_coordinate (common[X_AXIS], X_AXIS); for (vsize i = 0; i < stems.size (); i++) { Grob *s = stems[i]; - Real x = s->relative_coordinate (commonx, X_AXIS) - x0; + Real x = s->relative_coordinate (common[X_AXIS], X_AXIS) - x_span[LEFT]; x_posns.push_back (x); } Grob *lvs = last_normal_stem (me); - if (!lvs) - return posns; - - Real dx = lvs->relative_coordinate (commonx, X_AXIS) - x0; + x_span[RIGHT] = lvs->relative_coordinate (common[X_AXIS], X_AXIS); Drul_array pos = ly_scm2interval (posns); scale_drul (&pos, Staff_symbol_referencer::staff_space (me)); - Real dy = pos[RIGHT] - pos[LEFT]; - Real y = pos[LEFT]; - Real slope = dx ? (dy / dx) : 0.0; + Real beam_dy = pos[RIGHT] - pos[LEFT]; + Real beam_left_y = pos[LEFT]; + Real slope = x_span.delta () ? (beam_dy / x_span.delta ()) : 0.0; /* Shift the positions so that we have a chance of finding good @@ -1085,6 +1154,7 @@ Beam::shift_region_to_valid (SCM grob, SCM posns) */ Interval feasible_left_point; feasible_left_point.set_full (); + for (vsize i = 0; i < stems.size (); i++) { Grob *s = stems[i]; @@ -1092,7 +1162,6 @@ Beam::shift_region_to_valid (SCM grob, SCM posns) continue; Direction d = get_grob_direction (s); - Real left_y = Stem::get_stem_info (s).shortest_y_ - slope * x_posns [i]; @@ -1102,8 +1171,8 @@ Beam::shift_region_to_valid (SCM grob, SCM posns) ourselves, so translate: */ left_y - += + s->relative_coordinate (commony, Y_AXIS) - - me->relative_coordinate (commony, Y_AXIS); + += + s->relative_coordinate (common[Y_AXIS], Y_AXIS) + - me->relative_coordinate (common[Y_AXIS], Y_AXIS); Interval flp; flp.set_full (); @@ -1112,20 +1181,159 @@ Beam::shift_region_to_valid (SCM grob, SCM posns) feasible_left_point.intersect (flp); } - if (feasible_left_point.is_empty ()) - warning (_ ("no viable initial configuration found: may not find good beam slope")); - else if (!feasible_left_point.contains (y)) + /* + We have two intervals here, one for the up variant (beams goes + over the collision) one for the down. + */ + Drul_array collision_free (feasible_left_point, + feasible_left_point); + + vector filtered; + /* + We only update these for objects that are too large for quanting + to find a workaround. Typically, these are notes with + stems, and timesig/keysig/clef, which take out the entire area + inside the staff as feasible. + + The code below disregards the thickness and multiplicity of the + beam. This should not be a problem, as the beam quanting will + take care of computing the impact those exactly. + */ + Real min_y_size = 2.0; + for (vsize i = 0; i < covered.size(); i++) + { + if (!covered[i]->is_live()) + continue; + + Box b; + for (Axis a = X_AXIS; a < NO_AXES; incr (a)) + b[a] = covered[i]->extent (common[a], a); + + if (b[X_AXIS].is_empty () || b[Y_AXIS].is_empty ()) + continue; + + if (intersection (b[X_AXIS], x_span).is_empty ()) + continue; + + filtered.push_back (covered[i]); + Grob *head_stem = Rhythmic_head::get_stem (covered[i]); + if (head_stem && Stem::is_normal_stem (head_stem) + && Note_head::has_interface (covered[i])) + { + if (Stem::get_beam (head_stem)) + { + /* + We must assume that stems are infinitely long in this + case, as asking for the length of the stem typically + leads to circular dependencies. + + This strategy assumes that we don't want to handle the + collision of beams in opposite non-forced directions + with this code, where shortening the stems of both + would resolve the problem, eg. + + x x + | | + ===== + + ===== + | | + x x + + Such beams would need a coordinating grob to resolve + the collision, since both will likely want to occupy + the centerline. + */ + Direction stemdir = get_grob_direction (head_stem); + b[Y_AXIS][stemdir] = stemdir * infinity_f; + } + else + { + // TODO - should we include the extent of the stem here? + } + } + + if (b[Y_AXIS].length () < min_y_size) + continue; + + Direction d = LEFT; + do + { + Real x = b[X_AXIS][d] - x_span[LEFT]; + Real dy = slope * x; + + Direction yd = DOWN; + do + { + Real left_y = b[Y_AXIS][yd]; + + if (left_y == yd * infinity_f) + { + collision_free[yd].set_empty (); + continue; + } + + left_y -= dy; + + // Translate back to beam as ref point. + left_y -= me->relative_coordinate (common[Y_AXIS], Y_AXIS); + + Interval allowed; + allowed.set_full (); + + allowed[-yd] = left_y; + collision_free[yd].intersect (allowed); + } + while (flip (&yd) != DOWN); + } + while (flip (&d) != LEFT); + } + + Grob_array *arr = + Pointer_group_interface::get_grob_array (me, + ly_symbol2scm ("covered-grobs")); + arr->set_array (filtered); + + if (collision_free[DOWN].contains (beam_left_y) + || collision_free[UP].contains (beam_left_y)) { - const int REGION_SIZE = 2; // UGH UGH - if (isinf (feasible_left_point[DOWN])) - y = feasible_left_point[UP] - REGION_SIZE; - else if (isinf (feasible_left_point[UP])) - y = feasible_left_point[DOWN]+ REGION_SIZE; - else - y = feasible_left_point.center (); + // We're good to go. Do nothing. } + else if (collision_free[DOWN].is_empty() != collision_free[UP].is_empty()) + { + // Only one of them offers is feasible solution. Pick that one. + Interval v = + (!collision_free[DOWN].is_empty()) ? + collision_free[DOWN] : + collision_free[UP]; - pos = Drul_array (y, (y + dy)); + beam_left_y = point_in_interval (v, 2.0); + } + else if (!collision_free[DOWN].is_empty () + && !collision_free[UP].is_empty ()) + { + // Above and below are candidates, take the one closest to the + // starting solution. + Interval best = + (collision_free[DOWN].distance (beam_left_y) + < collision_free[UP].distance (beam_left_y)) ? + collision_free[DOWN] : collision_free[UP]; + + beam_left_y = point_in_interval (best, 2.0); + } + else if (!feasible_left_point.is_empty ()) + { + // We are somewhat screwed: we have a collision, but at least + // there is a way to satisfy stem length constraints. + beam_left_y = point_in_interval (feasible_left_point, 2.0); + } + else + { + // We are completely screwed. + warning (_ ("no viable initial configuration found: may not find good beam slope")); + } + + pos = Drul_array (beam_left_y, (beam_left_y + beam_dy)); scale_drul (&pos, 1 / Staff_symbol_referencer::staff_space (me)); return ly_interval2scm (pos); @@ -1144,7 +1352,6 @@ Beam::slope_damping (SCM smob, SCM posns) if (normal_stem_count (me) <= 1) return posns; - SCM s = me->get_property ("damping"); Real damping = scm_to_double (s); Real concaveness = robust_scm2double (me->get_property ("concaveness"), 0.0); @@ -1186,6 +1393,21 @@ Beam::slope_damping (SCM smob, SCM posns) return ly_interval2scm (pos); } + +MAKE_SCHEME_CALLBACK (Beam, quanting, 2); +SCM +Beam::quanting (SCM smob, SCM posns) +{ + Grob *me = unsmob_grob (smob); + Drul_array ys(0, 0); + ys = robust_scm2drul (posns, ys); + Beam_scoring_problem problem (me, ys); + + ys = problem.solve (); + return ly_interval2scm (ys); +} + + /* Report slice containing the numbers that are both in (car BEAMING) and (cdr BEAMING) @@ -1468,12 +1690,8 @@ Beam::rest_collision_callback (SCM smob, SCM prev_offset) Grob *common_y = rest->common_refpoint (beam, Y_AXIS); - /* - TODO: this is dubious, because this call needs the info we're - computing right now. - */ - Interval rest_extent = rest->extent (common_y, Y_AXIS); - rest_extent.translate (offset); + Interval rest_extent = rest->extent (rest, Y_AXIS); + rest_extent.translate (offset + rest->get_parent (Y_AXIS)->relative_coordinate (common_y, Y_AXIS)); Real rest_dim = rest_extent[d]; Real minimum_distance @@ -1611,6 +1829,9 @@ ADD_INTERFACE (Beam, "break-overshoot " "clip-edges " "concaveness " + "collision-interfaces " + "collision-voice-only " + "covered-grobs " "damping " "details " "direction " @@ -1624,7 +1845,6 @@ ADD_INTERFACE (Beam, "neutral-direction " "normal-stems " "positions " - "quant-score " "quantized-positions " "shorten " "stems "