EBSeq: An R package for differential expression

analysis using RNA-seq data

Ning Leng, John A. Dawson, Christina Kendziorski

April 20, 2012

Contents
1 Introduction 1
2 The Model 3
2.1 Two conditions 3
2.2 More than two conditions oL 4
3 Quick Start 4
3.1 Gene Level DE Analysis (Two Conditions) 5
3.1.1 Requiredinput L. 5
3.1.2 Simulating gene-level counts 5
3.1.3 Library size factor L. 6
3.1.4 Running EBSeq on gene counts 6
3.1.5 Checking the model fit and other diagnostics 7
3.2 TIsoform Level DE Analysis (Two Conditions) 7
3.2.1 Requiredinputs. 7
3.2.2 Simulating isoform-level counts 8
3.2.3 Library size factor L. 9
3.24 The Ngvector 9
3.2.5 Running EBSeq on isoform counts 10
3.2.6 Checking the model fit and other diagnostics 10
3.3 Working with more than two conditions 11

1 Introduction

EBSeq may be used to identify differentially expressed (DE) genes and isoforms
in an RNA-Seq experiment. As detailed in Leng et al., 2012 [3], EBSeq is
an empirical Bayesian approach that models a number of features observed in
RNA-seq data. Importantly, for isoform level inference, EBSeq directly accom-
modates isoform expression estimation uncertainty by modeling the differential
variability observed in distinct groups of isoforms. Consider Figure 1, where we

RSEM

N~
o
&1 — Allisoforms
— Ng=1
o) Ng =2

(O]

3! @] — Ng=3

8 4

3

> o

=53

D -

1]

©

£

)

5 i

B =
— |
o

01 1 10 100 10000
Estimated Mean

Figure 1: Empirical variance vs. mean for each isoform profiled in the mammary
carcinoma experiment detailed in the Case Study section of Leng et al., 2012
[3]. A spline fit to all isoforms is shown in red with splines fit within the
Ny =1, Ny =2, and Ny = 3 isoform groups shown in yellow, pink, and green,
respectively.

have plotted variance against mean for all isoforms using RNA-Seq expression
data from Leng et al., 2012 [3]. Also shown is the fit within three sub-groups of
isoforms defined by the number of constituent isoforms of the parent gene. An
isoform of gene g is assigned to the N, = k group, where k = 1, 2, 3, if the total
number of isoforms from gene g is k (the N, = 3 group contains all isoforms from
genes having 3 or more isoforms). As shown in Figure 1, there is decreased vari-
ability in the Ny = 1 group, but increased variability in the others, due to the
relative increase in uncertainty inherent in estimating isoform expression when
multiple isoforms of a given gene are present. If this structure is not accommo-
dated, there is reduced power for identifying isoforms in the N, = 1 group (since
the true variances in that group are lower, on average, than that derived from
the full collection of isoforms) as well as increased false discoveries in the Ny = 2
and N, = 3 groups (since the true variances are higher, on average, than those
derived from the full collection). EBSeq directly models differential variability
as a function of IV, providing a powerful approach for isoform level inference.
As shown in Leng et al., 2012 [3], the model is also useful for identifying DE
genes. We will briefly detail the model in Section 2 and then describe the flow
of analysis in Section 3 for both isoform and gene-level inference.

2 The Model

2.1 Two conditions

We let Xgl = Xy, 1,Xg,.2,..., Xy, 5, denote data from condition 1 and ch;2 =
Xy (5141), Xgi,(5142)5 -++» Xg;,5 data from condition 2. We assume that counts
within condition C' are distributed as Negative Binomial: Xf s\rg“s,qg ~

NB(rg,.s, q_f;j) where :

X s T Tgis — 1
P<Xgi,8|rgi’87q;) = < . X 7

9i,S

)(1 L) (e (1)

and 1§ =rg, (1 —q5)/q5; (05)* =714,s(1—q5)/(a5)2

We assume a prior distribution on qg: q;|a,ﬁN9 ~ Beta(a, fNe). The
hyperparameter « is shared by all the isoforms and Ve is N, specific (note this
is an index, not a power). We further assume that ry, s = ¢, ols, Where 7y, o is
an isoform specific parameter common across conditions and r4, s depends on
it through the sample-specific normalization factor [s. Of interest in this two
group comparison is distinguishing between two cases, or what we will refer to
subsequently as two patterns of expression, namely equivalent expression (EE)
and differential expression (DE):

HO (EE) . qgc;l = ng? VS Hl (DE) : qgl 7& ngZQ

Under the null hypothesis (EE), the data Xgl’CQ = Xgl, ng arises from the

prior predictive distribution fév (X gC: 1,02y,

S
ng (X01,C2) _ H Xgi’s +rgs—1 beta(a + Zsszl T'gi,ss BNQ + Zsszl XguS)
0 gi beta(a, BNv)

s=1 9i,S

(2)

Alternatively (in a DE scenario), Xgl’CQ follows the prior predictive distri-
bution f;'° (XG102):

xRy = (i (XSh £l (XS?) (3)

Let the latent variable Z,, be defined so that Z,, = 1 indicates that isoform
g; is DE and Z,;, = 0 indicates isoform g; is EE, and Z,, ~ Bernoulli(p). Then,
the marginal distribution of X$? and Z,, is:

N‘? N.q
(1= p)fo " (Xg 1 %) +pfy (X4 (4)
The posterior probability of being DE at isoform g; is obtained by Bayes’ rule:

Ng
pfi (XgC;LCQ)
Ng) Ng)
(1 —p)fo (chiq 02) +pfi (Xgl CZ)

(5)

2.2 More than two conditions

EBSeq naturally accommodates multiple condition comparisons. For exam-
ple, in a study with 3 conditions, there are K=5 possible expression patterns
(P1,...,P5), or ways in which latent levels of expression may vary across condi-
tions:
c c C:
P1: qul = qg72 =g,
c
P2: qgi = qu‘ 75 qgi3
P3: qgl = qu # qCZ
Pd: qgi # qgl - qgl
c fek:
Pb: qgi 7& qu‘ 7& qgi and qgil 7& ngzd

The prior predictive distributions for these are given, respectively, by:

gi\fg (XCl 02,08) — fO]Vq (XCl .02,03)

gé\fg (XCl 02,03y _ foNg (XCl 02) (X 03)

gé\fg (XCl 02,03y fé\fg (XCl 03) (Xcz)

gi\’g (X01 ,C2, Cs) fOIVg (XC1) Ng (ch2 03)

95" (X2 = (XD 67 (X2 f3 (X52)

where fév ? is the same as in equation 2. Then the marginal distribution in
equation 4 becomes:

5
Ng
> prgp (X508 (6)
k=1

where 22:1 pr = 1. Thus, the posterior probability of isoform g; coming from
pattern K is readily obtained by:

N,
PKgY g(Xchz,cs)

Zk 1 pkgk (

XCl C2, CB) (7)

3 Quick Start

Before analysis can proceed, the EBSeq package must be loaded into the working
space:

> library (EBSeq)

3.1 Gene Level DE Analysis (Two Conditions)
3.1.1 Required input

Data: The object Data should be a G — by — S matrix containing the
expression values for each gene and each lane (sample), where G is the number
of genes and S is the number of lanes. These values should exhibit raw counts,
without normalization across samples. Counts of this nature may be obtained
from RSEM [4], Cufflinks [7] or other such pre-processing approaches.
Conditions: The object Conditions should be a Factor vector of length S
that indicates to which condition each sample belongs. For example, if there
are two conditions and three samples in each, S = 6 and Conditions may be
given by

as.factor(c("Cl" , noqn , noqn , ngon , ngoon , ||C2n))

3.1.2 Simulating gene-level counts

The function GeneSimu may be used to simulate gene-level count data. As in
[6] and [2], the function assumes counts are distributed as Negative Binomial
with gene-specific mean in sample s and condition C' given by [,ugj and variance
ls,ug(l + lsu§¢g). We first generate 10,000 genes and 5 samples for each of two
conditions. Here we use DEGeneProp = 0.1 to define the DE gene percentage,
so that 10% of the genes will be generated as DE. The EE genes are simulated
as ugl = /152. The DE genes are simualted as half ,ugl = 5g,ugcz and half
,qu = 59/151. We could defined the DE genes to have constant J, equal to
4 by setting DVDconstant = 4; otherwise, the user may specify the DVDqt1
and DVDqt2 parameters to get non-constant J, from the corresponding lower
and upper quantiles of the empirical §, values obtained from the data under
investigation. (For example, let DVDqt1=0.95 and DVDqt2=0.97. Then the J,
will be randomly sampled from 95%-97% quantile of the empirical §, values.)

We will use ¢, values derived from the empirical data in the quantile range
of 0.1 to 0.9; alternately, the user could set Phiconstant to a constant value in
order to define a specific Negative Binomial distribution.

> GeneGenerate=GeneSimu(DVDconstant=4, DVDqt1=NULL, DVDqt2=NULL,
Conditions=rep(c("C1","C2"),each=5), NumofSample=10, NumofGene=10000,
DEGeneProp=.1, Phiconstant=NULL, Phi.qtl=.1, Phi.qt2=.9,
Meanconstant=NULL, OnlyData=T)

> GeneData=GeneGenerate$data

> GeneTrueDENames=GeneGenerate$TrueDE

The GeneSimu function is used to simulate a data matrix containing 10,000 rows
of genes and 10 columns of samples. The genes are named Gene_1, Gene_2 ...

> str(GeneData)

num [1:10000, 1:10] 1879 24 3291 97 485 ...

- attr(*, "dimnames")=List of 2
..$: chr [1:10000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
..$: NULL

where the first 10% of genes are simulated so that they are DE:

> str(GeneTrueDENames)
chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4" "Gene_5"

3.1.3 Library size factor

As detailed in Section 2, EBSeq requires the library size factor I for each sample
s. Here, [, may be obtained via the function MedianNorm, which reproduces the
median normalization approach to normalization used by DESeq [1].

> Sizes=MedianNorm(GeneData)

If quantile normalization is preferred, [; may be obtained via the function
QuantileNorm.

3.1.4 Running EBSeq on gene counts

The function EBTest is used to detect DE genes. For gene-level data, we don’t
need to specify the parameter NgVector since there are no differences in Ny
structure among the different genes. Here, we simulated the first five lanes to
be in condition 1 and the other five in condition 2, so define:
Conditions=as.factor(rep(c("C1","C2"),each=5))

sizeFactors is used to define the library size factor of each lane. It could be
obtained by summing up the total number of reads within each lane, Median
Normalization [1], scaling normalization [5], or some other such approach. These
in hand, we run the EM, setting the number of iterations to five via maxround=5.
Please note this may take several minutes:

> EBres=EBTest (Data=GeneData,
Conditions=as.factor(rep(c("C1","C2"),each=5)),sizeFactors=Sizes, maxround=5)

The posterior probabilities of being DE are obtained as follows, where PP is a
vector containing the posterior probabilities of being DE for each of the 10000
simulated genes:

> PP=GetPP (EBres)

> str(PP)

> str(PP)

Named num [1:10000] 1 1 1 1 1 ...

- attr(*, "names")= chr [1:10000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"

The vector PP may be used to form an FDR-controlled list of DE genes with a
target FDR of 0.05 as follows:

> DEfound=names (PP) [which(PP>=.95)]

> str(DEfound)

chr [1:991] "Gene_1" "Gene_2" "Gene_3" "Gene_4" "Gene_5"
> sum(DEfound%in%GeneTrueDENames)

[1] 959

EBSeq found 991 DE genes in total, and we see that 959 of them were true
positives.

3.1.5 Checking the model fit and other diagnostics

As noted in Leng et al., 2012 [3], EBSeq relies on parametric assumptions that
should be checked following each analysis. The QQP function may be used to
check the QQ plot of the empirical ¢’s vs the simulated ¢’s from the fitted beta
prior distribution (see Figure 2). We can check the fit using the data from
condition 1 in this way:

> QQP(QList=EBres$QListl, AlphaResult=EBres[[1]][5,1],
BetaResult=EBres[[2]][5,1], name="Gene Simulation", AList="F", GroupName=NULL)

Gene Simulation

simulated g's from fitied beta

estimated 's

Figure 2: The QQ plot for checking the model fitting

Here we see no violation of the Beta assumption. Likewise, the DenNHist func-
tion may be used to check the density plot of empirical ¢’s vs the simulated ¢’s
from the fitted beta prior distribution (see Figure 3).

> DenNHist (QList=EBres$QListl, Alpha=EBres[[1]][5,1], Beta=EBres[[2]][5,1],
name="Gene Simulation", AList="F", GroupName=NULL)

Gene Simulation

ER — Daa
Fitted density

Q alpha=0.84 beta=1.76

Figure 3: The density plot for checking the model fitting

3.2 Isoform Level DE Analysis (Two Conditions)

3.2.1 Required inputs

Data: The object Data should be a I — by — S matrix containing the
expression values for each isoform and each lane, where I is the number of
isoforms and S is the number of lanes. Again, these values should exhibit raw
data, without normalization across samples.

Conditions: The object Conditions should be a vector with length S to
indicate the condition of each sample.

IsoformNames: The object IsoformNames should be a vector with length I
to indicate the isoform names.

IsosGeneNames: The object IsosGeneNames should be a vector with length
I to indicate the gene name of each isoform. (in the same order as
IsoformNames.)

3.2.2 Simulating isoform-level counts

In order to simulate isoform-level data, the function IsoSimu may be used,
where NumofIso defines the number of isoforms in each N, group:

> IsoGenerate=IsoSimu(DVDconstant=NULL, DVDqtl1=.97, DVDqt2=.98,
Conditions=as.factor(rep(c("C1","C2"),each=5)), NumofSample=10,
NumofIso=c(1000,2000,3000), DEIsoProp=.1, Phiconstant=NULL,
Phi.qt1=.25, Phi.qt2=.75, OnlyData=T)
> str(IsoGenerate)
List of 2
$ data :List of 3
..$: num [1:1000, 1:10] 4824 210 3374 871 8917 ...
..— attr(x, "dimnames")=List of 2
..$: chr [1:1000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$: NULL

..$: num [1:2000, 1:10] 35 249 219 4 48 12 134 76 85 29 ...
..— attr(x, "dimnames")=List of 2
..$: chr [1:2000] "Iso_2_1" "Iso_2_2" "Iso_2_3" "Iso_2_4"
.. ..$: NULL
..$: num [1:3000, 1:10] 1567 1368 125 77 307 ...
..— attr(x, "dimnames")=List of 2
..$: chr [1:3000] "Iso_3_1" "Iso_3_2" "Iso_3_3" "Iso_3_4"
.. ..$: NULL
$ TrueDE: chr [1:600] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"

Here, we simulated 6,000 isoforms in total. The number of isoforms in N, =
1,2,3 groups are 1,000, 2,000 and 3,000, respectively. TrueDENames is a vector
containing all the isoforms that are truly DE. Since EBTest requires a ma-
trix that contains all of the isoform expressions, we need to convert the list
IsoGenerate$data into a matrix:

> IsoMat=do.call(rbind,IsoGenerate$data)

> str(IsoMat)

num [1:6000, 1:10] 4824 210 3374 871 8917 ...

- attr(*, "dimnames")=List of 2
..$: chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$: NULL

3.2.3 Library size factor

Similar to the gene-level analysis presented above, we may obtain the isoform-
level library size factors via MedianNorm:

> IsoSizes=MedianNorm(IsoMat)

3.2.4 The N, vector

Since EBSeq fits rely on Ny, we need to obtain the IV, for each isoform. This can
be done using the function GetNg. The required inputs of GetNg are the isoforms
names (IsoformNames) and their corresponding gene names (IsosGeneNames),
described above. In the simulated data, we assume that the isoforms in the
Ny =1 group belong to genes Gene_1, ... , Gene_1000; The isoforms in the
Ny = 2 group belong to genes Gene_1001, ..., Gene_2000; and isoforms in
the Ny, = 3 group belong to Gene_2001, ..., Gene_3000.

> IsoNames=rownames (IsoMat)
> str(IsoNames)
chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4" "Iso_1_5"
> GeneNames=paste("Gene",c(1:3000),sep="_")
> IsosGeneNames=c(GeneNames [1:1000] ,rep(GeneNames[1001:2000] ,each=2),
rep (GeneNames [2001:3000] ,each=3))
> NgList=GetNg(IsoNames, IsosGeneNames)
> IsoNgTrun=NgList$IsoformNgTrun

> IsoNgTrun[c(1:3,1001:1003,3001:3003)]
Iso_1_1 Iso_1_2 Iso_1_3 Iso_2_1 Iso_2_2 Iso_2_3 Iso_3_1 Iso_3_2 Iso_3_3
1 1 1 2 2 2 3 3 3

3.2.5 Running EBSeq on isoform counts

The EBTest function is also used to run EBSeq on isoform-level data:

> IsoEBres=EBTest(Data=IsoMat, NgVector=IsoNgTrun,
Conditions=as.factor(rep(c("C1","C2"),each=5)),sizeFactors=IsoSizes, maxround=5)
> IsoPP=GetPP(IsoEBres)

> str(IsoPP)

Named num [1:6000] 1 11 1 1 ...

- attr(*, "names")= chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
> IsoDE=IsoPP[which(IsoPP>=.95)]

> str(IsoDE)

Named num [1:550] 1 11 1 1

- attr(*, "names")= chr [1:550] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
> sum(names (IsoDE)%in%IsoGenerate$TrueDE)

[1] 511

We see that EBSeq found 550 DE isoforms at the target FDR of 0.05 and that
511 of those were true positives.

3.2.6 Checking the model fit and other diagnostics

If it is of interest to check differences among isoform groups defined by Ny (such
as those shown in Figure 1), the function PolyFitValue may be used. The
following code generates the first three panels shown in Figure 4:

> par (mfrow=c(2,2))

> PolyFitValue=vector("list",3)

> for(i in 1:3)

> PolyFitValue[[i]]=PolyFitPlot (IsoEBres$CiMean[[i]],
IsoEBres$CiEstVar[[i]],5)

Superimposing all IV, groups using the code below will generate the figure shown
in the lower right panel of Figure 4:

> PolyAll=PolyFitPlot(unlist(IsoEBres$CiMean), unlist(IsoEBres$ClEstVar),5)
> lines(logl0(IsoEBres$CiMean[[1]] [PolyFitValue[[1]]$sort]),
PolyFitValue[[1]]$fit [PolyFitValue[[1]]$sort],col="yellow")

> lines(logl0(IsoEBres$CiMean[[2]] [PolyFitValue[[2]]$sort]),
PolyFitValue[[2]]$fit [PolyFitValue[[2]]$sort],col="pink")

> lines(logl0(IsoEBres$CiMean[[3]] [PolyFitValue[[3]]$sort]),
PolyFitValue[[3]]$fit [PolyFitValue[[3]]$sort],col="green")

> legend("topleft",c("All Isoforms","Ng = 1","Ng = 2","Ng = 3"),
col=c("red","yellow","pink","green"),lty=1,1wd=3,box.1lwd=2)

10

1e+07
Il

Estimated Var
1000
|
Estimated Var
1000
Il

10

01 1 10 100 10000 01 1 10 100 10000

Estimated Mean Estimated Mean

1e+07

= All Isoforms
Ng=1
o Ng=2
=== Ng=3

Estimated Var
1000
|
Estimated Var
1000
Il

01 1 10 100 10000 01 1 10 100 10000

Estimated Mean Estimated Mean

Figure 4: The Mean-Variance fitting plot for each Ng group

To generate a QQ plot of the fitted beta prior distribution and the estimated
g-values within condition 1, a user may do the following (as in the gene-level
analysis):

> par (mfrow=c(2,2))

> QQP(QList=IsoEBres$QListl, AlphaResult=IsoEBres[[1]][5,],
BetaResult=IsoEBres[[2]][5,],

name="Isoforms", AList="F", GroupName=paste("Ng = ",c(1:3),sep=""))

And in order to produce the plot of the densities of fitted beta prior distribution
and the histograms of estimated g-values within Condition 1 (see Figure 6), the
following would be used:

> DenNHist (QList=IsoEBres$QListl, Alpha=IsoEBres[[1]][5,],
Beta=IsoEBres[[2]]1[5,1,
name="Isoforms", AList="F", GroupName=paste("Ng = ",c(1:3),sep=""))

3.3 Working with more than two conditions

In analyses where the data are spread over more than two conditions, the set
of possible patterns for each gene is more complicated than simply EE and
DE. As noted in Section 2, when we have 3 conditions, there are 5 expression
patterns to consider. Suppose, for example, that we have 6 samples, 2 in each of

11

Isoforms Ng = 1 Isoforms Ng = 2

o o
g o g
© @
8 2 o
3 o7 B o
£ Z
g g
§ ° § °
w o< o <
& S T S
3 5
3]
s N g o
s © 3 ©
E E
a o | 5 o |
° 5 T T T T T ° T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
estimated q's estimated q's
Isoforms Ng = 3
o g
-
s g
S
3 S
c q
v <
T S
o
g
g 94
3 o
E
G o |
s

estimated q's

Figure 5: The QQ plot of the priore distribution fitting within each Ng group

Ng = 1 Isoforms Ng = 2 Isoforms

: — Data . — Data
“ Fitted density Fitted density

o
RN 2
g G o
2 2
3 3
a a

o o~

=

-
2 o
Q alpha=0.67 beta=1.59 Q alpha=0.67 beta=2.22
Ng = 3 Isoforms
© —— Data
Fitted density

It
2 <
G
2
g
a

Q alpha=0.67 beta=2.49

Figure 6: The prior distribution fitting within each Ng group

3 conditions. The function GetPatterns allows the user to generate all possible
patterns given the conditions. For example:
> COIlditiOIlS=C("Cl" R noqn R ngon R ngoon s no3n s ncsn)

> PosParti=GetPatterns(Conditions)

12

> PosParti

Cl1 C2 C3
Patternl 1 1 1
Pattern2 1 1 2
Pattern3 1 2 1
Patternd 1 2 2
Pattern5 1 2 3

where the first row means all three conditions have the same latent mean ex-
pression level; the second row means C1 and C2 have the same latent mean
expression level but that of C3 is different; and the last row corresponds to the
case where the three conditions all have different latent mean expression lev-
els. The user may use all or only some of these possible patterns as an input
to EBMultiTest (more on this function presently). For example, if we were
interested in Patterns 1, 2, 4 and 5 only, we’d define:

> Parti=PosParti[-3,]

> Parti
Cl1 C2 C3
Patternl 1 1 1
Pattern2 1 1 2
Patternd 1 2 2
Patternb5 1 2 3

This established, we simulate 1,000 genes with 6 samples. The proportions of
genes in each of our four patterns are (0.7,0.1,0.1,0.1):

> MultiData=GeneMultiSimu(Conditions=Conditions,AllParti=Parti,
NumofSample=6,NumofGene=1000,DEGeneProp=c(.7,.1,.1,.1),
DVDqt1=.98,DVDqt2=.99,Phi.qt1=.25,Phi.qt2=.75)
> str(MultiData)
List of 2
$ data : num [1:1000, 1:6] 127 85 2231 323 28 ...
..— attr(*, "dimnames")=List of 2
..$: chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
..$: NULL
$ Patterns: Named chr [1:1000] "Pattern2" "Pattern2" "Pattern2" "Pattern2"
..— attr(x, "names")= chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"

MultiData$data provides the expression matrix. MultiData$Patterns pro-
vides the true pattern each gene belongs to.

Moving on to the analysis, MedianNorm or one of its competitors should be
used to determine the normalization factors. Once this is done, the formal test
is performed by EBMultiTest.

> MultiSize=MedianNorm(MultiData$data)

13

> MultiRes=EBMultiTest (MultiData$data,NgVector=NULL,Conditions=Conditions,
AllParti=Parti, sizeFactors=MultiSize, maxround=5)

The posterior probobility of being in each pattern for every gene is obtained by
using the function GetMultiPP:

> MultiPP=GetMultiPP (MultiRes)
> names (MultiPP)

[1] "pp" "MAP" "Patterns"
> MultiPP$PP[1:10,]
Patternl Pattern2 Patternd Patternb

Gene_1 1.510967e-74
Gene_2 9.297752e-12
Gene_3 5.335801e-82
Gene_4 5.751977e-75
Gene_5 5.894841e-04
Gene_6 5.609515e-237
Gene_7 6.277301e-02
Gene_8 1.553140e-29
Gene_9 0.000000e+00
Gene_10 1.247370e-07
> MultiPP$MAP[1:10]
[1] "Pattern2" "Pattern2" "Pattern2" "Pattern2" "Pattern2" "Pattern2"
[7] "Pattern2" "Pattern2" "Pattern2" "Pattern2"
> MultiPP$Patterns
Cl1 C2 C3
Patternl 1 1 1
Pattern2 1 1 2
Patternd 1 2 2
Patternb 1 2 3

.0000000 2.266077e-73
.7597022 5.929096e-13
.9107056 1.284363e-50 8.929443e-02
.8692036 1.769043e-46 1.307964e-01

4.279187e-19
2
8
1
.8182709 3.059064e-04 1.808337e-01
2
2
5
1
1

.402978e-01

.0000000 3.110408e-191 2.569921e-19
.7066661 8.666257e-03 2.218946e-01
.9452813 7.932557e-26 5.471867e-02
.0000000 0.000000e+00 1.117557e-19
.8670365 5.324147e-06 1.329580e-01

O, OO Fr OO OO K

where MultiPP$PP provides the posterior probobility of being in each pattern for
every gene. MultiPP$MAP provides the most likely pattern of each gene based
on the posterior probabilities. MultiPP$Patterns provides the details of the
patterns.

> sum(MultiPP$MAP==MultiData$Patterns)
[1] 900

EBSeq made 900 correct calls out of 1,000 genes.

14

References

1]

2]

S Anders and W Huber. Differential expression analysis for sequence count
data. Genome Biology, 11:R106, 2010.

T J Hardcastle and K A Kelly. bayseq: empirical bayesian methods for iden-
tifying differential expression in sequence count data. BMC' Bioinformatics,
11:422; 2010.

N. Leng, J.A. Dawson, J.A Thomson, V Ruotti, R. A. Rissman, B.M.G
Smits, J.D. Hagg, M.N. Gould, R.M. Stwart, and C. Kendziorski. Ebseq:
An empirical bayes hierarchical model for inference in rna-seq experiments.
BMI technical report, University of Wisconsin Madison, 226, 2012.

B Li and C N Dewey. Rsem: accurate transcript quantification from rna-
seq data with or without a reference genome. BMC' Bioinformatics, 12:323,
2011.

M D Robinson and Oshlack A. A scaling normalization method for differ-
ential expression analysis of rna-seq data. Genome Biology, 11:R25, 2010.

M D Robinson and G K Smyth. Moderated statistical tests for assessing
differences in tag abundance. Bioinformatics, 23(21):2881-2887, 2007.

C Trapnell, A Roberts, L Goff, G Pertea, D Kim, D R Kelley, H Pimentel,
S L Salzberg, J L Rinn, and L Pachter. Differential gene and transcript
expression analysis of rna-seq experiments with tophat and cufflinks. Nature
Protocols, 7(3):562-578, 2012.

15

