1 #ifndef UNIFRACWEIGHTEDCOMMAND_H
2 #define UNIFRACWEIGHTEDCOMMAND_H
5 * unifracweightedcommand.h
8 * Created by Sarah Westcott on 2/9/09.
9 * Copyright 2009 Schloss Lab UMASS Amherst. All rights reserved.
13 #include "command.hpp"
15 #include "counttable.h"
16 #include "progress.hpp"
17 #include "sharedutilities.h"
18 #include "fileoutput.h"
21 class UnifracWeightedCommand : public Command {
24 UnifracWeightedCommand(string);
25 UnifracWeightedCommand();
26 ~UnifracWeightedCommand() {}
28 vector<string> setParameters();
29 string getCommandName() { return "unifrac.weighted"; }
30 string getCommandCategory() { return "Hypothesis Testing"; }
32 string getHelpString();
33 string getOutputPattern(string);
34 string getCitation() { return "Lozupone CA, Hamady M, Kelley ST, Knight R (2007). Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73: 1576-85. \nhttp://www.mothur.org/wiki/Unifrac.weighted"; }
35 string getDescription() { return "generic tests that describes whether two or more communities have the same structure"; }
38 void help() { m->mothurOut(getHelpString()); }
44 linePair(int i, int j) : start(i), num(j) {}
46 vector<linePair> lines;
49 vector<Tree*> T; //user trees
50 vector<double> utreeScores; //user tree unweighted scores
51 vector<double> WScoreSig; //tree weighted score signifigance when compared to random trees - percentage of random trees with that score or lower.
52 vector<string> groupComb; // AB. AC, BC...
53 string sumFile, outputDir;
54 int iters, numGroups, numComp, counter;
55 vector< vector<double> > rScores; //vector<weighted scores for random trees.> each group comb has an entry
56 vector< vector<double> > uScores; //vector<weighted scores for user trees.> each group comb has an entry
57 vector< map<float, float> > rScoreFreq; //map <weighted score, number of random trees with that score.> -vector entry for each combination.
58 vector< map<float, float> > rCumul; //map <weighted score, cumulative percentage of number of random trees with that score or higher.> -vector entry for each c
59 map<float, float> validScores; //map contains scores from random
61 bool abort, phylip, random, includeRoot, subsample, consensus;
62 string groups, itersString, outputForm, treefile, groupfile, namefile, countfile;
63 vector<string> Groups, outputNames; //holds groups to be used
64 int processors, subsampleSize, subsampleIters;
66 map<string, string> nameMap;
68 void printWSummaryFile();
69 void printWeightedFile();
70 void createPhylipFile();
71 //void removeValidScoresDuplicates();
72 int findIndex(float, int);
73 void calculateFreqsCumuls();
74 int createProcesses(Tree*, vector< vector<string> >, vector< vector<double> >&);
75 int driver(Tree*, vector< vector<string> >, int, int, vector< vector<double> >&);
76 int runRandomCalcs(Tree*, vector<double>);
77 vector<Tree*> buildTrees(vector< vector<double> >&, int, CountTable&);
78 int getConsensusTrees(vector< vector<double> >&, int);
79 int getAverageSTDMatrices(vector< vector<double> >&, int);
83 /***********************************************************************/
84 struct weightedRandomData {
88 vector< vector<double> > scores;
89 vector< vector<string> > namesOfGroupCombos;
94 weightedRandomData(){}
95 weightedRandomData(MothurOut* mout, int st, int en, vector< vector<string> > ngc, Tree* tree, CountTable* count, bool ir, vector< vector<double> > sc) {
99 namesOfGroupCombos = ngc;
107 /**************************************************************************************************/
108 #if defined (__APPLE__) || (__MACH__) || (linux) || (__linux) || (__linux__) || (__unix__) || (__unix)
110 static DWORD WINAPI MyWeightedRandomThreadFunction(LPVOID lpParam){
111 weightedRandomData* pDataArray;
112 pDataArray = (weightedRandomData*)lpParam;
115 Tree* randT = new Tree(pDataArray->ct);
117 Weighted weighted(pDataArray->includeRoot);
119 for (int h = pDataArray->start; h < (pDataArray->start+pDataArray->num); h++) {
121 if (pDataArray->m->control_pressed) { return 0; }
123 //initialize weighted score
124 string groupA = pDataArray->namesOfGroupCombos[h][0];
125 string groupB = pDataArray->namesOfGroupCombos[h][1];
128 randT->getCopy(pDataArray->t);
130 //create a random tree with same topology as T[i], but different labels
131 randT->assembleRandomUnifracTree(groupA, groupB);
133 if (pDataArray->m->control_pressed) { delete randT; return 0; }
135 //get wscore of random tree
136 EstOutput randomData = weighted.getValues(randT, groupA, groupB);
138 if (pDataArray->m->control_pressed) { delete randT; return 0; }
141 pDataArray->scores[h].push_back(randomData[0]);
148 catch(exception& e) {
149 pDataArray->m->errorOut(e, "Weighted", "MyWeightedRandomThreadFunction");