]> git.donarmstrong.com Git - ape.git/blob - R/mcmc.popsize.R
bugs fixing in mlphylo()
[ape.git] / R / mcmc.popsize.R
1 ## mcmc.popsize.R (2004-12-02)
2
3 ##   Run reversible jump MCMC to sample demographic histories
4
5 ## Copyright 2004 Rainer Opgen-Rhein and Korbinian Strimmer
6
7 ## Portions of this function are adapted from rjMCMC code by
8 ## Karl Broman (see http://www.biostat.jhsph.edu/~kbroman/)
9
10 ## This file is part of the R-package `ape'.
11 ## See the file ../COPYING for licensing issues.
12
13 # public function
14
15 # run rjMCMC chain
16 mcmc.popsize <-
17   function(tree, nstep,
18     thinning=1, burn.in=0, progress.bar=TRUE,
19     method.prior.changepoints=c("hierarchical", "fixed.lambda"),
20     max.nodes=30,
21     lambda=0.5,    # "fixed.lambda" method.prior.changepoints
22     gamma.shape=0.5, gamma.scale=2,  # gamma distribution from which lambda is drawn (for "hierarchical" method)
23     method.prior.heights=c("skyline", "constant", "custom"),
24     prior.height.mean,
25     prior.height.var
26     )
27 {
28   method.prior.changepoints <- match.arg(method.prior.changepoints)
29   method.prior.heights <- match.arg(method.prior.heights)
30
31
32   #Calculate skylineplot, coalescent intervals and estimated population sizes
33
34   if(attr(tree, "class")=="phylo")
35     {ci <- coalescent.intervals(tree)
36      sk1 <- skyline(ci)}
37   else if (attr(tree, "class")=="coalescentIntervals")
38     {ci<-tree
39     sk1<-skyline(ci)}
40   else
41   stop("tree must be an object of class phylo or coalescentIntervals")
42
43    #consider possibility of more than one lineage
44    ci$lineages<-ci$lineages[sk1$interval.length>0]
45    ci$interval.length<-ci$interval.length[sk1$interval.length>0]
46    data<-sk1$time<-sk1$time[sk1$interval.length>0]
47    sk1$population.size<-sk1$population.size[sk1$interval.length>0]
48    sk1$interval.length<-sk1$interval.length[sk1$interval.length>0]
49
50   # constant prior for heights
51
52   if (method.prior.heights=="constant"){
53     prior.height.mean<-function(position){
54       return(mean(sk1$population.size))
55     }
56     prior.height.var<-function(position){
57       return((mean(sk1$population.size))^2)
58    }
59   }
60
61   # skyline plot prior for heights
62
63   if (method.prior.heights=="skyline"){
64
65     TIME<-sk1$time
66     numb.interv<-10
67     prior.change.times<-abs((0:numb.interv)*max(TIME)/numb.interv)
68     prior.height.mean.all<-prior.height.var.all<-vector(length=numb.interv)
69     for(p.int in 1:(numb.interv))
70     {
71       left<-p.int
72       right<-p.int+1
73       sample.pop<-sk1$population.size[sk1$time>=prior.change.times[left]&sk1$time<=prior.change.times[right]]
74       while(length(sample.pop)<10){
75         if(left>1){left<-left-1}
76         if(right<length(prior.change.times)){right<-right+1}
77         sample.pop<-sk1$population.size[sk1$time>=prior.change.times[left]&sk1$time<=prior.change.times[right]]
78       }
79       prior.height.mean.all[p.int]<-sum(sample.pop)/length(sample.pop)
80       prior.height.var.all[p.int]<-sum((sample.pop-prior.height.mean.all[p.int])^2)/(length(sample.pop)-1)
81     }
82
83     prior.height.mean<-function(position)
84     {
85       j<-sum(prior.change.times<=position)
86       if(j>=length(prior.height.mean.all)){j<-length(prior.height.mean.all)}
87       prior.mean<-prior.height.mean.all[j]
88       prior.mean
89     }
90
91     prior.height.var<-function(position)
92     {
93       j<-sum(prior.change.times<=position)
94       if(j>=length(prior.height.var.all)){j<-length(prior.height.var.all)}
95       prior.var<-prior.height.var.all[j]
96       prior.var
97     }
98   }
99
100   if(method.prior.heights=="custom"){
101     if(missing(prior.height.mean)||missing(prior.height.var)){
102          stop("custom priors not specified")}
103   }
104
105   #set prior
106   prior<-vector(length=4)
107   prior[4]<-max.nodes
108
109   # set initial position of markov chain and likelihood
110   pos<-c(0,max(data))
111   h<-c(rep(mean(sk1$population.size), 2))
112
113   b.lin<-choose(ci$lineages, 2)
114   loglik<<-loglik.pop
115
116   #set lists for data
117   count.it<-floor((nstep-burn.in)/thinning)
118   save.pos <- save.h <- vector("list",count.it)
119   save.loglik <- 1:count.it
120   save.steptype <- 1:count.it
121   save.accept <- 1:count.it
122
123   # calculate jump probabilities for given lambda of the prior
124   if(method.prior.changepoints=="fixed.lambda")
125   {
126     prior[1]<-lambda
127     jump.prob <- matrix(ncol=4,nrow=prior[4]+1)
128     p <- dpois(0:prior[4],prior[1])/ppois(prior[4]+1,prior[1])
129     bk <- c(p[-1]/p[-length(p)],0)
130     bk[bk > 1] <- 1
131     dk <- c(0,p[-length(p)]/p[-1])
132     dk[dk > 1] <- 1
133     mx <- max(bk+dk)
134     bk <- bk/mx*0.9
135     dk <- dk/mx*0.9
136     bk[is.na(bk)]<-0     # added
137     dk[is.na(dk)]<-0     # added
138     jump.prob[,3] <- bk
139     jump.prob[,4] <- dk
140     jump.prob[1,2] <- 0
141     jump.prob[1,1] <- 1-bk[1]-dk[1]
142     jump.prob[-1,1] <- jump.prob[-1,2] <-
143     (1-jump.prob[-1,3]-jump.prob[-1,4])/2
144   }
145
146
147   # calculate starting loglik
148   curloglik <- loglik(data,pos,h,b.lin,sk1,ci)
149
150   count.i<-1
151
152   #set progress bar
153   if(progress.bar==TRUE)
154   {
155     X11(width=3, height=0.7)
156     par(mar=c(0.5,0.5,2,0.5))
157     plot(x=c(0,0),y=c(0,1), type="l", xlim=c(0,1), ylim=c(0,1),
158     main="rjMCMC in progress", ylab="", xlab="", xaxs="i", yaxs="i", xaxt="n", yaxt="n")
159   }
160
161  #BEGIN CALCULATION
162
163   for(i in (1:nstep + 1)) {
164
165   #progress bar
166   if(i %% 100 == 0){
167    z<-i/nstep
168    zt<-(i-100)/(nstep)
169    polygon(c(zt,zt,z,z), c(1,0,0,1), col="black")
170
171     }
172
173   # calculate jump probabilities without given lamda
174   if(method.prior.changepoints=="hierarchical"){
175     prior[1]<-rgamma(1,shape=gamma.shape,scale=gamma.scale)
176     jump.prob <- matrix(ncol=4,nrow=prior[4]+1)
177     p <- dpois(0:prior[4],prior[1])/ppois(prior[4]+1,prior[1])
178     bk <- c(p[-1]/p[-length(p)],0)
179     bk[bk > 1] <- 1
180     dk <- c(0,p[-length(p)]/p[-1])
181     dk[dk > 1] <- 1
182     mx <- max(bk+dk)
183     bk <- bk/mx*0.9
184     dk <- dk/mx*0.9
185     bk[is.na(bk)]<-0   # added
186     dk[is.na(dk)]<-0   # added
187     jump.prob[,3] <- bk
188     jump.prob[,4] <- dk
189     jump.prob[1,2] <- 0
190     jump.prob[1,1] <- 1-bk[1]-dk[1]
191     jump.prob[-1,1] <- jump.prob[-1,2] <-
192     (1-jump.prob[-1,3]-jump.prob[-1,4])/2
193   }
194
195     # determine what type of jump to make
196     wh <- sample(1:4,1,prob=jump.prob[length(h)-1,])
197
198     if (i %% thinning == 0& i>burn.in) {save.steptype[[count.i]] <- wh}
199
200     if(wh==1) {
201       step <- ht.move(data,pos,h,curloglik,prior, b.lin, sk1, ci, prior.height.mean, prior.height.var)
202       h <- step[[1]]
203       curloglik <- step[[2]]
204       if(i%%thinning==0 & i>burn.in){
205          save.pos[[count.i]]<-pos
206          save.h[[count.i]]<-h
207          save.loglik[[count.i]]<-step[[2]]
208          save.accept[[count.i]]<-step[[3]]
209          }
210     }
211     else if(wh==2) {
212       step <- pos.move(data,pos,h,curloglik, b.lin,sk1,ci)
213       pos <- step[[1]]
214       curloglik <- step[[2]]
215       if(i%%thinning==0 & i>burn.in){
216           save.pos[[count.i]]<-pos
217           save.h[[count.i]]<-h
218           save.loglik[[count.i]]<-step[[2]]
219           save.accept[[count.i]]<-step[[3]]
220           }
221     }
222     else if(wh==3) {
223       step <- birth.step(data,pos,h,curloglik,prior,jump.prob, b.lin, sk1, ci, prior.height.mean, prior.height.var)
224       pos <- step[[1]]
225       h <- step[[2]]
226       curloglik <- step[[3]]
227       if(i%%thinning==0 & i>burn.in){
228          save.pos[[count.i]]<-pos
229          save.h[[count.i]]<-h
230          save.loglik[[count.i]]<-step[[3]]
231          save.accept[[count.i]]<-step[[4]]
232          }
233     }
234     else {
235       step <- death.step(data,pos,h,curloglik,prior,jump.prob, b.lin, sk1, ci, prior.height.mean, prior.height.var)
236       pos <- step[[1]]
237       h <- step[[2]]
238       curloglik <- step[[3]]
239       if(i%%thinning==0 & i>burn.in){
240          save.pos[[count.i]]<-pos
241          save.h[[count.i]]<-h
242          save.loglik[[count.i]]<-step[[3]]
243          save.accept[[count.i]]<-step[[4]]
244          }
245     }
246     if (i %% thinning == 0& i>burn.in) {count.i<-count.i+1}
247   }
248   dev.off()
249
250   list(pos=save.pos,h=save.h,loglik=save.loglik,
251        steptype=save.steptype,accept=save.accept)
252 }
253
254 # private functions
255
256 ht.move <-
257 function(data,pos,h,curloglik,prior, b.lin,sk1,ci, prior.height.mean, prior.height.var)
258 {
259 #  print("ht.move")
260   j <- sample(1:length(h),1)
261
262   prior.mean<-prior.height.mean(pos[j])
263   prior.var<-prior.height.var(pos[j])
264
265   prior[3]<-prior.mean/prior.var
266   prior[2]<-(prior.mean^2)/prior.var
267
268   newh <- h
269   newh[j] <- h[j]*exp(runif(1,-0.5,0.5))
270
271   newloglik <- loglik(data,pos,newh,b.lin,sk1,ci)
272   lr <- newloglik - curloglik
273
274   ratio <- exp(lr + prior[2]*(log(newh[j])-log(h[j])) - prior[3]*(newh[j]-h[j]))
275
276   if(runif(1,0,1) < ratio)
277     return(list(newh,newloglik,1))
278   else
279     return(list(h,curloglik,0))
280 }
281
282 pos.move <-
283 function(data,pos,h,curloglik, b.lin,sk1,ci)
284 {
285 #  print("pos.move")
286   if(length(pos)==3) j <- 2
287   else j <- sample(2:(length(pos)-1),1)
288   newpos <- pos
289   left <- pos[j-1]
290   right <- pos[j+1]
291   newpos[j] <- runif(1,left,right)
292
293   newloglik <- loglik(data,newpos,h, b.lin,sk1,ci)
294   lr <-  newloglik - curloglik
295
296   ratio <- exp(lr) * (right-newpos[j])*(newpos[j]-left)/
297     (right-pos[j])/(pos[j]-left)
298
299   if(runif(1,0,1) < ratio)
300     return(list(newpos,newloglik,1))
301   else
302     return(list(pos,curloglik,0))
303 }
304
305 birth.step <-
306 function(data,pos,h,curloglik,prior,jump.prob, b.lin, sk1, ci, prior.height.mean, prior.height.var)
307 {
308 #  print("birth")
309   newpos <- runif(1,0,pos[length(pos)])
310   j <- sum(pos < newpos)
311
312   left <- pos[j]
313   right <- pos[j+1]
314
315   prior.mean<-prior.height.mean(pos[j])
316   prior.var<-prior.height.var(pos[j])
317   prior[3]<-prior.mean/prior.var
318   prior[2]<-(prior.mean^2)/prior.var
319
320   u <- runif(1,-0.5,0.5)
321   oldh<-(((newpos-left)/(right-left))*(h[j+1]-h[j])+h[j])
322   newheight<-oldh*(1+u)
323
324   # ratio
325   # recall that prior = (lambda, alpha, beta, maxk)
326   k <- length(pos) - 2
327   L <- max(pos)
328
329   prior.logratio <- log(prior[1]) - log(k+1) +  log((2*k+3)*(2*k+2)) - 2*log(L) +
330     log(newpos-left) + log(right-newpos) - log(right-left) +
331        prior[2]*log(prior[3]) - lgamma(prior[2]) +
332         (prior[2]-1) * log(newheight) +
333           prior[3]*(newheight)
334
335    proposal.ratio <- jump.prob[k+2,4]*L/jump.prob[k+1,3]/(k+1)
336   jacobian <- (((newpos-left)/(right-left))*(h[j+1]-h[j]))+h[j]
337
338   # form new parameters
339   newpos <- sort(c(pos,newpos))
340   newh <- c(h[1:j], newheight, h[(j+1):length(h)])
341
342   newloglik <- loglik(data,newpos,newh, b.lin,sk1,ci)
343
344   lr <- newloglik - curloglik
345
346   ratio <- exp(lr + prior.logratio) * proposal.ratio * jacobian
347
348   if(runif(1,0,1) < ratio)
349     return(list(newpos,newh,newloglik,1))
350   else
351     return(list(pos,h,curloglik,0))
352 }
353
354 death.step <-
355 function(data,pos,h,curloglik,prior,jump.prob, b.lin,sk1,ci, prior.height.mean, prior.height.var)
356 {
357 #  print("death")
358   # position to drop
359   if(length(pos)==3) j <- 2
360   else j <- sample(2:(length(pos)-1),1)
361
362   left <- pos[j-1]
363   right <- pos[j+1]
364
365   prior.mean<-prior.height.mean(pos[j])
366   prior.var<-prior.height.var(pos[j])
367   prior[3]<-prior.mean/prior.var
368   prior[2]<-(prior.mean^2)/prior.var
369
370   # get new height
371   h.left <- h[j-1]
372   h.right <- h[j+1]
373   newheight <- (((pos[j]-left)/(right-left))*(h.right-h.left)+h.left)
374
375   # ratio
376   # recall that prior = (lambda, alpha, beta, maxk)
377   k <- length(pos) - 3
378   L <- max(pos)
379
380   prior.logratio <- log(k+1) - log(prior[1]) -  log(2*(k+1)*(2*k+3)) + 2*log(L) -
381     log(pos[j]-left) - log(right-pos[j]) + log(right-left) -
382       prior[2]*log(prior[3]) + lgamma(prior[2]) -
383         (prior[2]-1) * log(newheight) -
384           prior[3]*(newheight)
385   proposal.ratio <- (k+1)*jump.prob[k+1,3]/jump.prob[k+2,4]/L
386   jacobian <- ((pos[j]-left)/(right-left))*(h[j+1]-h[j-1])+h[j-1]
387
388   # form new parameters
389   newpos <- pos[-j]
390
391   newh <- h[-j]
392
393   newloglik <- loglik(data,newpos,newh, b.lin,sk1,ci)
394
395   lr <- newloglik - curloglik
396
397   ratio <- exp(lr + prior.logratio) * proposal.ratio * (jacobian^(-1))
398
399   if(runif(1,0,1) < ratio)
400     return(list(newpos,newh,newloglik,1))
401   else
402     return(list(pos,h,curloglik,0))
403
404
405 }
406
407 # calculate the log likelihood for a set of data
408 loglik.pop <-
409 function(time=sk1$time, pos=c(0,max(sk1$time)), h=mean(sk1$population.size),b=b.lin,sk1,ci){
410   data.time<-c(0,time)
411
412   leftside<-0
413   i<-1
414   h1<-c(h, h[length(h)])
415   pos1<-c(pos, pos[length(pos)])
416   while(i<length(time)){
417     left.pos<-sum(data.time[i+1]>=pos)
418     right.pos<-left.pos+1
419 h.mix<-(((data.time[i+1]-pos[left.pos])/(pos[right.pos]-pos[left.pos]))*(h[right.pos]-h[left.pos]))+h[left.pos]
420      leftside<-leftside+log(b[i]/h.mix)
421     i<-i+1
422   }
423
424   rightside<-0
425   time1<-c(0,time)
426   time.count<-1
427
428   # heigths of jumps
429   jumps<-sort(c(time1, pos))
430   h.jumps<-jumps
431   while(time.count<=length(jumps)){
432     left.pos<-sum(jumps[time.count]>=pos)
433     right.pos<-left.pos+1
434      h.jumps[time.count]<-(((jumps[time.count]-pos[left.pos])/(pos[right.pos]-pos[left.pos]))*(h[right.pos]-h[left.pos]))+h[left.pos]
435     if(is.na(h.jumps[time.count])){h.jumps[time.count]<-h[left.pos]}
436     time.count<-time.count+1
437   }
438
439   # Vektor for lineages
440   i<-1
441   lineages.jumps<-jumps
442    while(i<=length(jumps)){
443      lineages.jumps[i]<-sum(jumps[i]>=time)
444     if(lineages.jumps[i]==0){lineages.jumps[i]<-1}
445      i<-i+1
446    }
447   lineage<-ci$lineages[lineages.jumps]
448   b1<-choose(lineage, 2)
449
450   #Integral
451   a<-(h.jumps[-1]-h.jumps[-length(h.jumps)])/(jumps[-1]-jumps[-length(jumps)])
452   c<-h.jumps[-1]-jumps[-1]*a
453   area<-(1/a)*log(a*jumps[-1]+c)-(1/a)*log(a*jumps[-length(jumps)]+c)
454   stepfunction<-(jumps[-1]-jumps[-length(jumps)])/h.jumps[-1]
455   area[is.na(area)]<-stepfunction[is.na(area)]
456
457   rightside<-sum(area*b1[-1])
458
459   loglik<-leftside-rightside
460   loglik
461 }