GeneSimuAt<-function(DVDconstant=NULL, DVDqt1=NULL, DVDqt2=NULL, Conditions, NumofSample, NumofGene=NULL, DEGeneProp, Phiconstant=NULL, Phi.qt1=NULL, Phi.qt2=NULL, Meanconstant=NULL,NormFactor=NULL, OnlyData=T) { # 2012 feb 1 # paired level simulation data(GeneEBresultGouldBart2) if(is.null(NormFactor)) NormFactor=rep(1,NumofSample) #MeansC1=rowMeans(GeneV.norm1.NZ.b2[,1:4]) #MeansC2=rowMeans(GeneV.norm1.NZ.b2[,5:8]) MeansC1=GeneEBresultGouldBart2$C1Mean[[1]] MeansC2=GeneEBresultGouldBart2$C2Mean[[1]] MeanDVD=MeansC1/MeansC2 if(is.null(DVDconstant))DVDLibrary=MeanDVD[MeanDVDquantile(MeanDVD[MeanDVD!=Inf],DVDqt1)] # If DVD constant, use constant when generate # If not, use DVDLibrary MeanInputraw=GeneEBresultGouldBart2$MeanList[[1]] #MeanInputraw=rowMeans(GeneV.norm1.NZ.b2) #Var1=apply(GeneV.norm1.NZ.b2[,1:4],1,var) #Var2=apply(GeneV.norm1.NZ.b2[,5:8],1,var) #VarInput=(Var1 + Var2)/2 #If NumofGene.raw=NULL, empirical # of Gene #If !=NULL , Input a 9-vector NumofGene.raw=length(MeanInputraw) # here phi denotes r -- which is 1/phi' in which sigma^2=mu(1+mu phi') # In negative binomial # size is 1/phi' # rnbinom(100,size=100,mu=10) # var(qq) #[1] 10.93687 # qq=rnbinom(100,size=10,mu=10) # var(qq) #[1] 24.01404 #PhiInput.raw=(MeanInputraw^2) / (VarInput - MeanInputraw) PhiInput.raw=GeneEBresultGouldBart2$RList[[1]] if (length(Phiconstant)==0){ PhiLibrary=PhiInput.raw[1/(PhiInput.raw)quantile(1/(PhiInput.raw),Phi.qt1)] PhiInputNames=sample(names(PhiLibrary),NumofGene.raw,replace=T) PhiInput=PhiInput.raw[PhiInputNames] } if (length(Phiconstant)!=0)PhiInput=rep(Phiconstant,length(MeanInputraw)) if(length(Meanconstant)==0)MeanInput=GeneEBresultGouldBart2$MeanList[[1]][PhiInputNames] if(length(Meanconstant)!=0)MeanInput=rep(Meanconstant,length(GeneEBresultGouldBart2$MeanList[[1]])) # Wanna DENumbers be proportion to 2 DEGeneNumbers=round(NumofGene.raw*DEGeneProp/2)*2 GeneNames=paste("G",c(1:NumofGene.raw),sep="_") names(PhiInput)=GeneNames names(MeanInput)=GeneNames ######### # data ######### EEList=sapply(1:NumofGene.raw, function(j) sapply(1:NumofSample, function(i)rnbinom(1,mu=NormFactor[i]*MeanInput[j], size=PhiInput[j]))) generateDataraw=t(EEList) if(length(DVDconstant)==0){ DVDSample=sample(DVDLibrary,DEGeneNumbers,replace=T) for(j in 1:NumofGene.raw){ if (j<=(DEGeneNumbers/2)) generateDataraw[j,((NumofSample/2)+1):NumofSample]=sapply(((NumofSample/2) +1):NumofSample, function(i)rnbinom(1, size=PhiInput[j], mu=DVDSample[j]*MeanInput[j]*NormFactor[i]),simplify=T) if (j>=((DEGeneNumbers/2)+1) & j <=DEGeneNumbers) generateDataraw[j,1:(NumofSample/2)]=sapply(1:(NumofSample/2),function(i)rnbinom(1, size=MeanInput[j], mu= DVDSample[j]*MeanInput[j]*NormFactor[i]),simplify=T) } } if(length(DVDconstant)!=0){ for(j in 1:NumofGene.raw){ if (j<=(DEGeneNumbers/2)) generateDataraw[j,((NumofSample/2)+1):NumofSample]=sapply((NumofSample/2+1):NumofSample, function(i)rnbinom(1, size=MeanInput[j],mu=DVDconstant*MeanInput[j]*NormFactor[i]),simplify=T) if (j>=((DEGeneNumbers/2)+1) & j <=DEGeneNumbers) generateDataraw[j,1:(NumofSample/2)]=sapply(1:(NumofSample/2),function(i)rnbinom(1, size=MeanInput[j],mu=DVDconstant*MeanInput[j]*NormFactor[i]),simplify=T) } } rownames(generateDataraw)=GeneNames MeanVector=rowMeans(generateDataraw) VarVector=apply(generateDataraw,1,var) MOV.post=MeanVector/VarVector ### Remove MOV=NA generateData=generateDataraw generateData=generateData[!is.na(MOV.post)& MeanVector>2 & MeanVector<10000 ,] print(paste("NA MOV's",sum(is.na(MOV.post)),sum( MeanVector<2), sum(MeanVector>10000))) ## DE NumDENow=sum(rownames(generateData)%in%rownames(generateDataraw)[1:DEGeneNumbers]) if(length(NumofGene)!=0) generateData=generateData[c(sample(1:NumDENow,round(NumofGene*DEGeneProp),replace=F),round( (dim(generateData)[1]+1-NumofGene*(1-DEGeneProp)):dim(generateData)[1])),] UseName=rownames(generateData) TrueDE=UseName[UseName%in%rownames(generateDataraw)[1:DEGeneNumbers]] phiuse=PhiInput[rownames(generateData)] meanuse=MeanInput[rownames(generateData)] #ArtiNames=rownames(generateData)[(DEGeneNumbers+1):(2*DEGeneNumbers)] #Noise=sample(c(1,ncol(generateData)),DEGeneNumbers,replace=T) TrueDELength=length(TrueDE) AtLoc=sample(c(1:length(Conditions)), TrueDELength, replace=T) AtFold=sample(c(4,6,8,10),TrueDELength, replace=T) AtNames_Level=vector("list",4) names(AtNames_Level)=c(4,6,8,10) for(i in 1:TrueDELength){ generateData[(TrueDELength+i),AtLoc[i]]=generateData[(TrueDELength+i),AtLoc[i]]*AtFold[i] AtNames_Level[[as.character(AtFold[i])]]=c(AtNames_Level[[as.character(AtFold[i])]],rownames(generateData)[TrueDELength+i]) } if(OnlyData==T){ OutName=paste("Gene",c(1:nrow(generateData)),sep="_") names(OutName)=rownames(generateData) OutData=generateData rownames(OutData)=as.vector(OutName) OutAt=as.vector(OutName[AtNames_Level]) OutTrueDE=as.vector(OutName[TrueDE]) output=list(data=OutData, TrueDE=OutTrueDE,Outliers=OutAt) return(output) } ## DESeq cds=newCountDataSet(round(generateData),Conditions) cds=estimateSizeFactors(cds) Sizes=sizeFactors(cds) if(dim(generateData)[2]>4)cds=estimateVarianceFunctions(cds) else cds=estimateVarianceFunctions(cds, method="blind") res=nbinomTest(cds, "1", "2") ResAdj=res$padj names(ResAdj)=res$id SmallPValueName=names(ResAdj)[which(ResAdj<=.05)] print(paste("DESEq found",length(SmallPValueName))) print(paste("In True DE",sum(SmallPValueName%in%TrueDE))) print("DESeq Size factors") print(Sizes) ## DESeq each group ## Ours NewData=generateData #source("/z/Comp/kendziorskigroup/ningleng/RNASEQ/CODE/FinalV/NBBetaBiasUniqueP_PoolVar_SpeedUp_MDFPoi_NoNormVar.R") #source("/z/Comp/kendziorskigroup/ningleng/RNASEQ/CODE/FinalV/NBBetaBiasUniqueP_PoolVar_SpeedUp_MDFPoi_NoNormPoolR.R") EBresult=EBTest(NewData,rep(1,dim(NewData)[1]), rep(1,dim(NewData)[1]), rep(1,dim(NewData)[1]),Conditions,sizeFactors=Sizes,5) #EBres2=NBBetaEB.bias.uniqueP_PoolVarSpeedUp_MDFPoi_NoNormPoolR(NewData,rep(1,dim(NewData)[1]), rep(1,dim(NewData)[1]), rep(1,dim(NewData)[1]),Conditions,sizeFactors=Sizes,5) zlist.unlist=EBresult[[5]] fdr=max(.5,crit_fun(1-zlist.unlist,.05)) EBDE=names(zlist.unlist)[which(zlist.unlist>fdr)] EBDE.Poi=names(EBresult[[6]])[which(EBresult[[6]]>fdr)] zlist.unlist.whole=c(EBresult[[5]],EBresult[[6]]) print(paste("Soft EB Poi",length(EBDE.Poi))) EBDE=c(EBDE, EBDE.Poi) print(paste("Soft EB found",length(EBDE))) print(paste("In True DE",sum(EBDE%in%TrueDE))) EBDE95=names(zlist.unlist)[which(zlist.unlist>.95)] EBDE95.Poi=names(EBresult[[6]])[which(EBresult[[6]]>.95)] print(paste("Hard Poi found",length(EBDE95.Poi))) EBDE95=c(EBDE95, EBDE95.Poi) print(paste("Hard EB found" ,length(EBDE95))) print(paste("In True DE",sum(EBDE95%in%TrueDE))) ### edgeR library(edgeR,lib.loc="~/RCODE") edgeRList.b2=DGEList(NewData,group=Conditions) if(length(Phiconstant)==1){ edgeRList.b2=estimateCommonDisp(edgeRList.b2) edgeRRes.b2=exactTest(edgeRList.b2) } if(length(Phiconstant)==0){ edgeRList.b2=estimateCommonDisp(edgeRList.b2) edgeRList.b2=estimateTagwiseDisp(edgeRList.b2) edgeRRes.b2=exactTest(edgeRList.b2, common.disp = FALSE) } edgeRPvalue.b2.raw=edgeRRes.b2[[1]][[3]] edgeRPvalue.b2=p.adjust(edgeRPvalue.b2.raw, method="BH") names(edgeRPvalue.b2)=rownames(NewData) edgeRSmallpvalue=names(which(edgeRPvalue.b2<.05)) print(paste("edgeR found",length(edgeRSmallpvalue))) print(paste("In True DE",sum(edgeRSmallpvalue%in%TrueDE))) ### Bayseq library(baySeq, lib.loc="~/RCODE") library(snow, lib.loc="~/RCODE") cl <- makeCluster(4, "SOCK") groups <- list(NDE = rep(1,NumofSample), DE = rep(c(1,2),each=NumofSample/2)) CD <- new("countData", data = NewData, replicates = Conditions, libsizes = as.integer(colSums(NewData)), groups = groups) CDP.NBML <- getPriors.NB(CD, samplesize = dim(NewData)[1], estimation = "QL", cl = cl) CDPost.NBML <- getLikelihoods.NB(CDP.NBML, pET = "BIC", cl = cl) bayseqPost=CDPost.NBML@posteriors rownames(bayseqPost)=rownames(NewData) bayseqDE=rownames(NewData)[bayseqPost[,2]>log(.95)] print(paste("bayseq found",length(bayseqDE))) print(paste("In True DE",sum(bayseqDE%in%TrueDE))) ### BBSeq library("BBSeq",lib.loc="~/RCODE") CondM=cbind(rep(1,NumofSample),rep(c(0,1),each=NumofSample/2)) output=free.estimate(NewData,CondM) beta.free = output$betahat.free p.free = output$p.free psi.free = output$psi.free names(p.free)=rownames(NewData) p.free.adj=p.adjust(p.free,method="BH") # Top p free? #out.model=constrained.estimate(NewData,CondM, gn=3, beta.free ,psi.free) #p.constrained = out.model$p.model BBDE=names(p.free.adj)[which(p.free.adj<.05)] print(paste("BBSeq found",length(BBDE))) print(paste("In True DE",sum(BBDE%in%TrueDE))) ######################### # Generate table Table=matrix(rep(0,12),ncol=2) colnames(Table)=c("Power","FDR") rownames(Table)=c("DESeq","edgeR","BaySeq","BBSeq","EBSeq_ModifiedSoft","EBSeq_Hard") Length=length(TrueDE) Table[1,1]=sum(SmallPValueName%in%TrueDE)/Length Table[2,1]=sum(edgeRSmallpvalue%in%TrueDE)/Length Table[3,1]=sum(bayseqDE%in%TrueDE)/Length Table[4,1]=sum(BBDE%in%TrueDE)/Length Table[5,1]=sum(EBDE%in%TrueDE)/Length Table[6,1]=sum(EBDE95%in%TrueDE)/Length Table[1,2]=sum(!SmallPValueName%in%TrueDE)/length(SmallPValueName) Table[2,2]=sum(!edgeRSmallpvalue%in%TrueDE)/length(edgeRSmallpvalue) Table[3,2]=sum(!bayseqDE%in%TrueDE)/length(bayseqDE) Table[4,2]=sum(!BBDE%in%TrueDE)/length(BBDE) Table[5,2]=sum(!EBDE%in%TrueDE)/length(EBDE) Table[6,2]=sum(!EBDE95%in%TrueDE)/length(EBDE95) Table=round(Table,2) ValueTable=matrix(rep(0,12),ncol=2) colnames(ValueTable)=c("Power","FDR") rownames(ValueTable)=c("DESeq","edgeR","BaySeq","BBSeq","EBSeq_ModifiedSoft","EBSeq_Hard") ValueTable[1,1]=sum(SmallPValueName%in%TrueDE) ValueTable[2,1]=sum(edgeRSmallpvalue%in%TrueDE) ValueTable[3,1]=sum(bayseqDE%in%TrueDE) ValueTable[4,1]=sum(BBDE%in%TrueDE) ValueTable[5,1]=sum(EBDE%in%TrueDE) ValueTable[6,1]=sum(EBDE95%in%TrueDE) ValueTable[1,2]=sum(!SmallPValueName%in%TrueDE) ValueTable[2,2]=sum(!edgeRSmallpvalue%in%TrueDE) ValueTable[3,2]=sum(!bayseqDE%in%TrueDE) ValueTable[4,2]=sum(!BBDE%in%TrueDE) ValueTable[5,2]=sum(!EBDE%in%TrueDE) ValueTable[6,2]=sum(!EBDE95%in%TrueDE) AtFoundTable=matrix(rep(0,24),ncol=4) colnames(AtFoundTable)=paste("Level",c(1:4),sep="_") rownames(Table)=c("DESeq","edgeR","BaySeq","BBSeq","EBSeq_ModifiedSoft","EBSeq_Hard") for(i in 1:4){ AtFoundTable[1,i]=sum(SmallPValueName%in%AtNames_Level[[i]]) AtFoundTable[2,i]=sum(edgeRSmallpvalue%in%AtNames_Level[[i]]) AtFoundTable[3,i]=sum(bayseqDE%in%AtNames_Level[[i]]) AtFoundTable[4,i]=sum(BBDE%in%AtNames_Level[[i]]) AtFoundTable[5,i]=sum(EBDE%in%AtNames_Level[[i]]) AtFoundTable[6,i]=sum(EBDE95%in%AtNames_Level[[i]]) } if(length(DVDconstant)==0)DVD=c(quantile(MeanDVD[MeanDVD!=Inf],DVDqt1), quantile(MeanDVD[MeanDVD!=Inf],DVDqt2)) if(length(DVDconstant)!=0) DVD=DVDconstant if(length(Phiconstant)==0)Phi=c(quantile(PhiInput.raw,Phi.qt1), quantile(PhiInput.raw,Phi.qt2)) if(length(Phiconstant)!=0) Phi=Phiconstant OUT=list(Table=Table, ValueTable=ValueTable, DVD=DVD, Phi=Phi, generateData=NewData, TrueDE=TrueDE,phi.vector=phiuse,mean.vector=meanuse,NormFactor=NormFactor, DESeqP=ResAdj, edgeRP=edgeRPvalue.b2, EBSeqPP=zlist.unlist.whole, BaySeqPP=bayseqPost,BBSeqP=p.free.adj,EBoutput=EBresult, AtFoundTable= AtFoundTable,Outliers=AtNames_Level) }