
Biotools Cookbook

Martin Asser Hansen

March 18, 2008

John Mattick Group
Institute for Molecular Bioscience

University of Queensland
Australia

E-mail: mail@maasha.dk

Contents

1. Introduction 5

2. Setup 6

3. Getting Started 6

4. The Data Stream 7
4.1. How to read the data stream from file? . 7
4.2. How to write the data stream to file? . 8
4.3. How to terminate the data stream? . 8
4.4. How to write my results to file? . 8
4.5. How to read data from multiple sources? 9

5. Reading input 9
5.1. How to read biotools input? . 9
5.2. How to read in data? . 9
5.3. How to read FASTA input? . 10
5.4. How to read alignment input? . 10
5.5. How to read tabular input? . 11
5.6. How to read BED input? . 11
5.7. How to read PSL input? . 12

6. Writing output 12
6.1. How to write biotools output? . 12
6.2. How to write FASTA output? . 12
6.3. How to write alignment output? . 13
6.4. How to write tabular output? . 13
6.5. How to write a BED output? . 14
6.6. How to write PSL output? . 14

7. Manipulating Records 14
7.1. How to select a few records? . 14
7.2. How to select random records? . 15
7.3. How to count all records in the data stream? 15
7.4. How to get the length of record values? . 15
7.5. How to grab specific records? . 15
7.6. How to remove keys from records? . 18
7.7. How to rename keys in records? . 18

8. Manipulating Sequences 18
8.1. How to get sequence lengths? . 18
8.2. How to analyze sequence composition? . 19
8.3. How to extract subsequences? . 20

2

8.4. How to get genomic sequence? . 21
8.5. How to upper-case sequences? . 21
8.6. How to reverse sequences? . 21
8.7. How to complement sequences? . 21
8.8. How to remove indels from sequnces? . 22
8.9. How to shuffle sequences? . 22
8.10. How to split sequences into overlapping subsequences? 22
8.11. How to determine the oligo frequency? . 22
8.12. How to search for sequences in genomes? 23
8.13. How to search sequences for a pattern? . 23
8.14. How to use BLAT for sequence search? . 24
8.15. How to use BLAST for sequence search? 24
8.16. How to use Vmatch for sequence search? 25
8.17. How to find all matches between sequences? 25
8.18. How to align sequences? . 26
8.19. How to create a weight matrix? . 26

9. Plotting 27
9.1. How to plot a histogram? . 27
9.2. How to plot a length distribution? . 29
9.3. How to plot a chromosome distribution? 29
9.4. How to generate a dotplot? . 31
9.5. How to plot a sequence logo? . 31
9.6. How to plot a karyogram? . 33

10.Uploading Results 33
10.1. How do I display my results in the UCSC Genome Browser? 33

11.Power Scripting 35

12.Trouble shooting 35

A. Keys 36

B. Switches 36

C. scan_for_matches README 36

List of Figures

1. Dumb terminal . 28
2. Histogram . 28
3. Length distribution . 30
4. Chromosome distribution . 31

3

5. Dotplot . 32
6. Sequence logo . 33
7. Karyogram . 33

4

1. Introduction

Biotools is a selection of simple tools that can be linked together (piped as we shall call
it) in a very flexible manner to perform both simple and complex tasks. The fundamental
idea is that biotools work on a data stream that will only terminate at the end of an
analysis and that this data stream can be passed through several different biotools, each
performing one specific task. The advantage of this approach is that a user can perform
simple and complex tasks without having to write advanced code. Moreover, since the
data format used to pass data between biotools is text based, biotools can be written by
different developers in their favorite programming language — and still the biotools will
be able to work together.

In the most simple form bioools can be piped together on the command line like this
(using the pipe character ’|’):

read_data | calculate_something | write_result

However, a more comprehensive analysis could be composed:

read_data | select_entries | convert_entries | search_database
evaluate_results | plot_diagram | plot_another_diagram |
load_to_database

The data stream that is piped through the biotools consists of records of key/value pairs
in the same way a hash does in order to keep as simple a structure as possible. An
example record can be seen below:

REC_TYPE: PATSCAN
MATCH: AGATCAAGTG
S_BEG: 7
S_END: 16
ALIGN_LEN: 9
S_ID: piR-t6
STRAND: +
PATTERN: AGATCAAGTG

The ’---’ denotes the delimiter of the records, and each key is a word followed by a ’:’
and a white-space and then the value. By convention the biotools only uses upper case
keys (a list of used keys can be seen in Appendix A). Since the records basically are
hash structures this mean that the order of the keys in the stream is unordered, and in
the above example it is pure coincidence that HIT_BEG is displayed before HIT_END,
however, when the order of the keys is importent, the biotools will automagically see to
that.

All of the biotools are able to read and write a data stream to and from file as long as
the records are in the biotools format. This means that if you are undertaking a lengthy

5

analysis where one of the steps is time consuming, you may save the stream after this
step, and subsequently start one or more analysis from that last step1. If you are running
a lengthy analysis it is highly recommended that you create a small test sample of the
data and run that through the pipeline — and once you are satisfied with the result
proceed with the full data set (see 7.1).

All of the biotools can be supplied with long arguments prefixed with -- switches or single
character arguments prefixed with - switches that can be grouped together (e.g. -xok).
In this cookbook only the long switches are used to emphasize what these switches do.

2. Setup

In order to get the biotools to work, you need to add environment settings to include the
code binaries, scripts, and modules that constitute the biotools package. Assuming that
you are using bash, add the following to your ’~/.bashrc’ file using your favorite editor.
After the changes has been saved you need to either run ’source ~/.bashrc’ or relogin.

if [-f "/home/m.hansen/maasha/conf/bashrc"]; then
source "/home/m.hansen/maasha/conf/bashrc"

fi

3. Getting Started

The biotool list_biotools lists all the biotools along with a description:

list_biotools
align_seq Align sequences in stream using Muscle.
analyze_seq Analysis the residue composition of each sequence in stream.
analyze_vals Determine type, count, min, max, sum and mean for values in stream.
blast_seq BLAST sequences in stream against a specified database.
blat_seq BLAT sequences in stream against a specified genome.
complement_seq Complement sequences in stream.
count_records Count the number of records in stream.
count_seq Count sequences in stream.
count_vals Count the number of times values of given keys exists in stream.
create_blast_db Create a BLAST database from sequences in stream for use with BLAST.
...

To list the biotools for writing different formats, you can use unix’s grep like this:

list_biotools | grep write
write_align Write aligned sequences in pretty alignment format.
write_bed Write records from stream as BED lines.
write_blast Write BLAST records from stream in BLAST tabular format (-m8 and 9).
write_fasta Write sequences in FASTA format.
write_psl Write records from stream in PSL format.
write_tab Write records from stream as tab separated table.

1It is a goal that the biotools at some point will be able to dump the data stream to file in case one of
the tools fail critically.

6

In order to find out how a specific biotool works, you just type the program name
without any arguments and press return and the usage of the biotool will be displayed.
E.g. read_fasta <return>:

Program name: read_fasta
Author: Martin Asser Hansen - Copyright (C) - All rights reserved
Contact: mail@maasha.dk
Date: August 2007
License: GNU General Public License version 2 (http://www.gnu.org/copyleft/gpl.html)
Description: Read FASTA entries.
Usage: read_fasta [options] -i <FASTA file(s)>
Options:

[-i <file(s)> | --data_in=<file(s)>] - Comma separated list of files to read.
[-n <int> | --num=<int>] - Limit number of records to read.
[-I <file> | --stream_in=<file>] - Read input stream from file - Default=STDIN
[-O <file> | --stream_out=<file>] - Write output stream to file - Default=STDOUT

Examples:
read_fasta -i test.fna - Read FASTA entries from file.
read_fasta -i test1.fna,test2,fna - Read FASTA entries from files.
read_fasta -i ’*.fna’ - Read FASTA entries from files.

read_fasta -i test.fna -n 10 - Read first 10 FASTA entries from file.

4. The Data Stream

4.1. How to read the data stream from file?

You want to read a data stream that you previously have saved to file in biotools format.
This can be done implicetly or explicitly. The implicit way uses the ’stdout’ stream of
the Unix terminal:

cat | <biotool>

cat is the Unix command that reads a file and output the result to ’stdout’ — which in
this case is piped to any biotool represented by the <biotool>. It is also possible to read
the data stream using ’<’ to direct the ’stdout’ stream into the biotool like this:

<biotool> < <file>

However, that will not work if you pipe more biotools together. Then it is much safer to
read the stream from a file explicitly like this:

<biotool> --stream_in=<file>

Here the filename <file> is explicetly given to the biotool <biotool> with the switch
--stream_in. This switch works with all biotools. It is also possible to read in data from
multiple sources by repeating the explicit read step:

<biotool> --stream_in=<file1> | <biotool> --stream_in=<file2>

7

4.2. How to write the data stream to file?

In order to save the output stream from a biotool to file, so you can read in the stream
again at a later time, you can do one of two things:

<biotool> > <file>

All, the biotools write the data stream to ’stdout’ by default which can be written to a
file by redirecting ’stdout’ to file using ’>’ , however, if one of the biotools for writing
other formats is used then the both the biotools records as well as the result output
will go to ’stdout’ in a mixture causing havock! To avoid this you must use the switch
--stream_out that explictly tells the biotool to write the output stream to file:

<biotool> --stream_out=<file>

The --stream_out switch works with all biotools.

4.3. How to terminate the data stream?

The data stream is never stops unless the user want to save the stream or by supplying
the --no_stream switch that will terminate the stream:

<biotool> --no_stream

The --no_stream switch only works with those biotools where it makes sense that the
user might want to terminale the data stream, i.e. after an analysis step where the user
wants to output the result, but not the data stream.

4.4. How to write my results to file?

Saving the result of an analysis to file can be done implicitly or explicitly. The implicit
way:

<biotool> --no_stream > <file>

If you use ’>’ to redirect ’stdout’ to file then it is important to use the --no_stream
switch to avoid writing a mix of biotools records and result to the same file causing
havock. The safe way is to use the --result_out switch which explicetly tells the biotool
to write the result to a given file:

<biotool> --result_out=<file>

8

Using the above method will not terminate the stream, so it is possible to pipe that into
another biotool generating different results:

<biotool1> --result_out=<file1> | <biotool2> --result_out=<file2>

And still the data stream will continue unless terminated with --no_stream:

<biotool> --result_out=<file> --no_stream

Or written to file using implicitly or explicity (4.4). The explicit way:

<biotool> --result_out=<file1> --stream_out=<file2>

4.5. How to read data from multiple sources?

To read multiple data sources, with the same type or different type of data do:

<biotool1> --data_in=<file1> | <biotool2> --data_in=<file2>

where type is the data type a specific biotool reads.

5. Reading input

5.1. How to read biotools input?

See (4.1).

5.2. How to read in data?

Data in different formats can be read with the appropriate biotool for that format. The
biotools are typicalled named ’read_<data type>’ such as read_fasta, read_bed,
read_tab, etc., and all behave in a similar manner. Data can be read by supplying the
--data_in switch and a file name to the file containing the data:

<biotool> --data_in=<file>

It is also possible to read in a saved biotools stream (see 4.1) as well as reading data in
one go:

9

<biotool> --stream_in=<file1> --data_in=<file2>

If you want to read data from several files you can do this:

<biotool> --data_in=<file1> | <biotool> --data_in=<file2>

If you have several data files you can read in all explicitly with a comma separated list:

<biotool> --data_in=file1,file2,file3

And it is also possible to use file globbing2:

<biotool> --data_in=*.fna

Or in a combination:

<biotool> --data_in=file1,/dir/*.fna

Finally, it is possible to read in data in different formats using the appropriate biotool
for each format:

<biotool1> --data_in=<file1> | <biotool2> --data_in=<file2> ...

5.3. How to read FASTA input?

Sequences in FASTA format can be read explicitly using read_fasta:

read_fasta --data_in=<file>

5.4. How to read alignment input?

If your alignment if FASTA formatted then you can read_align. It is also possible to
use read_fasta since the data is FASTA formatted, however, with read_fasta the key
ALIGN will be omitted. The ALIGN key is used to determine which sequences belong
to what alignment which is required for write_align.

read_align --data_in=<file>

2using the short option will only work if you quote the argument -i ’*.fna’

10

5.5. How to read tabular input?

Tabular input can be read with read_tab which will read in all rows and chosen columns
(separated by a given delimter) from a table in text format.

The table below:

Human ATACGTCAG 23524
Dog AGCATGAC 2442
Mouse GACTG 234
Cat AAATGCA 2342

Can be read using the command:

read_tab --data_in=<file>

Which will result in four records, one for each row, where the keys V0, V1, V2 are the
default keys for the organism, sequence, and count, respectively. It is possible to select
a subset of colums to read by using the --cols switch which takes a comma separated list
of columns numbers (first column is designated 0) as argument. So to read in only the
sequence and the count so that the count comes before the sequence do:

read_tab --data_in=<file> --cols=2,1

It is also possible to name the columns with the --keys switch:

read_tab --data_in=<file> --cols=2,1 --keys=COUNT,SEQ

5.6. How to read BED input?

The BED (Browser Extensible Data3) format is a tabular format for data pertaining
to one of the Eukaryotic genomes in the UCSC genome brower4. The BED format
consists of up to 12 columns, where the first three are mandatory CHR, CHR_BEG, and
CHR_END. The mandatory columns and any of the optional columns can all be read
in easily with the read_bed biotool.

read_bed --data_in=<file>

It is also possible to read the BED file with read_tab (see 5.5), however, that will be
more cumbersome because you need to specify the keys:

read_tab --data_in=<file> --keys=CHR,CHR_BEG,CHR_END ...
3http://genome.ucsc.edu/FAQ/FAQformat
4http://genome.ucsc.edu/

11

http://genome.ucsc.edu/FAQ/FAQformat
http://genome.ucsc.edu/

5.7. How to read PSL input?

The PSL format is the output from BLAT and contains 21 mandatory fields that can be
read with read_psl:

read_psl --data_in=<file>

6. Writing output

All result output can be written explicitly to file using the --result_out switch which all
result generating biotools have. It is also possible to write the result to file implicetly
by directing ’stdout’ to file using ’>’, however, that requires the --no_stream swich to
prevent a mixture of data stream and results in the file. The explicit (and safe) way:

... | <biotool> --result_out=<file>

The implicit way:

... | <biotool> --no_stream > <file>

6.1. How to write biotools output?

See (4.2).

6.2. How to write FASTA output?

FASTA output can be written with write_fasta.

... | write_fasta --result_out=<file>

It is also possible to wrap the sequences to a given width using the --wrap switch allthough
wrapping of sequence is generally an evil thing:

... | write_fasta --no_stream --wrap=80

12

6.3. How to write alignment output?

Pretty alignments with ruler5 and consensus sequence can be created with write_align,
what also have the optional --wrap switch to break the alignment into blocks of a given
width:

... | write_align --result_out=<file> --wrap=80

If the number of sequnces in the alignment is 2 then a pairwise alignment will be output
otherwise a multiple alignment. And if the sequence type, determined automagically, is
protein, then residues and symbols (+, :, .) will be used to show consensus according to
the Blosum62 matrix.

6.4. How to write tabular output?

Outputting the data stream as a table can be done with write_tab, which will write
generate one row per record with the values as columns. If you supply the optional
--comment switch, when the first row in the table will be a ’comment’ line prefixed with
a ’#’:

... | write_tab --result_out=<file> --comment

You can also change the delimiter from the default (tab) to e.g. ’,’:

... | write_tab --result_out=<file> --delimit=’,’

If you want the values output in a specific order you have to supply a comma separated
list using the --keys switch that will print only those keys in that order:

... | write_tab --result_out=<file> --keys=SEQ_NAME,COUNT

Alternatively, if you have some keys that you don’t want in the tabular output, use the
--no_keys switch. So to print all keys except SEQ and SEQ_TYPE do:

... | write_tab --result_out=<file> --no_keys=SEQ,SEQ_TYPE

Finally, if you have a stream containing a mix of different records types, e.g. records
with sequences and records with matches, then you can use write_tab to output all the
records in tabluar format, however, the --comment, --keys, and --no_keys switches will
only respond to records of the first type encountered. The reason is that outputting mixed
records is probably not what you want anyway, and you should remove all the unwanted
records from the stream before outputting the table: grab is your friend (see 7.5).

5’.’ for every 10 residues, ’:’ for every 50, and ’|’ for every 100

13

6.5. How to write a BED output?

Data in BED format can be output if the records contain the mandatory keys CHR,
CHR_BEG, and CHR_END using write_bed. If the optional keys are also present,
they will be output as well:

write_bed --result_out=<file>

6.6. How to write PSL output?

Data in PSL format can be output using write_psl:

write_psl --result_out=<file>

7. Manipulating Records

7.1. How to select a few records?

To quickly get an overview of your data you can limit the data stream to show a few
records. This also very useful to test the pipeline with a few records if you are setting up
a complex analysis using several biotools. That way you can inspect that all goes well
before analyzing and waiting for the full data set. All of the read_<type> biotools have
the --num switch which will take a number as argument and only that number of records
will be read. So to read in the first 10 FASTA entries from a file:

read_fasta --data_in=test.fna --num=10

Another way of doing this is to use head_records will limit the stream to show the
first 10 records (default):

... | head_records

Using head_records directly after one of the read_<type> biotools will be a lot slower
than using the --num switch with the read_<type> biotools, however, head_records
can also be used to limit the output from all the other biotools. It is also possible to give
head_records a number of records to show using the --num switch. So to display the
first 100 records do:

... | head_records --num=100

14

7.2. How to select random records?

If you want to inspect a number of random records from the stream this can be done
with the random_records biotool. So if you have 1 mio records in the stream and you
want to select 1000 random records do:

... | random_records --num=1000

7.3. How to count all records in the data stream?

To count all the records in the data stream use count_records, which adds one record
(which is not included in the count) to the data stream. So to count the number of
sequences in a FASTA file you can do this:

cat test.fna | read_fasta | count_records --no_stream

Which will write the last record containing the count to ’stdout’:

count_records: 630

It is also possible to write the count to file using the --result_out switch.

7.4. How to get the length of record values?

Use the length_vals biotool to get the length of each value for a comma separated list
of keys:

... | length_vals --keys=HIT,PATTERN

7.5. How to grab specific records?

The biotool grab is related to the Unix grep and locates records based on matching keys
and/or values using either a pattern, a Perl regex, or a numerical evaluation. To easily
grab all records in the stream that has any mentioning of the pattern ’human’ just pipe
the data stream through grab like this:

... | grab --pattern=human

This will search for the pattern ’human’ in all keys and all values. The --pattern switch
takes a comma separated list of patterns, so in order to match multiple patterns do:

15

... | grab --pattern=human,mouse

It is also possible to use the --pattern_in switch instead of --pattern. --pattern_in is
used to read a file with one pattern per line:

... | grab --pattern_in=patterns.txt

If you want the opposite result — to find all records that does not match the patterns,
add the --invert switch, which not only works with the --pattern switch, but also with
--regex and --eval:

... | grab --pattern=human --invert

If you want to search the record keys only, e.g. to find all records containing the key SEQ
you can add the --keys_only switch. This will prevent matching of SEQ in any record
value, and in fact SEQ is a not uncommon peptide sequence you could get an unwanted
record. Also, this will give an increase in speed since only the keys are searched:

... | grab --pattern=SEQ --keys_only

However, if you are interested in finding the peptide sequence SEQ and not the SEQ key,
just add the --vals_only switch instead:

... | grab --pattern=SEQ --vals_only

Also, if you want to grab for certain key/value pairs you can supply a comma separated
list of keys whos values will then be searched using the --keys switch. This is handy if
your records contain large genomic sequences and you dont want to search the entire
sequence for e.g. the organism name — it is much faster to tell grab which keys to
search the value for:

... | grab --pattern=human --keys=SEQ_NAME

It is also possible to invoke flexible matching using regex (regular expressions) instead
of simple pattern matching. In grab the regex engine is Perl based and allows use of
different type of wild cards, alternatives, etc6. If you want to grab records withs the
sequence ATCG or GCTA you can do this:

... | grab --regex=’ATCG|GCTA’
6http://perldoc.perl.org/perlreref.html

16

http://perldoc.perl.org/perlreref.html

Or if you want to find sequences beginning with ATCG:

... | grab --regex=’^ATCG’

You can also use grab to locate records that fulfill a numerical property using the --eval
switch witch takes an expression in three parts. The first part is the key that holds the
value we want to evaluate, the second part holds one the six operators:

1. Greater than: >

2. Greater than or equal to: >=

3. Less than: <

4. Less than or equal to: <=

5. Equal to: =

6. Not equal to: !=

7. String wise equal to: eq

8. String wise not equal to: ne

And finally comes the number used in the evaluation. So to grab all records with a
sequence length greater than 30:

... length_seq | grab --eval=’SEQ_LEN > 30’

If you want to locate all records containing the pattern ’human’ and where the sequence
length is greater that 30, you do this by running the stream through grab twice:

... | grab --pattern=’human’ | length_seq | grab --eval=’SEQ_LEN > 30’

Finally, it is possible to do fast matching of expressions from a file using the --exact
switch. Each of these expressions has to be matched exactly over the entrie length,
which if useful if you have a file with accession numbers, that you want to locate in the
stream:

... | grab --exact acc_no.txt | ...

Using --exact is much faster than using --pattern_in, because with --exact the expression
has to be complete matches, where --pattern_in looks for subpatterns.

NB! To get the best speed performance, use the most restrictive grab first.

17

7.6. How to remove keys from records?

To remove one or more specific keys from all records in the data stream use remove_keys
like this:

... | remove_keys --keys=SEQ,SEQ_NAME

In the above example SEQ and SEQ_NAME will be removed from all records if they
exists in these. If all keys are removed from a record, then the record will be removed.

7.7. How to rename keys in records?

Sometimes you want to rename a record key, e.g. if you have read in a two column table
with sequence name and sequence in each column (see 5.5) without specifying the key
names, then the sequence name will be called V0 and the sequence V1 as default in the
read_tab biotool. To rename the V0 and V1 keys we need to run the stream through
rename_keys twice (one for each key to rename):

... | rename_keys --keys=V0,SEQ_NAME | rename_keys --keys=V1,SEQ

The first instance of rename_keys replaces all the V0 keys with SEQ_NAME, and the
second instance of rename_keys replaces all the V1 keys with SEQ. Et viola the data
can now be used in the biotools that requires these keys.

8. Manipulating Sequences

8.1. How to get sequence lengths?

The length for sequences in records can be determined with length_seq, which adds the
key SEQ_LEN to each record with the sequence length as the value. It also generates
an extra record that is emitted last with the key TOTAL_SEQ_LEN showing the total
length of all the sequences.

read_fasta --data_in=<file> | length_seq

It is also possible to determine the sequence length using the generic tool length_vals
(7.4), which determines the length of the values for a given list of keys:

read_fasta --data_in=<file> | length_vals --keys=SEQ

To obtain the total length of all sequences use sum_vals like this:

18

read_fasta --data_in=<file> | length_vals --keys=SEQ
| sum_vals --keys=SEQ_LEN

The biotool analyze_seq will also determine the length of each sequence (see 8.2).

8.2. How to analyze sequence composition?

If you want to find out the sequence type, composition, length, as well as GC content,
indel content and proportions of soft and hard masked sequence, then use analyze_seq.
This handy biotool will determine all these things per sequence from which it is easy to
get an overview using the write_tab biotool to output a table (see 6.4). So in order to
determine the sequence composition of a FASTA file with just one entry containing the
sequence ’ATCG’ we just read the data with read_fasta and run the output through
analyze_seq which will add the analysis to the record like this:

read_fasta --data_in=test.fna | analyze_seq ...
RES:D: 0
MIX_INDEX: 0.55
RES:W: 0
RES:G: 16
SOFT_MASK%: 63.75
RES:B: 0
RES:V: 0
HARD_MASK%: 0.00
RES:H: 0
RES:S: 0
RES:N: 0
RES:.: 0
GC%: 35.00
RES:A: 8
RES:Y: 0
RES:M: 0
RES:T: 44
SEQ_TYPE: DNA
RES:K: 0
RES:~: 0
SEQ: TTTCAGTTTGGGACGGAGTAAGGCCTTCCtttttttttttttttttttttttttttttgagaccgagtcttgctctgtcg
SEQ_LEN:
80 RES:R: 0
RES:C: 12
RES:-: 0
RES:U: 0

Now to make a table of how may As, Ts, Cs, and Gs you can add the following:

... | analyze_seq | write_tab --keys=RES:A,RES:T,RES:C,RES:G

Or if you want to see the proportions of hard and soft masked sequence:

... | analyse_seq | write_tab --keys=HARD_MASK%,SOFT_MASK%

19

If you have a stack of sequences in one file and you want to determine the mean GC
content you can do it using the mean_vals biotool:

read_fasta --data_in=test.fna | analyze_seq | mean_vals --keys=GC%

Or if you want the total count of Ns you can use sum_vals like this:

read_fasta --data_in=test.fna | analyze_seq | sum_vals --keys=RES:N

The MIX_INDEX key is calculated as the count of the most common residue over the
sequence length, and can be used as a cut-off for removing sequence tags consisting of
mostly one nucleotide:

read_fasta --data_in=test.fna | analyze_seq | grab --eval=’MIX_INDEX<0.85’

8.3. How to extract subsequences?

In order to extract a subsequence from a longer sequence use the biotool extract_seq,
which will replace the sequence in the record with the subsequence (this behaviour should
probably be modified to be dependant of a --replace or a --no_replace switch). So to
extract the first 20 residues from all sequences do (first residue is designated 1):

... | extract_seq --beg=1 --len=20

You can also specify a begin and end coordinate set:

... | extract_seq --beg=20 --end=40

If you want the subsequences from position 20 to the sequence end do:

... | extract_seq --beg=20

If you want to extract subsequences a given distance from the sequence end you can
do this by reversing the sequence with the biotool reverse_seq (8.6), followed by ex-
tract_seq to get the subsequence, and then reverse_seq again to get the subsequence
back in the original orientation:

read_fasta --data_in=test.fna | reverse_seq
| extract_seq --beg=10 --len=10 | reverse_seq

20

8.4. How to get genomic sequence?

The biotool get_genomic_seq can extract subsequences for a given genome specified
with the --genome switch explicitly using the --beg and --end/--len switches:

get_genome_seq --genome=<genome> --beg=1 --len=100

Alternatively, get_genome_seq can be used to append the corresponding sequence to
BED, PSL, and BLAST records:

read_bed --data_in=<BED file> | get_genome_seq --genome=<genome>

It is also possible to include flaking sequence using the --flank switch. So to include 50
nucleotides upstream and 50 nucleotides downstream for each BED entry do:

read_bed --data_in=<BED file> | get_genome_seq --genome=<genome> --flank=50

8.5. How to upper-case sequences?

Sequences can be shifted from lower case to upper case using uppercase_seq:

... | uppercase_seq

8.6. How to reverse sequences?

The order of residues in a sequence can be reversed using reverse_seq:

... | reverse_seq

Note that in order to reverse/complement a sequence you also need the complement_seq
biotool (see 8.7).

8.7. How to complement sequences?

DNA and RNA sequences can be complemented with complement_seq, which au-
tomagically determines the sequence type:

... | complement_seq

Note that in order to reverse/complement a sequence you also need the reverse_seq
biotool (see 8.6).

21

8.8. How to remove indels from sequnces?

Indels can be removed from sequences with the remove_indels biotool. This is useful if
you have aligned some sequences (see 8.18) and extracted (see 8.3) a block of subsequences
from the alignment and you want to use these sequence in a search where you need to
remove the indels first. ’-’, ’~’, and ’.’ are considered indels:

... | remove_indels

8.9. How to shuffle sequences?

All residues in sequences in the stream can be shuffled to random positions using the
shuffle_seq biotool:

... | shuffle_seq

8.10. How to split sequences into overlapping subsequences?

Sequences can be slit into overlapping subsequences with the split_seq biotool.

... | split_seq --word_size=20 --uniq

8.11. How to determine the oligo frequency?

In order to determine if any oligo usage is over represented in one or more sequences you
can determine the frequency of oligos of a given size with oligo_freq:

... | oligo_freq --word_size=4

And if you have more than one sequence and want to accumulate the frequences you
need the --all switch:

... | oligo_freq --word_size=4 --all

To get a meaningful result you need to write the resulting frequencies as a table with
write_tab (see 6.4), but first it is important to grab (see 7.5) the records with the
frequencies to avoid full length sequences in the table:

... | oligo_freq --word_size=4 --all | grab --pattern=OLIGO --keys_only
| write_tab --no_stream

And the resulting frequency table can be sorted with Unix sort (man sort).

22

8.12. How to search for sequences in genomes?

See the following biotool:

• patscan_seq (8.13)

• blat_seq (8.14)

• blast_seq (8.15)

• vmatch_seq (8.16)

8.13. How to search sequences for a pattern?

It is possible to search sequences in the data stream for patterns using the patscan_seq
biotool which utilizes the powerful scan_for_matches engine. Consult the documenta-
tion for scan_for_matches in order to learn how to define patterns (the documentation
is included in Appendix C).

To search all sequences for a simple pattern consisting of the sequence ATCGATCG
allowing for 3 mismatches, 2 insertions and 1 deletion:

read_fasta --data_in=<file> | patscan_seq --pattern=’ATCGATCG[3,2,1]’

The --pattern switch takes a comma seperated list of patterns, so if you want to search
for more that one pattern do:

... | patscan_seq --pattern=’ATCGATCG[3,2,1],GCTAGCTA[3,2,1]’

It is also possible to have a list of different patterns to search for in a file with one pattern
per line. In order to get patscan_seq to read these patterns use the --pattern_in switch:

... | patscan_seq --pattern_in=<file>

To also scan the complementary strand in nucleotide sequences (patscan_seq automag-
ically determines the sequence type) you need to add the --comp switch:

... | patscan_seq --pattern=<pattern> --comp

It is also possible to use patscan_seq to output those records that does not contain a
certain pattern by using the --invert switch:

... | patscan_seq --pattern=<pattern> --invert

Finally, patscan_seq can also scan for patterns in a given genome sequence, instead of
sequences in the stream, using the --genome switch:

patscan --pattern=<pattern> --genome=<genome>

23

8.14. How to use BLAT for sequence search?

Sequences in the data stream can be matched against supported genomes using blat_seq
which is a biotool using BLAT as the name might suggest. Currently only Mouse and
Human genomes are available and it is not possible to use OOC files since there is still
a need for a local repository for genome files. Otherwise it is just:

read_fasta --data_in=<file> | blat_seq --genome=<genome>

The search results can then be written to file with write_psl (see 6.6) or write_bed
(see 6.5) allthough with write_bed some information will be lost). It is also possible to
plot chromosome distribution of the search results using plot_chrdist (see 9.3) or the
distribution of the match lengths using plot_lendist (see 9.2) or a karyogram with the
hits using plot_karyogram (see 9.6).

8.15. How to use BLAST for sequence search?

Two biotools exist for blasting sequences: create_blast_db is used to create the
BLAST database required for BLAST which is queried using the biotool blast_seq.
So in order to create a BLAST database from sequences in the data stream you simple
run:

... | create_blast_db --database=my_database --no_stream

The type of sequence to use for the database is automagically determined by cre-
ate_blast_db, but don’t have a mixture of peptide and nucleic acids sequences in the
stream. The --database switch takes a path as argument, but will default to ’blastdb_<time_stamp>
if not set.

The resulting database can now be queried with sequences in another data stream using
blast_seq:

... | blast_seq --database=my_database

Again, the sequence type is determined automagically and the appropriate BLAST pro-
gram is guessed (see below table), however, the program name can be overruled with the
--program switch.

Subject sequence Query sequence Program guess
Nucleotide Nucleotide blastn

Protein Protein blastp
Protein Nucleotide blastx

Nucleotide Protein tblastn

24

Finally, it is also possible to use blast_seq for blasting sequences agains a preformatted
genome using the --genome switch instead of the --database switch:

... | blast_seq --genome=<genome>

8.16. How to use Vmatch for sequence search?

The powerful suffix array software package Vmatch7 can be used for exact mapping of
sequences against indexed genomes using the biotool vmatch_seq, which will e.g. map
700000 ESTs to the human genome locating all 160 mio hits in less than an hour. Only
nucleotide sequences and sequences longer than 11 nucleotides will be mapped. It is
recommended that sequences consisting of mostly one nucleotide type are removed. This
can be done with the analyze_seq biotool (8.2).

... | vmatch_seq --genome=<genome>

It is also possible to allow for mismatches using the --hamming_dist switch. So to allow
for 2 mismatches:

... | vmatch_seq --genome=<genome> --hamming_dist=2

Or to allow for 10% mismathing nucleotides:

... | vmatch_seq --genome=<genome> --hamming_dist=10p

To allow both indels and mismatches use the --edit_dist switch. So to allow for one
mismatch or one indel:

... | vmatch_seq --genome=<genome> --hamming_dist=1

Or to allow for 5% indels or mismatches:

... | vmatch_seq --genome=<genome> --hamming_dist=5p

Note that using --hamming_dist or--edit_dist greatly slows down vmatch considerably
— use with care.

The resulting SCORE key can be replaced to hold the number of genome matches of a
given sequence (multi-mappers) is the --count switch is given.

8.17. How to find all matches between sequences?

All matches between two sequences can be determined with the biotool match_seq.
The match finding engine underneath the hood of match_seq is the super fast suffix
tree program MUMmer8, which will locate all forward and reverse matches between huge

7http://www.vmatch.de/
8http://mummer.sourceforge.net/

25

http://www.vmatch.de/
http://mummer.sourceforge.net/

sequences in a matter of minutes (if the repeat count is not too high and if the word size
used is appropriate). Matching two Helicobacter pylori genomes (1.7Mbp) takes around
10 seconds:

... | match_seq --word_size=20 --direction=both

The output from match_seq can be used to generate a dot plot with plot_matches
(see 9.4).

8.18. How to align sequences?

Sequences in the stream can be aligned with the align_seq biotool that uses Muscle9 as
aligment engine. Currently you cannot change any of the Muscle alignment parameters
and align_seq will create an alignment based on the defaults (which are really good!):

... | align_seq

The aligned output can be written to file in FASTA format using write_fasta (see 6.2)
or in pretty text using write_align (see 6.3).

8.19. How to create a weight matrix?

If you want a weight matrix to show the sequence composition of a stack of sequences
you can use the biotool create_weight_matrix:

... | create_weight_matrix

The result can be output in percent using the --percent switch:

... | create_weight_matrix --percent

The weight matrix can be written as tabular output with write_tab (see 6.4) after
removeing the records containing SEQ with grab (see 7.5):

... | create_weight_matrix | grab --invert --keys=SEQ --keys_only
| write_tab --no_stream

The V0 column will hold the residue, while the rest of the columns will hold the frequen-
cies for each sequence position.

9http://www.drive5.com/muscle/muscle.html

26

http://www.drive5.com/muscle/muscle.html

9. Plotting

There exists several biotools for plotting. Some of these are based on GNUplot10, which
is an extremely powerful platform to generate all sorts of plots and even though GNU-
plot has quite a steep learning curve, the biotools utilizing GNUplot are simple to use.
GNUplot is able to output a lot of different formats (called terminals in GNUplot), but
the biotools focusses on three formats only:

1. The ’dumb’ terminal is default to the GNUplot based biotools and will output a
plot in crude ASCII text (Fig. 1). This is quite nice for a quick and dirty plot to
get an overview of your data .

2. The ’post’ or ’postscript’ terminal output postscript code which is publication grade
graphics that can be viewed with applications such as Ghostview, Photoshop, and
Preview.

3. The ’svg’ terminal output’s scalable vector graphics (SVG) which is a vector based
format. SVG is great because you can edit the resulting plot using Photoshop
or Inkscape11 if you want to add additional labels, captions, arrows, and so on
and then save the result in different formats, such as postscript without loosing
resolution.

The biotools for plotting that are not based on GNUplot only output SVG (that may
change in the future).

9.1. How to plot a histogram?

A generic histogram for a given value can be plotted with the biotool plot_histogram
(Fig. 2):

... | plot_histogram --key=TISSUE --no_stream

(Figure missing)

10http://www.gnuplot.info/
11Inkscape is a really handy drawing program that is free and open source. Availble at http://www.

inkscape.org

27

http://www.gnuplot.info/
http://www.inkscape.org
http://www.inkscape.org

Figure 1: Dumb terminal

The output of a length distribution plot in the default ’dumb terminal’ to the
terminal window.

Figure 2: Histogram

28

9.2. How to plot a length distribution?

Plotting of length distributions, weather sequence lengths, patterns lengths, hit lengths,
etc. is a really handy thing and can be done with the the biotool plot_lendist. If you
have a file with FASTA entries and want to plot the length distribution you do it like
this:

read_fasta --data_in=<file> | length_seq
| plot_lendist --key=SEQ_LEN --no_stream

The result will be written to the default dumb terminal and will look like Fig. 1.

If you instead want the result in postscript format you can do:

... | plot_lendist --key=SEQ_LEN --terminal=post --result_out=file.ps

That will generate the plot and save it to file, but not interrupt the data stream which
can then be used in further analysis. You can also save the plot implicetly using ’>’,
however, it is then important to terminate the stream with the --no_stream switch:

... | plot_lendist --key=SEQ_LEN --terminal=post --no_stream > file.ps

The resulting plot can be seen in Fig. 3.

9.3. How to plot a chromosome distribution?

If you have the result of a sequence search against a multi chromosome genome, it is very
practical to be able to plot the distribution of search hits on the different chromosomes.
This can be done with plot_chrdist:

read_fasta --data_in=<file> | blat_genome | plot_chrdist --no_stream

The above example will result in a crude plot using the ’dumb’ terminal, and if you want
to mess around with the results from the BLAT search you probably want to save the
result to file first (see 6.6). To plot the chromosome distribution from the saved search
result you can do:

read_bed --data_in=file.bed | plot_chrdist --terminal=post --result_out=plot.ps

That will result in the output show in Fig. 4.

29

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40

Length Distribution

Figure 3: Length distribution

Length distribution of 630 piRNA like RNAs.

30

 0

 20

 40

 60

 80

 100

 120

 140

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0

ch
r1

1

ch
r1

2

ch
r1

3

ch
r1

4

ch
r1

5

ch
r1

6

ch
r1

7

ch
r1

8

ch
r1

9

ch
rX

ch
r5

_r
an

do
m

ch
rY

_r
an

do
m

Chromosome Distribution

Figure 4: Chromosome distribution

9.4. How to generate a dotplot?

A dotplot is a powerful way to get an overview of the size and location of sequence
insertions, deletions, and duplications between two sequences. Generating a dotplot
with biotools is a two step process where you initially find all matches between two
sequences using the tool match_seq (see 8.17) and plot the resulting matches with
plot_matches. Matching and plotting two Helicobacter pylori genomes (1.7Mbp) takes
around 10 seconds:

... | match_seq | plot_matches --terminal=post --result_out=plot.ps

The resulting dotplot is in Fig. 5.

9.5. How to plot a sequence logo?

Sequence logos can be generate with plot_seqlogo. The sequnce type is determined
automagically and an entropy scale of 2 bits and 4 bits is used for nucleotide and peptide
sequences, respectively12.
12http://www.ccrnp.ncifcrf.gov/~toms/paper/hawaii/latex/node5.html

31

http://www.ccrnp.ncifcrf.gov/~toms/paper/hawaii/latex/node5.html

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06gi
|6

62
62

53
|g

b|
A

E
00

05
11

.1
|_

H
el

ic
ob

ac
te

r_
py

lo
ri_

26
69

5,
_c

om
pl

et
e_

ge
no

m
e

gi|12057207|gb|AE001439.1|_Helicobacter_pylori_J99,_complete_genome

plot_matches

Figure 5: Dotplot

Forward matches are displayed in green while reverse matches are displayed
in red.

32

Figure 6: Sequence logo

Figure 7: Karyogram

Hits from a search of piRNA like RNAs in the Human genome is displayed
as short horizontal bars.

... | plot_seqlogo --no_stream --result_out=seqlogo.svg

An example of a sequence logo can be seen in Fig. 6.

9.6. How to plot a karyogram?

To plot search hits on genomes use plot_karyogram, which will output a nice karyo-
gram in SVG graphics:

... | plot_karyogram --result_out=karyogram.svg

The banding data is taken from the UCSC genome browser database and currently only
Human and Mouse is supported. Fig. 7 shows the distribution of piRNA like RNAs
matched to the Human genome.

10. Uploading Results

10.1. How do I display my results in the UCSC Genome Browser?

Results from the list of biotools below can be uploaded directly to a local mirror of the
UCSC Genome Browser using the biotool upload_to_ucsc:

33

• patscan_seq (8.13)

• blat_seq (8.14)

• blast_seq (8.15)

• vmatch_seq (8.16)

The syntax for uploading data the most simple way requires two mandatory switches:
--database, which is the UCSC database name (such as hg18, mm9, etc.) and--table
which should be the users initials followed by an underscore and a short description of
the data:

... | upload_to_ucsc --database=hg18 --table=mah_snoRNAs

The upload_to_ucsc biotool modifies the users ~/ucsc/my_tracks.ra file automag-
ically (a backup is created with the name ~/ucsc/my_tracks.ra~) with default values
that can be overridden using the following switches:

• --short_label - Short label for track - Default=database->table

• --long_label - Long label for track - Default=database->table

• --group - Track group name - Default=<user name as defined in env>

• --priority - Track display priority - Default=1

• --color - Track color - Default=147,73,42

• --chunk_size - Chunks for loading - Default=10000000

• --visibility - Track visibility - Default=pack

Also, data in BED or PSL format can be uploaded with upload_to_ucsc as long as
these reference to genomes and chromosomes existing in the UCSC Genome Browser:

read_bed --data_in=<bed file> | upload_to_ucsc ...
read_psl --data_in=<psl file> | upload_to_ucsc ...

34

11. Power Scripting

It is possible to do commandline scripting of biotool records using Perl. Because a biotool
record essentially is a hash structure, you can pass records to bioscript command, which
is a wrapper around the Perl executable that allows direct manipulations of the records
using the power of Perl.

In the below example we replace in all records the value to the CHR key with a forthrun-
ning number:

... | bioscript ’while($r=get_record(*STDIN)){$r->{CHR}=$i++; put_record($r)}’

Something more useful would probably be to create custom FASTA headers. E.g. if we
read in a BED file, lookup the genomic sequence, create a custom FASTA header with
bioscript and output FASTA entries:

... | bioscript ’while($r=get_record(*STDIN)){$r->{SEQ_NAME}= //
join("_",$r->{CHR},$r->{CHR_BEG},$r->{CHR_END}); put_record($r)}’

And the output:

>chr2L_21567527_21567550
taccaaacggatgcctcagacatc
>chr2L_693380_693403
taccaaacggatgcctcagacatc
>chr2L_13859534_13859557
taccaaacggatgcctcagacatc
>chr2L_9005090_9005113
taccaaacggatgcctcagacatc
>chr2L_2106825_2106848
taccaaacggatgcctcagacatc
>chr2L_14649031_14649054
taccaaacggatgcctcagacatc

12. Trouble shooting

Shoot the messenger!

35

A. Keys

HIT

HIT_BEG

HIT_END

HIT_LEN

HIT_NAME

PATTERN

B. Switches

--stream_in

--stream_out

--no_stream

--data_in

--result_out

--num

C. scan_for_matches README

scan_for_matches:
A Program to Scan Nucleotide or Protein Sequences for Matching Patterns

Ross Overbeek
MCS
Argonne National Laboratory
Argonne, IL 60439
USA

Scan_for_matches is a utility that we have written to search for
patterns in DNA and protein sequences. I wrote most of the code,
although David Joerg and Morgan Price wrote sections of an
earlier version. The whole notion of pattern matching has a rich
history, and we borrowed liberally from many sources. However, it is
worth noting that we were strongly influenced by the elegant tools
developed and distributed by David Searls. My intent is to make the
existing tool available to anyone in the research community that might
find it useful. I will continue to try to fix bugs and make suggested
enhancements, at least until I feel that a superior tool exists.

36

Hence, I would appreciate it if all bug reports and suggestions are
directed to me at Overbeek@mcs.anl.gov.
I will try to log all bug fixes and report them to users that send me
their email addresses. I do not require that you give me your name
and address. However, if you do give it to me, I will try to notify
you of serious problems as they are discovered.
Getting Started:

The distribution should contain at least the following programs:
README - This document
ggpunit.c - One of the two source files
scan_for_matches.c - The second source file

run_tests - A perl script to test things
show_hits - A handy perl script
test_dna_input - Test sequences for DNA
test_dna_patterns - Test patterns for DNA scan
test_output - Desired output from test
test_prot_input - Test protein sequences
test_prot_patterns - Test patterns for proteins
testit - a perl script used for test

Only the first three files are required. The others are useful,
but only if you have Perl installed on your system. If you do
have Perl, I suggest that you type

which perl
to find out where it installed. On my system, I get the following
response:

clone% which perl
/usr/local/bin/perl

indicating that Perl is installed in /usr/local/bin. Anyway, once
you know where it is installed, edit the first line of files

testit
show_hits

replacing /usr/local/bin/perl with the appropriate location. I
will assume that you can do this, although it is not critical (it
is needed only to test the installation and to use the "show_hits"
utility). Perl is not required to actually install and run
scan_for_matches.
If you do not have Perl, I suggest you get it and install it (it
is a wonderful utility). Information about Perl and how to get it
can be found in the book "Programming Perl" by Larry Wall and
Randall L. Schwartz, published by O’Reilly & Associates, Inc.
To get started, you will need to compile the program. I do this

37

using
gcc -O -o scan_for_matches ggpunit.c scan_for_matches.c

If you do not use GNU C, use
cc -O -DCC -o scan_for_matches ggpunit.c scan_for_matches.c

which works on my Sun.
Once you have compiled scan_for_matches, you can verify that it
works with

clone% run_tests tmp
clone% diff tmp test_output

You may get a few strange lines of the sort
clone% run_tests tmp
rm: tmp: No such file or directory
clone% diff tmp test_output

These should cause no concern. However, if the "diff" shows that
tmp and test_output are different, contact me (you have a
problem).
You should now be able to use scan_for_matches by following the
instructions given below (which is all the normal user should have
to understand, once things are installed properly).

==
How to run scan_for_matches:

To run the program, you type need to create two files
1. the first file contains the pattern you wish to scan for; I’ll

call this file pat_file in what follows (but any name is ok)
2. the second file contains a set of sequences to scan. These

should be in "fasta format". Just look at the contents of
test_dna_input to see examples of this format. Basically,
each sequence begins with a line of the form

>sequence_id
and is followed by one or more lines containing the sequence.

Once these files have been created, you just use
scan_for_matches pat_file < input_file

to scan all of the input sequences for the given pattern. As an
example, suppose that pat_file contains a single line of the form

p1=4...7 3...8 ~p1
Then,

scan_for_matches pat_file < test_dna_input
should produce two "hits". When I run this on my machine, I get

clone% scan_for_matches pat_file < test_dna_input
>tst1:[6,27]
cguaacc ggttaacc gguuacg
>tst2:[6,27]
CGUAACC GGTTAACC GGUUACG
clone%

38

Simple Patterns Built by Matching Ranges and Reverse Complements
Let me first explain this simple pattern:

p1=4...7 3...8 ~p1
The pattern consists of three "pattern units" separated by spaces.
The first pattern unit is

p1=4...7
which means "match 4 to 7 characters and call them p1". The
second pattern unit is

3...8
which means "then match 3 to 8 characters". The last pattern unit
is

~p1
which means "match the reverse complement of p1". The first
reported hit is shown as

>tst1:[6,27]
cguaacc ggttaacc gguuacg

which states that characters 6 through 27 of sequence tst1 were
matched. "cguaac" matched the first pattern unit, "ggttaacc" the
second, and "gguuacg" the third. This is an example of a common
type of pattern used to search for sections of DNA or RNA that
would fold into a hairpin loop.

Searching Both Strands
Now for a short aside: scan_for_matches only searched the
sequences in the input file; it did not search the opposite
strand. With a pattern of the sort we just used, there is not
need o search the opposite strand. However, it is normally the
case that you will wish to search both the sequence and the
opposite strand (i.e., the reverse complement of the sequence).
To do that, you would just use the "-c" command line. For example,

scan_for_matches -c pat_file < test_dna_input
Hits on the opposite strand will show a beginning location greater
than te end location of the match.

Defining Pairing Rules and Allowing Mismatches, Insertions, and Deletions
Let us stop now and ask "What additional features would one need to
really find the kinds of loop structures that characterize tRNAs,
rRNAs, and so forth?" I can immediately think of two:

a) you will need to be able to allow non-standard pairings
(those other than G-C and A-U), and

b) you will need to be able to tolerate some number of
mismatches and bulges.

Let me first show you how to handle non-standard "rules for
pairing in reverse complements". Consider the following pattern,

39

which I show as two line (you may use as many lines as you like in
forming a pattern, although you can only break a pattern at points
where space would be legal):

r1={au,ua,gc,cg,gu,ug,ga,ag}
p1=2...3 0...4 p2=2...5 1...5 r1~p2 0...4 ~p1

The first "pattern unit" does not actually match anything; rather,
it defines a "pairing rule" in which standard pairings are
allowed, as well as G-A and A-G (in case you wondered, Us and Ts
and upper and lower case can be used interchangably; for example
r1={AT,UA,gc,cg} could be used to define the "standard rule" for
pairings). The second line consists of six pattern units which
may be interpreted as follows:

p1=2...3 match 2 or 3 characters (call it p1)
0...4 match 0 to 4 characters
p2=2...5 match 2 to 5 characters (call it p2)
1...5 match 1 to 5 characters
r1~p2 match the reverse complement of p2,

allowing G-A and A-G pairs
0...4 match 0 to 4 characters
~p1 match the reverse complement of p1

allowing only G-C, C-G, A-T, and T-A pairs
Thus, r1~p2 means "match the reverse complement of p2 using rule r1".
Now let us consider the issue of tolerating mismatches and bulges.
You may add a "qualifier" to the pattern unit that gives the
tolerable number of "mismatches, deletions, and insertions".
Thus,

p1=10...10 3...8 ~p1[1,2,1]
means that the third pattern unit must match 10 characters,
allowing one "mismatch" (a pairing other than G-C, C-G, A-T, or
T-A), two deletions (a deletion is a character that occurs in p1,
but has been "deleted" from the string matched by ~p1), and one
insertion (an "insertion" is a character that occurs in the string
matched by ~p1, but not for which no corresponding character
occurs in p1). In this case, the pattern would match

ACGTACGTAC GGGGGGGG GCGTTACCT
which is, you must admit, a fairly weak loop. It is common to
allow mismatches, but you will find yourself using insertions and
deletions much more rarely. In any event, you should note that
allowing mismatches, insertions, and deletions does force the
program to try many additional possible pairings, so it does slow
things down a bit.

How Patterns Are Matched
Now is as good a time as any to discuss the basic flow of control
when matching patterns. Recall that a "pattern" is a sequence of

40

"pattern units". Suppose that the pattern units were
u1 u2 u3 u4 ... un

The scan of a sequence S begins by setting the current position
to 1. Then, an attempt is made to match u1 starting at the
current position. Each attempt to match a pattern unit can
succeed or fail. If it succeeds, then an attempt is made to match
the next unit. If it fails, then an attempt is made to find an
alternative match for the immediately preceding pattern unit. If
this succeeds, then we proceed forward again to the next unit. If
it fails we go back to the preceding unit. This process is called
"backtracking". If there are no previous units, then the current
position is incremented by one, and everything starts again. This
proceeds until either the current position goes past the end of
the sequence or all of the pattern units succeed. On success,
scan_for_matches reports the "hit", the current position is set
just past the hit, and an attempt is made to find another hit.
If you wish to limit the scan to simply finding a maximum of, say,
10 hits, you can use the -n option (-n 10 would set the limit to
10 reported hits). For example,

scan_for_matches -c -n 1 pat_file < test_dna_input
would search for just the first hit (and would stop searching the
current sequences or any that follow in the input file).

Searching for repeats:
In the last section, I discussed almost all of the details
required to allow you to look for repeats. Consider the following
set of patterns:

p1=6...6 3...8 p1 (find exact 6 character repeat separated
by to 8 characters)

p1=6...6 3..8 p1[1,0,0] (allow one mismatch)
p1=3...3 p1[1,0,0] p1[1,0,0] p1[1,0,0]

(match 12 characters that are the remains
of a 3-character sequence occurring 4 times)

p1=4...8 0...3 p2=6...8 p1 0...3 p2
(This would match things like

ATCT G TCTTT ATCT TG TCTTT
)

Searching for particular sequences:
Occasionally, one wishes to match a specific, known sequence.
In such a case, you can just give the sequence (along with an
optional statement of the allowable mismatches, insertions, and
deletions). Thus,

p1=6...8 GAGA ~p1 (match a hairpin with GAGA as the loop)
RRRRYYYY (match 4 purines followed by 4 pyrimidines)

41

TATAA[1,0,0] (match TATAA, allowing 1 mismatch)

Matches against a "weight matrix":
I will conclude my examples of the types of pattern units
available for matching against nucleotide sequences by discussing a
crude implemetation of matching using a "weight matrix". While I
am less than overwhelmed with the syntax that I chose, I think that
the reader should be aware that I was thinking of generating
patterns containing such pattern units automatically from
alignments (and did not really plan on typing such things in by
hand very often). Anyway, suppose that you wanted to match a
sequence of eight characters. The "consensus" of these eight
characters is GRCACCGS, but the actual "frequencies of occurrence"
are given in the matrix below. Thus, the first character is an A
16% the time and a G 84% of the time. The second is an A 57% of
the time, a C 10% of the time, a G 29% of the time, and a T 4% of
the time.

C1 C2 C3 C4 C5 C6 C7 C8

A 16 57 0 95 0 18 0 0
C 0 10 80 0 100 60 0 50
G 84 29 0 0 0 20 100 50
T 0 4 20 5 0 2 0 0

One could use the following pattern unit to search for inexact
matches related to such a "weight matrix":

{(16,0,84,0),(57,10,29,4),(0,80,0,20),(95,0,0,5),
(0,100,0,0),(18,60,20,2),(0,0,100,0),(0,50,50,0)} > 450

This pattern unit will attempt to match exactly eight characters.
For each character in the sequence, the entry in the corresponding
tuple is added to an accumulated sum. If the sum is greater than
450, the match succeeds; else it fails.
Recently, this feature was upgraded to allow ranges. Thus,

600 > {(16,0,84,0),(57,10,29,4),(0,80,0,20),(95,0,0,5),
(0,100,0,0),(18,60,20,2),(0,0,100,0),(0,50,50,0)} > 450

will work, as well.
Allowing Alternatives:

Very occasionally, you may wish to allow alternative pattern units
(i.e., "match either A or B"). You can do this using something
like

(GAGA | GCGCA)
which says "match either GAGA or GCGCA". You may take
alternatives of a list of pattern units, for example

(p1=3...3 3...8 ~p1 | p1=5...5 4...4 ~p1 GGG)

42

would match one of two sequences of pattern units. There is one
clumsy aspect of the syntax: to match a list of alternatives, you
need to fully the request. Thus,

(GAGA | (GCGCA | TTCGA))
would be needed to try the three alternatives.

One Minor Extension
Sometimes a pattern will contain a sequence of distinct ranges,
and you might wish to limit the sum of the lengths of the matched
subsequences. For example, suppose that you basically wanted to
match something like
ARRYYTT p1=0...5 GCA[1,0,0] p2=1...6 ~p1 4...8 ~p2 p3=4...10 CCT
but that the sum of the lengths of p1, p2, and p3 must not exceed
eight characters. To do this, you could add

length(p1+p2+p3) < 9
as the last pattern unit. It will just succeed or fail (but does
not actually match any characters in the sequence).

Matching Protein Sequences
Suppose that the input file contains protein sequences. In this
case, you must invoke scan_for_matches with the "-p" option. You
cannot use aspects of the language that relate directly to
nucleotide sequences (e.g., the -c command line option or pattern
constructs referring to the reverse complement of a previously
matched unit).
You also have two additional constructs that allow you to match
either "one of a set of amino acids" or "any amino acid other than
those a given set". For example,

p1=0...4 any(HQD) 1...3 notany(HK) p1
would successfully match a string like

YWV D AA C YWV
Using the show_hits Utility

When viewing a large set of complex matches, you might find it
convenient to post-process the scan_for_matches output to get a
more readable version. We provide a simple post-processor called
"show_hits". To see its effect, just pipe the output of a
scan_for_matches into show_hits:
Normal Output:

clone% scan_for_matches -c pat_file < tmp
>tst1:[1,28]
gtacguaacc ggttaac cgguuacgtac
>tst1:[28,1]
gtacgtaacc ggttaac cggttacgtac
>tst2:[2,31]
CGTACGUAAC C GGTTAACC GGUUACGTACG

43

>tst2:[31,2]
CGTACGTAAC C GGTTAACC GGTTACGTACG
>tst3:[3,32]
gtacguaacc g gttaactt cgguuacgtac
>tst3:[32,3]
gtacgtaacc g aagttaac cggttacgtac

Piped Through show_hits:

clone% scan_for_matches -c pat_file < tmp | show_hits
tst1:[1,28]: gtacguaacc ggttaac cgguuacgtac
tst1:[28,1]: gtacgtaacc ggttaac cggttacgtac
tst2:[2,31]: CGTACGUAAC C GGTTAACC GGUUACGTACG
tst2:[31,2]: CGTACGTAAC C GGTTAACC GGTTACGTACG
tst3:[3,32]: gtacguaacc g gttaactt cgguuacgtac
tst3:[32,3]: gtacgtaacc g aagttaac cggttacgtac
clone%

Optionally, you can specify which of the "fields" in the matches
you wish to sort on, and show_hits will sort them. The field
numbers start with 0. So, you might get something like

clone% scan_for_matches -c pat_file < tmp | show_hits 2 1
tst2:[2,31]: CGTACGUAAC C GGTTAACC GGUUACGTACG
tst2:[31,2]: CGTACGTAAC C GGTTAACC GGTTACGTACG
tst3:[32,3]: gtacgtaacc g aagttaac cggttacgtac
tst1:[1,28]: gtacguaacc ggttaac cgguuacgtac
tst1:[28,1]: gtacgtaacc ggttaac cggttacgtac
tst3:[3,32]: gtacguaacc g gttaactt cgguuacgtac
clone%

In this case, the hits have been sorted on fields 2 and 1 (that is,
the third and second matched subfields).
show_hits is just one possible little post-processor, and you
might well wish to write a customized one for yourself.

Reducing the Cost of a Search
The scan_for_matches utility uses a fairly simple search, and may
consume large amounts of CPU time for complex patterns. Someday,
I may decide to optimize the code. However, until then, let me
mention one useful technique.
When you have a complex pattern that includes a number of varying
ranges, imprecise matches, and so forth, it is useful to
"pipeline" matches. That is, form a simpler pattern that can be
used to scan through a large database extracting sections that
might be matched by the more complex pattern. Let me illustrate
with a short example. Suppose that you really wished to match the
pattern
p1=3...5 0...8 ~p1[1,1,0] p2=6...7 3...6 AGC 3...5 RYGC ~p2[1,0,0]

44

In this case, the pattern units AGC 3...5 RYGC can be used to rapidly
constrain the overall search. You can preprocess the overall
database using the pattern:

31...31 AGC 3...5 RYGC 7...7
Put the complex pattern in pat_file1 and the simpler pattern in
pat_file2. Then use,

scan_for_matches -c pat_file2 < nucleotide_database |
scan_for_matches pat_file1

The output will show things like
>seqid:[232,280][2,47]
matches pieces
Then, the actual section of the sequence that was matched can be
easily computed as [233,278] (remember, the positions start from
1, not 0).
Let me finally add, you should do a few short experiments to see
whether or not such pipelining actually improves performance -- it
is not always obvious where the time is going, and I have
sometimes found that the added complexity of pipelining actually
slowed things up. It gets its best improvements when there are
exact matches of more than just a few characters that can be
rapidly used to eliminate large sections of the database.

=============
Additions:
Feb 9, 1995: the pattern units ^ and $ now work as in normal regular

expressions. That is
TTF $

matches only TTF at the end of the string and
^ TTF

matches only an initial TTF
The pattern unit

<p1
matches the reverse of the string named p1. That is,
if p1 matched GCAT, then <p1 would match TACG. Thus,

p1=6...6 <p1
matches a real palindrome (not the biologically common
meaning of "reverse complement")

45

	Introduction
	Setup
	Getting Started
	The Data Stream
	How to read the data stream from file?
	How to write the data stream to file?
	How to terminate the data stream?
	How to write my results to file?
	How to read data from multiple sources?

	Reading input
	How to read biotools input?
	How to read in data?
	How to read FASTA input?
	How to read alignment input?
	How to read tabular input?
	How to read BED input?
	How to read PSL input?

	Writing output
	How to write biotools output?
	How to write FASTA output?
	How to write alignment output?
	How to write tabular output?
	How to write a BED output?
	How to write PSL output?

	Manipulating Records
	How to select a few records?
	How to select random records?
	How to count all records in the data stream?
	How to get the length of record values?
	How to grab specific records?
	How to remove keys from records?
	How to rename keys in records?

	Manipulating Sequences
	How to get sequence lengths?
	How to analyze sequence composition?
	How to extract subsequences?
	How to get genomic sequence?
	How to upper-case sequences?
	How to reverse sequences?
	How to complement sequences?
	How to remove indels from sequnces?
	How to shuffle sequences?
	How to split sequences into overlapping subsequences?
	How to determine the oligo frequency?
	How to search for sequences in genomes?
	How to search sequences for a pattern?
	How to use BLAT for sequence search?
	How to use BLAST for sequence search?
	How to use Vmatch for sequence search?
	How to find all matches between sequences?
	How to align sequences?
	How to create a weight matrix?

	Plotting
	How to plot a histogram?
	How to plot a length distribution?
	How to plot a chromosome distribution?
	How to generate a dotplot?
	How to plot a sequence logo?
	How to plot a karyogram?

	Uploading Results
	How do I display my results in the UCSC Genome Browser?

	Power Scripting
	Trouble shooting
	Keys
	Switches
	scan_for_matches README

